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Since it s incept ion, part ial least squares path modeling has suff ered from the absence
of a single opt imizat ion crit erion for est imat ing component weight s. A new est imat ion
procedure is proposed to address this enduring issue. T he proposed procedure aims
to minimize a single least squares crit erion for est imat ing component weight s under
both Mode A and Mode B. An alt ernat ing least squares algorithm is developed to
minimize the crit erion. T his procedure provides quit e similar or ident ical solut ions to
those obt ained from exist ing Lohmöller’s algorit hm in real and simulat ed dat a analy-
ses. T he proposed procedure can serve as an alt ernat ive to the exist ing one in that it
is well-grounded in theory as well as performs comparably in pract ice.

1. In t r od u ct ion

Part ial least squares path modeling (PLSP M) (Wold, 1966, 1973, 1982; Lohmöller
1989) is a long-standing approach to st ructural equat ion modeling. In parameter
est imat ion, this approach adopts a st rategy of est imat ing a latent variable as a com-
ponent or weighted composite of indicators. In this regard, P LSPM can be considered
a component -based approach to st ructural equat ion modeling (Tenenhaus, 2008). It
carries out two main stages sequent ially to est imate parameters. The first stage es-
t imates latent variables as components, which requires the est imat ion of component
weights. This stage uses an iterat ive algorithm to est imate the component weights.
The second stage est imates remaining parameters in measurement and st ructural
models (i.e., path coeffi cients and/ or loadings) by means of ordinary linear regression.
That is, path coeffi cients are est imated by regressing each dependent latent variable
on it s explanatory latent variables, whereas loadings are est imated by regressing indi-
cators on their corresponding latent variables. The second stage is thus non-iterat ive,
which is based on the latent variables obtained from the first stage. Accordingly, the
first stage is the most crucial est imat ion procedure in P LSP M (Hanafi, 2007).

Lohmöller’s (1989) algorithm is best known for the first stage and implemented into
most software programs for P LSPM, including LVPLS (Lohmöller, 1984), P LS Graph
(Chin, 2001), SmartP LS (Ringle et al., 2005), and XLSTAT (Addinsoft , 2009). As
will be explained in more detail in Sect ion 2, this algorithm repeats two steps, called
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internal and external est imat ion. In the internal est imat ion step, a so-called inner es-
t imate or inner component is obtained for each latent variable under diff erent schemes
such as cent roid, factorial, and path weight ing. In the external est imat ion step, com-
ponent weights for each block of indicators are est imated in two diff erent ways called
Mode A and Mode B.

It is not known which crit erion the Lohmöller algorithm aims to opt imize by re-
peat ing the two steps (e.g., Coolen & de Leeuw, 1987; J öreskog & Wold, 1982). A few
at tempts have been made to address this issue. For example, Hanafi (2007) presented
associat ion-maximizat ion crit eria for the cent roid and factorial schemes under Mode
B (also see Tenenhaus & Tenenhaus, 2011). To our knowledge, nevertheless, no single
opt imizat ion crit erion is yet available for the algorithm, which includes both Mode
A and Mode B as special cases. The lack of a single opt imizat ion crit erion makes it
diffi cult to evaluate the algorithm (McDonald, 1996).

In this paper, we propose an alternat ive procedure for the first est imat ion stage of
P LSP M. The proposed procedure aims to minimize a single least squares crit erion for
est imat ing component weights under both Mode A and Mode B. An alternat ing least
squares (ALS) algorithm is used to minimize the crit erion, which repeat s the same
two steps used in the Lohmöller algorithm. A major diff erence is that the ALS algo-
rithm updates the inner est imates and component weights opt imally by minimizing
the least squares crit erion. Consequent ly, the proposed procedure is well-defined in a
least squares sense.

The paper is organized as follows. In Sect ion 2, we provide a brief descript ion of
the exist ing Lohmöller algorithm. In Sect ion 3, we provide a detailed account of the
proposed procedure. In Sect ion 4, we invest igate the performance of the proposed
and extant procedures through the analyses of real and simulated data. In the final
sect ion, we discuss implicat ions of the proposed procedure.

2. E xist in g P LSP M A lgor it h m

We briefly describe the Lohmöller algorithm. Refer to Tenenhaus et al. (2005) for
a fuller descript ion of the algorithm.

Let ηj denote an N by 1 vector of the j th latent variable (j = 1, . . . , J ), where N is
the number of individuals. Let X j denote an N by Pj matrix consist ing of a block of
indicators associated with η j . Let w j denote a Pj by 1 vector of component weights
assigned to X j . In P LSPM, convent ionally, both indicators and latent variables are
assumed to be standardized, such that they have zero means and unit variances (e.g.,
η�j ηj = N ). However, they are to be normalized here, so that their length is equal to
one (e.g., η�j ηj = 1). This normalizat ion makes the exposit ion of equat ions simpler
while producing ident ical est imates of weights, path coeffi cients, and loadings. The in-
dividual scores of standardized latent variables can always be obtained by mult iplying
their normalized scores by

√
N .

The Lohmöller algorithm begins by choosing arbit rary init ial values for w j and
comput ing ηj = X j w j . Then, it repeat s the following two steps to est imate w j and
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ηj .
Step 1 (internal est imat ion): Update the inner est imate for η j . The inner est imate,
denoted here by fj , is a weighed composite of the latent variables connected to ηj in
a given st ructural model. Such connected latent variables contain those aff ect ing ηj
as well as those being aff ected by ηj . The inner est imate takes the general form as
follows.

fj =
Qj�

q= 1

ej qηq, (1)

where ej q is a scalar value, called the inner weight , which is assigned to each of the Qj
latent variables (ηq’s) that are connected to η j . As shown in (1), updat ing the inner
est imate amounts to updat ing it s inner weights, given latent variables. Three diff erent
ways, so-called schemes, are available for the calculat ion of the inner weights: cen-
t roid (Wold, 1982), factorial (Lohmöller, 1989), and path weight ing. In the cent roid
scheme, ej q’s are the signs of the correlat ions between ηq’s and ηj . In the factorial
scheme, ej q’s are the correlat ions between ηq’s and ηj . In the path weight ing scheme,
ej q’s are the regression coeffi cients of ηj on ηq’s if ηj is a dependent variable, whereas
they are the correlat ions between ηq’s and ηj if ηj is an explanatory variable. The
path weight ing scheme is recommended over the other schemes because it t akes into
account both direct ions and magnitudes of the relat ionships between latent variables
(Esposito Vinzi et al., 2010).

Figure 1 displays a prototype, st ructural model to illust rate the first step. This
model consist s of four latent variables (J = 4). For the prototype model, the inner
est imate for each of the four latent variables is given as

f1 = e13η3
f2 = e23η3
f3 = e31η1 + e32η2 + e34η4
f4 = e43η3

(2)

As explained above, the inner weights for these inner est imates are calculated based
on which scheme is chosen. For example, if the path weight ing scheme is adopted,
e31 and e32 are the regression coeffi cients of η3 on η1 and η2, because η1 and η2
are explanatory variables for η3, whereas e34 are the correlat ion between η3 and η4,
because η3 is an explanatory variable for η4. All the other inner weight est imates are
simply correlat ions between two connected latent variables, because all latent vari-
ables are normalized and the regression coeffi cient of one latent variable on the other
is equivalent to the correlat ion between them.
Step 2 (external est imat ion): Update w j . There are two ways of est imat ing compo-
nent weights on the basis of the nature of the measurement model: Mode A and Mode
B. Mode A is known to be more suitable for reflect ive indicators, whereas Mode B
is for format ive indicators (e.g., Tenenhaus et al., 2005). Specifically, under Mode A,
w j is updated by regressing X j on fj , as follows.

w j = X�
j fj (f�j fj )

− 1. (3)
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F igure 1: A prototype st ructural model that involves four lat ent variables. No residual t erms are
displayed.

Under Mode B, w j is updated by regressing fj on X j , as follows.

w j = (X�
j X j )

− 1X�
j fj . (4)

Subsequent ly, η j is updated by ηj = X j w j , and normalized such that η�j ηj =
w�
j X

�
j X j w j = 1. This normalizat ion can be done by mult iplying w j by

(w�
j X

�
j X j w j )− 1/ 2, indicat ing that the eff ect of (f�j fj )

− 1 in (3) will be cancelled out .
Consequent ly, under Mode A, w j can be updated simply by

w j = X�
j fj . (5)

The above steps are repeated unt il no substant ial diff erences occur between the pre-
vious and current weight est imates for all J blocks of indicators. A summary of this
algorithm is provided in the Appendix.

As stated earlier, it is unknown which opt imizat ion crit erion the Lohmöller algo-
rithm seeks to maximize or minimize under Mode A and Mode B. In the next sect ion,
we propose a single least squares crit erion that is to be consistent ly minimized for
est imat ing component weights under both modes.

3. T h e P r op osed E st im a t ion P r oced u r e for P LSP M

Let H = [η1, . . . , ηJ ] denote an N by J matrix consist ing of all J latent variables.
Let ε j denote a J by 1 vector consist ing of Qj inner weights for the Qj latent variables
connected to η j , and of J − Qj zeros for the remaining unconnected latent variables.
Then, let fj = H ε j denote an N by 1 vector of the inner est imate for ηj . For example,
in the prototype model depicted in Figure 1, H = [η1, η2, η3,η4], ε1 = [0, 0, e13, 0]�,
ε2 = [0, 0, e23, 0]�, ε3 = [e31, e32, 0, e34]�, and ε4 = [0, 0, e43, 0]�.

We propose a least squares crit erion for est imat ing all weights under Mode A, as
follows.

Minimize φA =
J�

j = 1

SS(X j − fj w
�
j ), (6)

subject to η�j ηj = 1, where SS(M ) = t race(M �M ) for any mat rix M . This crit e-
rion appears similar to a blockwise join loss funct ion for principal component analysis
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(Gifi, 1990, p. 152), where a vector of object scores is replaced by the inner est imate.
We propose a least squares crit erion for est imat ing all weights under Mode B, as

follows.

Minimize φB =
J�

j = 1

SS(fj − X j w j ), (7)

subject to η�j ηj = 1. Criterion (7) may be viewed as a blockwise meet loss version
(Gifi, 1990, p. 167) of the covariance-maximizat ion crit erion for regularized general-
ized canonical correlat ion analysis (Tenenhaus & Tenenhaus, 2011).

Let α j denote a binary value that indicates which mode is used for updat ing the
component weights for the j th block of indicators. That is, α j = 1 if Mode A is used,
and α j = 0 if Mode B is used. We then develop a single opt imizat ion crit erion for the
P LSPM algorithm by combining (6) and (7), as follows.

Minimize φ =
J�

j = 1

α j SS(X j − fj w
�
j ) +

J�

j = 1

(1 − α j )SS(fj − X j w j ), (8)

subject to η�j ηj = 1. This crit erion subsumes (6) and (7) as special cases by set t ing
all α j ’s to one or zero, respect ively. Moreover, it can be used for est imat ing the
weights for each block of indicators under either Mode A or Mode B by set t ing the
corresponding α j to one or zero, respect ively.

We develop an ALS algorithm to minimize (8). This algorithm begins by assign-
ing arbit rary init ial values to w j and obtaining ηj = X j w j . Then, it alt ernates the
following two steps.
Step 1 (internal est imat ion): Update fj for fixed w j . This step reduces to updat ing
the inner weights in ε j , given latent variables. It is equivalent to minimizing

φj = α j SS(X j − H ε j w
�
j ) + (1 − α j )SS(H ε j − ηj ). (9)

Let e j denote a Qj by 1 vector consist ing of non-zero inner weights only. Let Γ j
denote an N by Qj matrix formed by eliminat ing the columns of H corresponding to
any zero elements in ε j . Then, minimizing (9) is equivalent to minimizing

φj = α j SS(X j − Γ j e j w
�
j ) + (1 − α j )SS(Γ j e j − ηj ). (10)

By solving
1
2
∂φj
∂e j

= 0, the least squares est imate of e j is obtained as

e j =
�
α j w

�
j w j Γ

�
j Γ j + (1 − α j )Γ

�
j Γ j

�− 1 Γ�j ηj . (11)

Then, fj is updated by fj = H ε j , where ε j is const ructed from the est imate of e j .
Step 2 (external est imat ion): Update w j for fixed fj . This is equivalent to minimizing

φj = α j SS(X j − fj w
�
j ) + (1 − α j )SS(fj − X j w j ). (12)

Note that in (12), fj does not involve w j because ηj is not connected with it self.
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By solving
1
2
∂φj
∂w j

= 0, the least squares est imate of w j is obtained as

w j =
�
α j f

�
j fj I + (1 − α j )X�

j X j
�− 1 X�

j fj , (13)

where I is an ident ity mat rix of size Pj . Subsequent ly, ηj is updated by ηj = X j w j ,
and normalized. We repeat the two steps unt il the diff erence in the values of (8) be-
tween the previous and current it erat ions decreases below a pre-determined threshold
(e.g., .00001). A summary of the ALS algorithm is also presented in the Appendix.

A few remarks concerning the ALS algorithm are in order. First , it is easily seen
that if Mode A is used or equivalent ly α j = 1, (13) reduces to (3) and (5), whereas if
Mode B is used or α j = 0, (13) reduces to (4). This indicates that the algorithm deals
with Mode A and Mode B as special cases. Second, in the first step, the est imates of
the inner weights are obtained in such a way that they minimize a least squares crite-
rion, condit ionally upon the est imates of component weights. Thus, we may call the
step the “least squares scheme.” On the other hand, it is uncertain which criterion
the exist ing schemes seek to opt imize except for a few special cases (Hanafi, 2007;
Tenenhaus & Tenenhaus, 2011). Third, the ALS algorithm defines convergence as
the decrease in the value of the opt imizat ion crit erion (8) beyond a certain threshold,
whereas the Lohmöller algorithm defines convergence as a sort of equilibrium, i.e.,
the point at which no substant ial diff erence occurs between the previous and current
est imates of weights, because it does not involve an opt imizat ion crit erion. Last ly,
at least in theory, a third type of mode can be considered by taking any value of α j
between 0 and 1. For example, by specifying α j = .1, the second term of the crit erion
can have a greater influence on the est imat ion of component weights. However, in
pract ice, it is not yet clear what such types of mode connote and whether using them
is sensible substant ively.

4. E m p ir ica l C om p ar ison s

In this sect ion, we compare the proposed procedure to the extant procedure based
on the Lohmöller algorithm, using real and simulated data.

4.1 Real Data Analysis

We applied the proposed and extant procedures to fit the American customer sat is-
fact ion index (ACSI) model (Fornell et al., 1996) to a consumer-level dataset collected
in 2002. This dataset consist s of the responses of 774 consumers to the service unit s
(e.g., police, garbage pick-up services, etc.) within the US sector of public adminis-
t rat ion.

The ACSI model specifies the relat ionships among antecedent and consequent latent
variables of customer sat isfact ion. As depicted in Figure 2, the ACSI model includes
fourteen indicators: x1 = customer expectat ions about overall quality, x2 = customer
expectat ions about reliability, x3 = customer expectat ions about customizat ion, x4
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= overall quality, x5 = reliability, x6 = customizat ion, x7 = price given quality, x8 =
quality given price, x9 = overall customer sat isfact ion, x10 = confirmat ion of expecta-
t ions, x11 = distance to ideal product or service, x12 = formal or informal complaint
behavior, x13 = repurchase intent ion, and x14 = price tolerance. The measures and
scales of these indicators are available in Fornell et al. (1996). The ACSI model also
involves six latent variables that underlie the fourteen indicators, as follows: CE =
customer expectat ions, P Q = perceived quality, P V = perceived value, CS = customer
sat isfact ion, CC = customer complaint s, and CL = customer loyalty.

x1

CEx2

x3

x4

x5

x6

PQ

PV

CS

CC

CL

x7 x8

x9 x1 0 x1 1

x1 2

x1 3

x1 4

F igure 2: T he American customer sat isfact ion index model. No residual t erms are displayed.

We used SmartP LS (Ringle et al., 2005) to implement the extant procedure in
combinat ion with the path weight ing scheme. As displayed in Figure 2, the ACSI
model assumes that all indicators are reflect ive. This suggest s that Mode A should
be more appropriate for est imat ing weights.

Tables 1 and 2 present the est imates of weights, loadings, and path coeffi cients
obtained from the proposed and extant procedures under Mode A. As shown in the
tables, both procedures resulted in quite similar parameter est imates, leading to the
same interpretat ions.

4.2 Simulated Data Analysis

We further compared the performance of the proposed and extant procedures based
on simulated data. In part icular, we focused on how similarly the proposed and extant
procedures would perform under two diff erent models.
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Table 1: T he est imat es of weight s and loadings of the ACSI model obt ained from the proposed
and ext ant proceduresfor P LSP M.

Lat ent Indicator
Weight est imat es Loading est imat es

P roposed Extant P roposed Extant

CE x1

x2

x3

.4447

.4375

.3219

.4523

.4310

.3207

.8651

.8772

.7189

.8679

.8750

.7179

P Q x4

x5

x6

.4042

.4114

.2986

.4048

.4034

.3072

.9336

.9325

.8004

.9328

.9303

.8045

P V x7

x8

.4251

.7060
.4229
.7080

.8024

.9332
.8012
.9339

CS x9

x10

x11

.3851

.3480

.3487

.3855

.3414

.3550

.9388

.9232

.9097

.9387

.9216

.9113

CC x12 1.000 1.000 1.000 1.000

CL x13

x14

.5827

.4812
.5827
.4813

.9507

.9268
.9507
.9268

Table 2: T he est imat es of path coeffi cient s of the ACSI model obt ained from the proposed and
ext ant procedures for P LSP M.

P roposed Extant

CE → P Q
CE → P V
CE → CS
P Q → P V
P Q → CS
P V → CS
CS → CC
CS → CL
CC → CL

.5822

.1220

.0330

.6469

.6707

.2656
− .4000

.5824
− .0976

.5819

.1230

.0353

.6466

.6668

.2676
− .4002

.5831
− .0972

4.2.1 Simulation 1

Figure 3 displays the st ructural equat ion model considered in the first simulat ion
study, along with it s unstandardized and standardized parameter values. In this
model, three latent variables were specified, each of which underlay three indicators.
Individual-level mult ivariate normal data were drawn from N (0,Σ ), where Σ is the
implied populat ion covariance mat rix derived based on the unstandardized parameter
values in the framework of covariance st ructure analysis (e.g., J öreskog, 1970). This
indicates that the latent variables in the model were assumed to be equivalent to
common factors.

We considered three diff erent levels of sample size (N = 25, 100, 400). Five hun-
dred samples were generated at each sample size. We used the same init ial values
per sample for the proposed and extant procedures. In the model, all indicators were
reflect ive, so that we used Mode A for both procedures. The path weight ing scheme
was employed for the extant procedure.



AN ALT ERNAT IVE EST IMAT ION P ROCEDURE FOR PART IAL LEAST SQUARES PAT H MODELING 71

x2 x3 x4 x5 x6 x7 x8 x9

1 2 3

.51 .51 .51 .51 .51 .51 .51 .51

.3136
.3136

.6
(.6)

.6 
(.6)

1
(.7)

1 
(.7) 1

(.7)

1
(.7)

1
(.7)

1
(.7)

1
(.7)

1
(.7)

x1

1
(.7)

.49

.51

F igure 3: T he st ructural equat ion model specified for the first simulat ion study. Standardized
parameters are given in parentheses.

P LSP M provides standardized parameter est imates. Table 3 presents the bias,
standard deviat ion, and mean square error of each standardized parameter est imate
obtained from the two procedures. As shown in the table, the parameter est imates of
both procedures shared the same propert ies. In general, their loading est imates were
posit ively biased, whereas their path coeffi cients were negat ively biased. As stated
above, in this study, the simulated data were generated under the assumpt ion that a
latent variable was equivalent to a common factor. Under this assumpt ion, P LSP M
is known to yield biased est imates (e.g., Dijkst ra, 2010) because it regards latent
variables as components rather than common factors. The standard deviat ions of the
loading and path coeffi cient est imates decreased with sample size. The mean square
errors of these est imates became closer to zero with sample size. Notably, all the
parameter est imates obtained from both procedures exhibited quite similar biases,
standard deviat ions, and mean square errors across all sample sizes. This indicates
that the proposed procedure resulted in virtually ident ical parameter est imates as
those from the extant one.

As discussed in Sect ion 3, technically, the proposed procedure allows a compro-
mise between Mode A and Mode B by taking the value of α j between 0 and 1. As
a reviewer suggested, we have invest igated the eff ect of adopt ing such a third type
of mode on parameter est imat ion. Specifically, we applied the proposed procedure
under α j = .5, so that Mode A and Mode B cont ributed simultaneously to obtaining
est imates. As shown in Table 3, this case tended to produce less biased est imates
part icularly in small samples, whereas it t ended to yield larger standard deviat ions of
the est imates. Consequent ly, it s est imates tended to show larger mean square errors
than those obtained under Mode A. Thus, at least in this study, adopt ing α j = .5 was
of lit t le benefit over using Mode A in est imat ing parameters. Although permit t ing
a compromise between the two convent ional modes is a technically novel feature, as
stated earlier, it is unclear what such a compromise indicates substant ively, when it
can be useful, and how the value of α j can be chosen.
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Table 3: T he bias, st andard deviat ion (SD), and mean square error (MSE) of each parameter
est imat e obt ained from the proposed and extant procedures for P LSP M in the first sim-
ulat ion study. P P 1 : P roposed procedure under α j = 1; P P 2 : P roposed procedure under
α j = .5; EP : Extant procedure.

Parameters N
Bias SD MSE

P P 1 P P 2 EP P P 1 P P 2 EP P P 1 P P 2 EP

Loading 1
(.7)

25
100
400

.0842

.1067

.1120

.0052

.0957

.1092

.0842

.1067

.1120

.1590

.0537

.0250

.2900

.0970

.0448

.1633

.0536

.0250

.0324

.0143

.0132

.0841

.0186

.0139

.0338

.0143

.0132

Loading2
(.7)

25
100
400

.0977

.1064

.1103

− .0110
.0930
.1078

.0973

.1064

.1103

.1242

.0519

.0256

.2959

.0994

.0467

.1241

.0518

.0256

.0250

.0140

.0128

.0877

.0185

.0138

.0249

.0140

.0128

Loading3
(.7)

25
100
400

.0766

.1106

.1121

− .0021
.0869
.1068

.0775

.1106

.1121

.1573

.0490

.0236

.3137

.1073

.0468

.1543

.0489

.0236

.0306

.0146

.0131

.0984

.0191

.0136

.0298

.0146

.0131

Loading4
(.7)

25
100
400

.1016

.1079

.1110

.0672

.1013

.1098

.1023

.1079

.1110

.1164

.0442

.0210

.1813

.0762

.0326

.1139

.0440

.0209

.0239

.0136

.0128

.0374

.0161

.0131

.0234

.0136

.0128

Loading5
(.7)

25
100
400

.1042

.1092

.1121

.0675

.1112

.1113

.1039

.1092

.1121

.1136

.0461

.0215

.1774

.0702

.0315

.1139

.0460

.0214

.0237

.0141

.0130

.0360

.0173

.0134

.0238

.0140

.0130

Loading6
(.7)

25
100
400

.0992

.1077

.1120

.0617

.1001

.1114

.1006

.1077

.1120

.1098

.0464

.0215

.1993

.0757

.0308

.1039

.0465

.0215

.0219

.0138

.0130

.0435

.0158

.0134

.0209

.0138

.0131

Loading7
(.7)

25
100
400

.0938

.1097

.1097

.0013

.0930

.1117

.0951

.1097

.1097

.1569

.0489

.0229

.2969

.1044

.0453

.1449

.0489

.0229

.0334

.0144

.0126

.0882

.0195

.0145

.0300

.0144

.0126

Loading8
(.7)

25
100
400

.0757

.1055

.1114

− .0127
.0844
.1048

.0764

.1055

.1114

.1837

.0540

.0242

.2888

.0983

.0453

.1835

.0539

.0242

.0395

.0140

.0130

.0835

.0168

.0130

.0395

.0140

.0130

Loading9
(.7)

25
100
400

.0605

.1084

.1125

− .0015
.0966
.1068

.0615

.1084

.1125

.2162

.0488

.0224

.2788

.1066

.0464

.2182

.0488

.0224

.0504

.0141

.0132

.0777

.0207

.0135

.0514

.0141

.0132

Path 1
(.6)

25
100
400

− .1024
− .1555
− .1531

− .0664
− .1382
− .1451

− .1021
− .1554
− .1531

.1655

.0801

.0405

.1854

.0808

.0396

.1635

.0799

.0405

.0379

.0306

.0251

.0388

.0256

.0226

.0372

.0305

.0251

Path 2
(.6)

25
100
400

− .1091
− .1461
− .1500

− .0703
− .1300
− .1493

− .1091
− .1461
− .1500

.1576

.0812

.0396

.1769

.0762

.0401

.1573

.0810

.0396

.0368

.0279

.0241

.0362

.0227

.0239

.0366

.0279

.0241

4.2.2 Simulation 2

The first simulat ion study was useful to evaluate how similarly the proposed and
extant procedures performed. Nonetheless, this study may be somewhat too simple
in that it involved only three blocks of reflect ive indicators and assumed the same
correlat ions among each block of indicators. Thus, we conducted another simulat ion
study, which considered both format ive and reflect ive indictors as well as diff erent
correlat ions among each block of indicators. Specifically, we used the model specified
in Ringle et al. (2009) for the second simulat ion study. Figure 4 displays the model
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given in Ringle et al. (2009), along with it s parameter values. Ringle et al. (2009)
did not provide populat ion residual variances. Instead, they provided the populat ion
correlat ion mat rix of indicators, derived based on the specified model (see Table 5 in
Ringle et al., 2009). We generated mult ivariate normal data, using the correlat ion
matrix.

x1 4

.1

x1 5 x1 6 x1 7 x1 9x1 8

x1 2x1 x2 x3 x4 x5 x6 x7 x8 x9 x1 0 x1 1 x1 3

4
5

1 2 3

.2
.1 .6 .4

.4 .6 .1
.4

.3
.2 .2 .4

.4
.5 .6

.6

.8 .7 .8 .8 .7 .8

F igure 4: Ringle et al. (2009)’s st ructural equat ion model used for the second simulat ion study.

As in the first simulat ion study, we considered three diff erent levels of sample size
(N = 25, 100, 400). Five hundred samples were generated at each sample size. We
used the same init ial values per sample for the proposed and extant procedures. Mode
A was applied for est imat ing the weights for reflect ive indicators, whereas Mode B
was used for est imat ing those for format ive indicators. The path weight ing scheme
was employed for the extant procedure.

Table 4 provides the bias, standard deviat ion, and mean square error of each stan-
dardized parameter est imate obtained from the two procedures. The parameter es-
t imates of both procedures showed the same behaviors, although it was somewhat
diffi cult to characterize them clearly. For example, some weight est imates for forma-
t ive indicators were negat ively biased, other est imates were posit ively biased, and the
others were biased in diff erent direct ions over sample size. Conversely, all loading
est imates were posit ively biased regardless of sample size. Two est imates of path
coeffi cients were negat ively biased, whereas one est imate was posit ively biased, across
sample sizes. It was diffi cult to explain where these biases came from because Ringle
et al. (2009) did not discuss explicit ly whether their populat ion correlat ion mat rix
was generated based on the assumpt ion that the latent variables were equivalent to
common factors as in the first study. The standard deviat ions and mean square errors
of all parameter est imates decreased with sample size. Important ly, all the parame-
ter est imates obtained from both procedures involved quite similar biases, standard
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Table 4: T he bias, st andard deviat ion (SD), and mean square error (MSE) of each parameter
est imat e obt ained from the proposed and ext ant procedures for P LSP M in the second
simulat ion study.

Parameters N
Bias SD MSE

P roposed Extant P roposed Extant P roposed Extant

Weight 1
(.1)

25
100
400

− .1443
− .1461
− .1577

− .1442
− .1461
− .1579

.2812

.1206

.0575

.2811

.1206

.0575

.0999

.0359

.0282

.0998

.0359

.0282

Weight 2
(.2)

25
100
400

− .0773
− .0772
− .0655

− .0771
− .0770
− .0654

.2355

.1149

.0545

.2356

.1149

.0545

.0614

.0192

.0073

.0615

.0191

.0072

Weight 3
(.1)

25
100
400

− .1354
− .1391
− .1338

− .1356
− .1393
− .1340

.2630

.1148

.0519

.2631

.1148

.0519

.0875

.0325

.0206

.0876

.0326

.0207

Weight 4
(.6)

25
100
400

.0298

.0614

.0687

.0297

.0615

.0688

.2252

.0763

.0366

.2252

.0763

.0366

.0516

.0096

.0061

.0516

.0096

.0061

Weight 5
(.4)

25
100
400

.2674

.3090

.3103

.2675

.3089

.3102

.2026

.0724

.0366

.2026

.0724

.0367

.1125

.1007

.0976

.1126

.1007

.0976

Weight6
(.4)

25
100
400

.0294

.1421

.2276

.0299

.1426

.2280

.4651

.3178

.1591

.4649

.3176

.1589

.2172

.1212

.0771

.2171

.1212

.0772

Weight7
(.6)

25
100
400

− .1872
.0410
.1298

− .1867
.0410
.1295

.4839

.3089

.1492

.4835

.3087

.1491

.2691

.0971

.0391

.2686

.0970

.0390

Weight 8
(.1)

25
100
400

.0705
− .0989
− .1255

.0701
− .0991
− .1259

.5018

.3496

.2161

.5017

.3494

.2159

.2568

.1320

.0625

.2566

.1319

.0625

Weight9
(.4)

25
100
400

− .2287
− .1280
.1415

− .2288
− .1281
.1411

.5146

.5045

.4416

.5149

.5046

.4416

.3171

.2709

.2150

.3175

.2710

.2149

Weight 10
(.3)

25
100
400

− .1332
− .1598
.0085

− .1333
− .1597
.0090

.6262

.5498

.4136

.6261

.5498

.4137

.4099

.3278

.1711

.4098

.3278

.1712

Weight 11
(.2)

25
100
400

− .1197
− .1571
− .3426

− .1194
− .1567
− .3424

.6373

.6042

.4836

.6371

.6039

.4834

.4204

.3897

.3513

.4202

.3893

.3510

Weight 12
(.2)

25
100
400

− .1170
− .1023
− .0963

− .1169
− .1022
− .0963

.5816

.5153

.4253

.5814

.5152

.4253

.3520

.2760

.1902

.3517

.2759

.1901

Weight 13
(.4)

25
100
400

− .3089
− .3531
− .4782

− .3088
− .3531
− .4784

.5303

.4463

.3686

.5302

.4462

.3687

.3767

.3238

.3645

.3765

.3238

.3648

Loading 1
(.8)

25
100
400

.1596

.1623

.1624

.1599

.1623

.1625

.0177

.0074

.0036

.0174

.0074

.0036

.0258

.0264

.0264

.0259

.0264

.0264

Loading 2
(.7)

25
100
400

.2347

.2364

.2370

.2346

.2367

.2373

.0265

.0137

.0062

.0268

.0136

.0062

.0558

.0561

.0562

.0558

.0562

.0563
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Parameters N
Bias SD MSE

P roposed Extant P roposed Extant P roposed Extant

Loading 3
(.8)

25
100
400

.1517

.1533

.1540

.1515

.1529

.1536

.0202

.0096

.0045

.0205

.0098

.0046

.0234

.0236

.0237

.0234

.0235

.0236

Loading 4
(.8)

25
100
400

.1476

.1494

.1499

.1476

.1494

.1499

.0266

.0102

.0052

.0266

.0102

.0052

.0225

.0224

.0225

.0225

.0224

.0225

Loading 5
(.7)

25
100
400

.2337

.2385

.2390

.2337

.2385

.2390

.0353

.0135

.0065

.0353

.0135

.0065

.0559

.0571

.0572

.0559

.0571

.0572

Loading 6
(.8)

25
100
400

.1618

.1632

.1630

.1618

.1632

.1630

.0161

.0070

.0034

.0161

.0070

.0034

.0264

.0267

.0266

.0264

.0267

.0266

Path 1
(.4)

25
100
400

.3332

.3827

.3981

.3329

.3825

.3980

.1918

.0408

.0194

.1917

.0409

.0194

.1478

.1481

.1589

.1476

.1480

.1588

Path 2
(.5)

25
100
400

− .3533
− .3047
− .2934

− .3528
− .3044
− .2932

.1422

.0620

.0293

.1423

.0620

.0292

.1450

.0967

.0869

.1447

.0965

.0868

Path 3
(.6)

25
100
400

− .5769
− .5737
− .5618

− .5765
− .5736
− .5618

.1868

.0937

.0510

.1865

.0937

.0509

.3677

.3379

.3182

.3671

.3378

.3182

Path 4
(.6)

25
100
400

.0066

.0224

.0167

.0075

.0227

.0168

.1375

.0612

.0299

.1371

.0611

.0299

.0189

.0042

.0012

.0189

.0042

.0012

deviat ions, and mean square errors of all parameter est imates across all sample sizes,
indicat ing that the two procedures yielded almost ident ical parameter est imates.

5. C on clu sion

We proposed an alternat ive est imat ion procedure for est imat ing component weights
in PLSP M. From technical perspect ives, this procedure has several advantages over
the extant one. First , it adopts a single opt imizat ion criterion to est imate the weights
under both Mode A and Mode B. Thus, this addresses the enduring issue of lack of
a single opt imizat ion crit erion in P LSP M. Second, the proposed procedure applies an
ALS algorithm to minimize the single crit erion. This algorithm has been proven to
converge (de Leeuw et al., 1976). In cont rast , convergence of the extant algorithm
has not been fully proven except for the cases of dealing with only one or two latent
variables (Hanafi, 2007; Henseler, 2010). Third, the proposed procedure est imates the
inner weights opt imally in a least squares sense. On the other hand, in the extant
procedure, it is unclear how the exist ing schemes were derived and in what sense
their est imates of the inner weights are opt imal. Last ly, the least squares criterion
(8) can serve as a vehicle for furthering technical extensions of PLSPM. For example,
mult icollinearity among a block of indicators can have a negat ive influence on the es-
t imat ion of component weights under Mode B (Esposito Vinzi et al., 2010; Tenenhaus
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& Tenenhaus, 2011). To address this issue, we may integrate a ridge penalty into (8),
as follows.

φ =
J�

j = 1

α j SS(X j − fj w
�
j ) +

J�

J= 1

(1 − α j ) (SS(fj − X j w j ) + λ j SS(w j )), (14)

where λ j is a block wise ridge parameter. Moreover, (8) can be minimized in combi-
nat ion with opt imal scaling (e.g., Gifi, 1990; Young, 1981). This nonlinear extension
can be of use in dealing with discrete indicators.

Besides these technical implicat ions, the proposed procedure was found to provide
quite comparable parameter est imates to those obtained from the extant one in a real

Appendix: A summary of the Lohmöller and ALS algorit hms.

T he Lohmöller algorit hm T he ALS algorit hm

S t ep 0 ( I n it ia liza t ion )
For j = 1, . . . , J

choose t he j t h arbit rary weight vect or (w 0
j )

η0
j =

X j w
0
j�

�X j w
0
j

�
�

End
For s = 0, 1, 2, . . . . (unt il convergence)

S t ep 1 ( I n t e r n a l E st im a t ion )
For j = 1, . . . , J

f sj =
Q j�

q= 1

ej qηsq ,

where ej q is calculat ed as follows:
For t he cent roid scheme,
ej q = sign(corr(ηsj , η

s
q ))

For t he fact orial scheme,
ej q = corr(ηsj , η

s
q )

For t he pat h weight ing scheme,

ej q =

�
corr(ηsj , η

s
q ), if ηj aff ect s ηq

ωj q , ot herwise
where ωj q is t he qt h element of t he
regression coeffi cient s of ηj on ηq ’s.

End

S t ep 2 ( E x t er n a l E st im a t ion )
For j = 1 . . . J

w s+ 1
j = X �

j f sj (f sj
�f sj )− 1 , if Mode A

w s+ 1
j = (X �

j X j )− 1 X �
j f sj , if Mode B

ηs+ 1
j =

X j w
s+ 1
j�

�X j w
s+ 1
j

�
�

End

Check if
J�

j = 1

Pj�

p= 1

(wsj p − w
s+ 1
j p ) < .00001. If not ,

go back t o St ep 1.
End

S t ep 0 ( I n it ia liza t ion )
For j = 1, . . . , J

choose t he j t h arbit rary weight vect or (w 0
j )

η0
j =

X j w
0
j�

�X j w
0
j

�
�

End
For s = 0, 1, 2, . . . . (unt il convergence)

S t ep 1 ( I n t e r n a l E st im a t ion )
For j = 1, . . . , J
α j = 1, if Mode A
α j = 0, if Mode B

f sj =
Q j�

q= 1

ej qηsq ,

where ej q is t he qt h element of
e sj = (α j w s�

j w s
j Γ

s�
j Γ

s
j + (1− α j )Γ s

�

j Γ
s
j )− 1Γ s

�

j η
s
j

End

St ep 2 ( E x t er n a l E st im a t ion )
For j = 1 . . . J
α j = 1, if Mode A
α j = 0, if Mode B
w s+ 1
j = (α j f s

�

j f sj I + (1 − α j )X �
j X j )− 1 X �

j f sj ,

ηs+ 1
j =

X j w
s+ 1
j�

�X j w
s+ 1
j

�
�

End

Check if φs − φs+ 1 < .00001. If not , go back t o
St ep 1.

End
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data analysis. In addit ion, it resulted in virtually ident ical parameter est imates to
those from the extant one in two simulat ion studies. Although the simulat ion studies
were not exhaust ive, they were of help in evaluat ing how similarly the proposed and
extant procedures performed under diff erent models at diff erent sample sizes.

In sum, empirically the proposed procedure performs equally to the extant one,
while technically it is well-founded in a least squares sense. Thus, the proposed pro-
cedure can serve as a subst itute for the extant est imat ion procedure for P LSPM.
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