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Abstract— This paper gives a further look at reduced-order
modeling (ROM) techniques that can be applied to MEMS beams
subject to nonlinear forces. It is focused on the popular method
which consists in multiplying the equation governing the
displacement of the beam by the displacement-dependent
denominator of the nonlinear (electrostatic) force before modal
projection is performed. Having already shown that in the case of
1-mode, 1-harmonic analysis, this method can lead to
dramatically wrong results, we propose another choice of
multiplicative coefficient, with much improved behavior. This
method is illustrated, discussed and compared to other
approaches in terms of simplicity, accuracy and range of validity.
electrostatic
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I. INTRODUCTION

Being able to accurately determine the nonlinear frequency
response of a resonant M/NEMS device is of interest at several
stages of a device’s life, from the early design and modeling
stage to the characterization or the calibration stage. For
example, at the design stage, frequency responses are used as a
priori information to assess the characteristics (natural
frequency, quality factor, influence of nonlinearity) of a
structure. Experimental (nonlinear) frequency responses can be
used to monitor the variations of these characteristics, for test,
calibration or measurement. While the experimental
determination of frequency responses is a problem unto itself
[1-3], the issues raised by their theoretical determination should
not be brushed aside. In [4], we compared three analysis
techniques for tackling problems involving non-polynomial
nonlinear forces. It turned out that, in the simple case of the
single-sided electrostatic actuation of an otherwise linear beam,
the popular method which consists in multiplying the equation
governing the displacement of the beam by the displacement-
dependent denominator of the electrostatic force before modal
projection is performed (MBP method, [5-6]), failed to capture:

- the down-shift of the resonance frequency caused by
the DC bias, even at very small oscillation amplitudes.

- large amplitude effects such as the
characteristic of the frequency response.

hysteretic

On the other hand, these phenomena were qualitatively
captured by straightforward Taylor series expansion of the
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nonlinear force (TS method, as in [7-8]), and quantitatively
captured, even for very large displacements, by approximating
the projection integrals with a function of similar asymptotic
behavior (API method, as introduced in [9]). Note that several
applications, such as characterization based on frequency
response measurements, cannot rely on purely qualitative
results.

In this paper, we consider, as in [4], the single-sided
clectrostatic actuation of an otherwise linear clamped-clamped
beam, governed by:
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where Gw(x,t) is the displacement, the beam has Young’s

modulus E, density p, length L, width b, electrostatic gap G,
moment of inertia /, damping coefficient 4, and ¥(7) is the
applied voltage. Note that the term describing the elongation of
the beam is voluntarily omitted from (1). While, strictly
speaking, it should be accounted for, it would only make our
analysis more complex and our results more difficult to
interpret. For the sake of clarity and brevity, we will only
consider the simpler case described by (1).

Our objectives are (i) to shed a new light on why MBP,
used as in [1], fails to capture nonlinear behavior, and (ii) to
propose an alternative to MBP, actually another choice of
multiplicative coefficient, with much improved behavior. In
section II, we compare the frequency responses obtained, as in
[4], from a single-mode, single-harmonic analysis of (1)
through the TS and MBP approaches. The differences between
the two expressions give us insight into why MBP can be
highly inaccurate. In section III, we propose a modification of
MBP that overcomes this issue. This method is illustrated,
discussed and compared to other approaches in terms of
simplicity, accuracy and range of validity.


















