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New Hybrid FE-FV Method for Computing Current
Distribution in 2-D Superconductors: Application to
an HTS Cylinder in Transverse Magnetic Field
Abelin Kameni, Denis Netter, Frédéric Sirois, Senior Member, IEEE, Bruno Douine, Jean Lévêque

Abstract—This paper presents a new numerical method based
on finite elements - finite volumes (FE-FV) for solving 2-D diffusion
problems in high temperature superconductors (HTS). The approach
does not involve directly the resistivity term (ρ), generally used to
model the E(J) characteristic as a power law, i.e E(J) = ρ(J)J ,
with ρ(J) ∝ Jn−1. Instead, we use a J(E) constitutive law J ∝ E

1

n ,
with −→

E = E−→e z (a single component), which leads to a scalar
non-linear differential equation. After presenting in details the
developments, the method is tested in the case of a superconducting
cylinder submitted to a transverse magnetic field. The current
density obtained is compared to another numerical technique (the
semi-analytical method) in order to validate the results. Although
not fully optimized yet, it appears that the proposed method is very
stable, especially for large n-values (greater than 100).
Index Terms—Diffusion processes, electromagnetic analysis,

finite-element methods (FEMs), high-temperature superconductors,
integral equations, numerical analysis.

I. INTRODUCTION

THE numerical models characterizing superconducting mate-
rials generally intend to solve Maxwell’s equations, com-

plemented by the non-linear constitutive equation E(J) =
Ec (J/Jc)

n (power law characteristic) [1]. The use of a resistivity
term ρ, such as E = ρ(J)J , is the most common approach to
treat the non-linearity. The resulting equations are then “semi-
linear”, and their resolutions depends on the calculation of ρ(J).
For instance, this is the underlying approach used by commercial
finite element packages such as COMSOL Multiphysics or Flux-
2D. However, in the case of large n values, this approach
is prone to numerical oscillations and convergence problems.
Others schemes using integral formulas in a semi-analytical form
were proposed as an alternative to finite elements, but the same
limitations occur for large n values [2], [3].
In this paper, we present a model combining Maxwell’s equations
directly to a J(E) power law J(E) = Jc (E/Ec)

1

n . We assume
the low frequency regime, as well as linear permittivity and
permeability, such that ∇ ·

−→
E = 0 and

−→
B = µ0

−→
H . Under

these assumptions, the electric field is the solution of a non-linear
parabolic diffusion equation:

∇2u = c
∂β(u)

∂t
(1)
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with, u = E/Ec, β(u) = uα = J/Jc, α = 1/n and c =
µ0Jc/Ec.
This type of equation is often encountered in fluid mechanics
and porous media. The numerical recipes developed in applied
mathematics for these non-linear parabolic equations have been
the subject of many works in the past. Among them, the finite
volume (FV) method have been proposed and thoroughly justified
and validated [4].
When applied to our case, there is no need to consider explicitly
a resistivity term, and the discrete problem can remain fully non-
linear. The fixed point theorem proves the existence of a discrete
solution. The unknowns would correspond to the mean value of
u (the normalized electric field) on each cell of the finite volume
mesh. Nevertheless, it remains difficult to obtain the gradient of
a mean value on a finite volume mesh, although this is required
since ∇2u = ∇· (∇u). The discretization of the convective term
(i.e. the divergence) containing a gradient therefore requires a
specific treatment [5].
Footbridges between finite volumes (FV) and finite elements (FE)
have been developed for convection-diffusion problems. They are
used to connect the solutions FE and FV discretizations [6]. In the
case of dual meshing, where the cells of finite volume mesh are
constructed around the triangular mesh, it is possible to replace
the FV discrete form of the convective term by a FE discrete form
of the diffusive term (i.e. the Laplacian). These mixed schemes
combine the advantages of both methods and are known to be
robust, stable and efficient in the case of non-linear parabolic
equations [7].

II. MODELING

A. The differential problem
The development presented below is valid for a single 2-D

conducting domain (infinite length along z axis). No transport
current is considered for now, but an uniform applied field can
be applied along an arbitrary axis in the x − y plane. We also
assume parameters Ec, Jc and n as being constants. When the
external magnetic field depends on time according to

−→
B (t) =

Bx(t)−→ex + By(t)−→ey , the induced electric field
−→
E = E(x, y, t)−→ez

in the superconductor is the solution of the non-linear diffusion
equation (1).
The Faraday’s law and the continuity of the magnetic field lead
to a boundary condition on ∇u:

∇×
−→
E = A∇E(x, y, t) = −

∂
−→
B

∂t
, (2)
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Ec∇u · −→ν = −A−1 ∂
−→
B

∂t
· −→ν , (3)

where ν is the exterior normal to the domain boundary, and A =(

0 1
−1 0

)

.
Our goal is therefore to solve the following differential system
in accordance with the discretization rules presented in the next
section :

(S)









c
∂β(u)

∂t
−∇2u = 0

∇u · −→ν = Cb(t)
u(t = 0) = 0

(4)

with Cb(t) = −E−1
c A−1 ∂

−→
B

∂t
· −→ν

B. Mathematical formalism and weak formulation
The problem domain is the space-time space QT = Ω× [0, T ].

The FE and FV discretization methods consist in solving a weak
formulation of the differential system (4), which is expressed as
an integral equation, written in the appropriate spaces:
& The Hilbert space on Ω, L2(Ω) and the scalar product

(

u, v
)

L2
=

∫

Ω
uvdΩ.

& The sub-space H1(Ω) = {u ∈ L2(Ω),∇u ∈ L2(Ω)}
& The space L∞(0, T ; L2(Ω)): β(u) is bounded on QT and at
any given time t, β(u) ∈ L2(Ω)

The weak formulation is the projection on a distribution space
of the differential system, when the later is approximated by a
set of basis functions ϕi. The final equation (weak form) of our
problem is obtained by multiplying the diffusion equation (4) by
the test function ϕ and integrating it on QT , i.e.

∫ T

0

∫

Ω
c
∂β(u)

∂t
ϕdΩdt −

∫ T

0

∫

Ω
∇2uϕdΩdt = 0 . (5)

III. DISCRETIZATION

A. Temporal discretization
We chose to work with a prescribed partitioning of the time

interval [0, T ] in p+1 points, which results in a series of discrete
times (tp)0≤p≤P . The time step is defined by ∆tp = tp+1 − tp,
and is small enough to use:
& The rectangular method for the integration on the interval

[tp, tp+1],
& Finite differences for the calculation of the derivatives.

Let’s use the notation u(x, y, tp) = up for describing the solution
at time tp. On each interval [tp, tp+1], we have the following
integral equation on Ω:

c

∫

Ω

β(up+1) − β(up)

&tp
ϕdΩ −

∫

Ω
∇2up+1ϕdΩ = 0. (6)

The discrete problem is obtained by projecting this integral
equation on the basis functions ϕi, defined on a finite dimension
approximation subspace. These subspaces are built from the
decomposition of the domain in triangles (FE) or control volumes
(FV), as shown in Fig. 1.

Fig. 1: FE triangular mesh (left) and FV control volumes (right):
to build a FV cell from the FE mesh, we link the centers of
gravity of two contiguous triangles through the vertex of their
common edge.

B. Finite element discretization
For a set of nodes defining the triangular mesh, we denote X

the approximation space determined by the basis functions ϕi,
chosen as piecewise linear. Finding a FE discrete problem for
(6) depends on the existence of the projection of β(u) on X . In
our case, the existence is impossible because β

′

(0) ↪→ +∞. This
difficulty is avoided in Finite volume discretization.
But, the discretization of the Laplace operator is easy and well-
known [8]. It involves a diffusion matrix S, whose elements
Si,j are the diffusion coefficients between the nodes Ni and Nj ,
corresponding to the unknowns ui and uj . For u =

∑

j

ujϕj ,

∫

Ω
∇2uϕidΩ = −

∫

Ω
∇u · ∇ϕidΩ

︸ ︷︷ ︸

Diffusion

+

∫

Γ
∇u · ϕi

−→ν dΓ
︸ ︷︷ ︸

Boundary

(7)

The diffusive term
∫

Ω
∇u · ∇ϕidΩ =

∑

j

Si,juj is a function of

Si,j =
∑

K∈Ih

∫

K

∇ϕi · ∇ϕjdK .

C. Finite volume discretization
The basis functions of the FV approximation space, denoted

V , are the indicatrix functions 1D of the cells D of the FV mesh
(1D(x) = 1 if x ∈ D, and 1D(x) = 0 elsewhere ). The unknowns
are the mean value of the solution (normalized electric field)
on each cell. The definition of mean value is assumed by the
continuity property of the function. Remembering that β(u) is a
non-linear but otherwise continuous function, the non-linearity is
easily treated with the FV approach and the first integral in (6)
is proportionnal of the mean value of β on D.
Let’s define βp

D = 〈β(up)〉D be the mean values of β(u) on cell
D at time t = tp. We obtain:

∫

D

β(up+1) − β(up)

&tp
1DdD =

βp+1
D − βp

D

&tp
|D|, (8)

where |D| is the area of the FV element.
The FV method is based on the strict imposition of the flux
conservation through the boundaries of each contiguous FV
cells. In practice, it uses the divergence theorem to evaluate the
convection through boundary integrals. The total outward flux Φ
from a given cell D and time step p is given by:

Φ =

∫

D

∇ · (∇up)dD =

∫

∂D

∇up · −→υ d(∂D), (9)
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where −→υ is the outward-pointing normal vector.
In terms of the discrete problem, the total outward flux from
cell Di is the sum of the fluxes riding through each edge of the
cell. The flux between two contiguous cells Di and Dj therefore
corresponds to Φi,j . The FV formulation depends on the choice of
the flux functions Φi,j , which are chosen such that Φi,j = −Φj,i.
The discrete equation on each cell can therefore be written as:

∫

∂D

∇up · −→υ d(∂D) =
∑

Dj∈N (Di)

|Di ∩ Dj |Φi,j(ui, uj), (10)

where N (Di) is the set of the contiguous cells of Di. Unfortu-
nately, approximating the gradient of the mean value is difficult.
To solve this problem, we use footbridges between the FE and FV
approximation spaces. These footbridges will allow expressing
the fluxes Φi,j as a function of the Si,j terms.

D. The mixed scheme
When dual meshing is used to generate the FV cells, the

footbridges beetween the FE and the FV approximation spaces
are well described in [6]. Let uFE and uFV be the respective
solutions of the FE and FV approaches. The footbridges operators
πEV and πV E are projections defined as:
& FV (V) → FE (X ) πEV (uFV ) = uFE is the solution of the
FE discretization and satisfies:

∫

Ω
|πEV u − u|2dΩ = min

w∈X

∫

Ω
|w − u|2dΩ (11)

& FE (X ) → FV (V) πV E(uFE) = uFV is the solution of the
FV discretization and satisfies, for all ϕ ∈ X :

∫

Ω
πV EuϕdΩ =

∫

Ω
uϕdΩ (12)

These footbridges can be used to show that mixing the two
discretizations (FE and FV) is possible only if uFE = uFV . The
existence of the footbridge operators πEV and πV E defining in
(11) and (12) ensures the required equality and have been proved
in previous papers, e.g. [6].
For the kind of dual meshing considered here, each cell Di of the
FV mesh can be associated with one node Ni of the FE mesh,
as shown in Fig. 2.

(a) The nodes Ni corre-
spond to the middle of
the edges

(b) The nodes Ni corre-
sponds to the center of
the cells Di

Fig. 2: Association of each node of the FE mesh to the cells of
the FV mesh.

As a result, it is possible to calculate Φi,j as a function of Si,j .
On the internal FV cells (cells with 4 edges), we can consider
that the FV convection and the FE diffusion are equal, i.e.

∫

D

∇ · (∇u)dD =

∫

Ω
∇u · ∇ϕidΩ (13)

∑

Dj∈N (Di)

|Di ∩ Dj|Φi,j(ui, uj) = −
∑

j

Si,juj (14)

It is important that these expressions keep the local conservation
property of the FV formulation (Φi,j = −Φj,i). This is the case if
we define Si,i = −

∑

j %=i

Si,j , where Si,j are positive coefficients.

Under these conditions, we obtain:

|Di ∩ Dj |Φi,j(ui, uj) = Si,j(uj − ui) (15)

The discrete problem (hybrid FE and FV numerical schemes)
consists in calculating, at each time step p+1, a set of unknowns
defined by

(

up+1
i

)

1≤i≤N
, N being the number of nodes in the

FE mesh:
& For the internal cells (4 edges), one has:

c
β(up+1

i ) − β(up
i )

&tp
|Di| −

∑

j

Si,ju
p+1
j = 0 (16)

& For the boundary cells (one edge belongs to the boundary
Γ) and considering the boundary condition

∫

Γ

−→
∇up+1 · ϕi

−→ν dΓ =

∫

Γi

Cp+1
b ϕidΓ = |Γi|C

p+1
b (17)

one has:

c
β(up+1

i ) − β(up
i )

&tp
|Di| −

∑

j

Si,ju
p+1
j − |Γi|C

p+1
b = 0

(18)
The existence of the discrete solution is proved by the fixed-
point theorem. The numerical computation uses the unknowns
vp+1

i = β(up+1
i ). Since β−1 is continuous and differentiable, we

can use a Newton-Raphson algorithm, i.e.

up,k
i = β−1(vp,k−1

i ) +
(

β−1
)′

∣
∣
∣
vp,k−1

i

(

vp,k
i − vp,k−1

i

)

(19)

The convergence of this numerical scheme for each time step
is obtained when the relative difference between two successive

iterations ε =
∑

i





(

vp,k
i − vp,k−1

i

)

vp,k
i





2

< 10−9.

IV. NUMERICAL APPLICATION: LONG CYLINDER IN A
TRANSVERSE MAGNETIC FIELD

Let’s consider a cylinder whose parameters are R = 10 mm
(radius), Jc = 108 A/cm2, Ec = 10−4 V/m−1 and n = 15, and
immersed in a transverse external field defined as

−→
B = Bmaxsin(2πft)−→e x. (20)

In the cases presented below, f = 50 Hz, and we define T0 =
1/f = 20 ms. Based on the Bean model, the field required for
full penetration is Bp = 2µ0JcR/π = 0.8T . Setting Bmax = Bp

implies that the full penetration will occur at t = T0/4, where
the applied field reaches its maximum value [9]. In the case
of the power law characteristic with n = 15, however, the full
penetration is not obtained, as will be shown below.
In Fig. 3, we present a comparative result between numerical
solutions of the normalized current density (J/Jc) obtained with
our hybrid method (HM) and with the semi-analytical method
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(SAM, [3]) at time t = T0/4. As can be seen, we find exactly the
same solutions, to within numerical errors and mesh differences.
As the SAM method was itself well validated against more clas-
sical finite element formulations, this proves the the formulation
proposed is correct. Fig. 3 also reveals, as expected, that the full
penetration is not reached because of the presence of the power
law characteristic.

(a) Hybrid FEM-FVM (b) SAM

Fig. 3: Comparison for n = 15, at t = T0/4

As a further validation, we compared the results of both
methods for n = 100, as shown in Fig. 4 (for t = T0/8) and
Fig. 5 (for t = T0/4). In this case, however, we observe different
penetration rates, which is surprising a priori, given the good
correspondence found above. Even after a thorough investigation
of both codes, this discrepancy could not be explained. However,
as both codes solve for different variables, it is possible that tiny
numerical drifts of the solution in the case of very non-linear
cases such as this one are responsible of the differences.

(a) Hybrid FEM-FVM (b) SAM

Fig. 4: Comparison for n = 100, at t = T0/8

(a) Hybrid FEM-FVM (b) SAM

Fig. 5: Comparison for n = 100, at t = T0/4

In order to further explore this aspect, we performed a simula-
tion with n = 200. The result for the HM is presented in Fig. 6
at times t = T0/8 and t = T0/4. The SAM did not converge

in this case, and neither did another finite element method code
we had access to. In this case, we reached the Bean penetration
limit at t = T0/4, which seems reasonable as n = 200 is a very
good approximation of the Bean model. This suggests that our
new hybrid method is very robust against strong non-linearities,
thanks to the finite volume properties and the change of variable
chosen (we solve for β(u) instead of u directly).

(a) Hybrid FEM-FVM,
T0

8
(b) Hybrid FEM-FVM,

T0

4

Fig. 6: Results of hybrid FEM-FVM, for n = 200

V. CONCLUSION
In this paper, we presented the development of an hybrid FE-

FV formulation to solve the non-linear electric field diffusion in
2-D superconducting materials. This method takes advantage of
both the FE and FV methods, namely:
& FEM: Easy to deal with irregular mesh and to process the
Laplacian operator

& FVM: Easy to treat the non-linear term β(u)

Interestingly, the accuracy of the results seems to be indepen-
dent of mesh refinements. The hybrid method was validated by
comparing the results against another validated method in the
case of moderate non-linearity (power law exponent of n =
15), and proved to be very robust for n values up to 200.
However, for strong non-linearities, it was impossible to obtain
identical results between all numerical methods available to us.
A full understanding of these discrepancies will require further
investigation.
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