A. R. Abbasi, Multiscale poroelastic model: bridging the gap from cellular to macroscopic scale (Doctoral dissertation, 2013.

R. Affes, J. Y. Delenne, Y. Monerie, F. Radjaï, and V. Topin, Tensile strength and fracture of cemented granular aggregates, Eur Phys J E, vol.35, p.117, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268264

A. Agwai, I. Guven, and E. Madenci, Crack propagation in multilayer thin-film structures of electronic packages using the peridynamic theory, vol.51, pp.2298-2305, 2011.

M. P. Allen and D. J. Tildesley, Computer simulation of liquids, vol.57, pp.442-444, 1986.

G. Almeida, J. Brito, and P. Perré, Changes in wood-water relationship due to heat treatment assessed on micro-samples of three Eucalyptus species, Holzforchung, vol.63, pp.80-88, 2009.

G. Almeida, F. Huber, and P. Perré, Free shrinkage of wood determined at the cellular level using an environmental scanning electron microscope, Maderas Cienc Tecnol, vol.16, pp.187-198, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01195089

E. Askari, F. Bobaru, R. B. Lehoucq, M. L. Parks, S. A. Silling et al., Peridynamics for multiscale materials modelling, J Phys Conf Ser, vol.125, p.12078, 2008.

J. Bao, P. Yuan, and L. Schaefer, A mass conserving boundary condition for the lattice Boltzmann equation method, J Comput Phys, vol.227, pp.8472-8487, 2008.

N. F. Barber, A theoretical model of shrinking wood, Holzforschung, vol.22, pp.97-103, 1968.

N. F. Barber and B. A. Meylan, The anisotropic shrinkage of wood: a theoretical model, Holzforschung, vol.18, pp.146-156, 1964.

S. Bardenhagen and E. Kober, The generalized interpolation material point method, Comput Model Eng Sci, vol.5, pp.477-495, 2004.

W. A. Barkas, The influence of ray cells on the shrinkage of wood, Trans Faraday Soc, vol.37, pp.535-548, 1941.

T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, Meshless methods: an overview and recent developments, Comput Method Appl Mech Eng, vol.139, pp.3-48, 1996.

A. Bergander and L. Salmén, The transverse elastic modulus of the native wood fibre wall, J Pulp Pap Sci, vol.26, pp.234-238, 2000.

F. Bobaru, Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach, Modelling Simul Mater Sci Eng, vol.15, pp.397-417, 2007.

H. H. Bosshard, Holzkunde Band 2 Zür Biologie, Physik und Chemie des Holzes Birkhäuser Verlag Basel Boutelje J (1962) The relationship of structure to transverse anisotropy in wood with reference to shrinkage and elasticity, Holzforshung, vol.16, pp.33-46, 1984.

P. Cabrolier, PhD manuscript 254 pages AgroParisTech Nancy Cave ID (1966) Theory of X-ray measurement of microfibril angle in wood, Caractérisation des propriétés structurales et mécaniques des composantes pariétales du bois à l'échelle du tissu, vol.16, pp.37-42, 2012.

E. Celik, I. Guven, and E. Madenci, Simulations of nanowire bend tests for extracting mechanical properties, Theor Appl Fract Mech, vol.55, pp.185-191, 2011.

G. T. Charras and R. E. Guldberg, Improving the local solution accuracy of large-scale digital image-based finite element analyses, J Biomech, vol.33, pp.255-259, 2000.

M. R. De-la-osa, R. Estevez, C. Olagnon, J. Chevalier, L. Vignoud et al., Cohesive zone model and slow crack growth in ceramic polycrystals, Int J Fract, vol.158, pp.157-167, 2009.

F. Farruggia, Détermination du comportement élastique d'un ensemble de fibres de bois à partir de son organisation cellulaire et d'essais mécaniques sous microscope. PhD thesis ENGREF Nancy Farruggia F, Perré P (2000) Microscopic tensile tests in the transverse plane of earlywood and latewood parts of spruce, Wood Sci Tech, vol.34, pp.65-82, 1998.

X. Frank and P. Perré, The potential of meshless methods to address physical and mechanical phenomena involved during drying at the pore level, Drying Technol, vol.28, pp.932-943, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01195062

X. Frank, G. Almeida, and P. Perré, Multiphase flow in the vascular system of wood: from microscopic excursion to 3-D Lattice Boltzmann experiments, J Multiphase flow, vol.36, pp.599-607, 2010.

W. Gerstle, N. Sau, and S. A. Silling, Peridynamic modelling of concrete structures, Nuclear Eng Design, vol.237, pp.1250-1258, 2007.

P. Perré,

L. J. Gibson and M. F. Ashby, Cellular solids, structure and properties, p.357, 1988.

N. Gierlinger and M. Schwanninger, Chemical imaging of poplar wood cell walls by confocal Raman microscopy, Plant Physiol, vol.40, pp.1246-1254, 2006.

P. P. Gillis, Orthotropic elastic constant of wood, Wood Sci Tech, vol.6, pp.138-156, 1972.

J. E. Guilkey, J. B. Hoying, and J. A. Weiss, Computational modeling of multicellular constructs with the material point method, J Biomech, vol.39, pp.2074-2086, 2006.

D. Guitard and F. El-amri, La fraction volumique en rayons ligneux comme paramètre explicatif de la variabilité de l, pp.405-412, 1987.

Y. D. Ha and F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics, Eng Fract Mech, vol.78, pp.1156-1168, 2011.

J. M. Harris and B. A. Meylan, The influence of microfibril angle on longitudinal and tangential shrinkage in Pinus radiata, Holzforschung, vol.19, pp.144-153, 1965.

F. Higuera, Lattice gas method based on the Chapman-Enskog expansion, Phys Fluids A, vol.2, p.1049, 1990.

K. Hofstetter, C. Hellmich, and J. Eberhardsteiner, Development and experimental validation of a continuum micromechanics model for the elasticity of wood, Eur J Mech A/Solid, vol.24, pp.1030-1053, 2005.

S. Holmberg, K. Persson, and H. Petersson, Nonlinear mechanical behaviour and analysis of wood and fibre material, Comput Struct, vol.72, pp.459-480, 1999.

W. Hu, Y. D. Ha, and F. Bobaru, Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites, Comput Meth Appl Mech Eng, vol.217, pp.247-261, 2012.

M. Itakura, H. Kaburaki, and C. Arakawa, Branching mechanism of intergranular crack propagation in three dimensions, Phys Rev E, vol.71, p.55102, 2005.

R. Keller and F. Thiercelin, Influence des gros rayons ligneux sur quelques propriétés du bois de hêtre, Ann Sci Forest, vol.32, pp.113-129, 1975.

K. Kelsey, A critical review of the relationship between the shrinkage and structure of wood, Division of Forest products technological paper n°28 CSIRO Melbourne Kilic B, Madenci E (2010) An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory, Theor Appl Fract Mech, vol.53, pp.194-204, 1963.

S. Kitsunezaki, Cracking condition of cohesionless porous materials in drying processes, Phys Rev E, vol.87, p.52805, 2013.

F. P. Kollmann, W. Côté, S. Springer, S. Wood-koponen, T. Toratti et al., Modelling elastic and shrinkage properties of wood based on cell structure, Principles of wood science and technology, vol.1, pp.25-32, 1968.

G. Kwon, S. W. Chae, and K. J. Lee, Automatic generation of tetrahedral meshes from medical images, Comput Struct, vol.81, pp.406-412, 2003.

P. Lallemand and L. S. Luo, Lattice Boltzmann method for moving boundaries, J Comput Phys, vol.184, pp.406-421, 2003.

C. Lanvermann, Sorption and swelling within growth rings of Norway spruce and implications on the macroscopic scale (Doctoral dissertation, 2014.

A. Mariaux, La section transversale de fibre observée avant et après séchage sur bois massif, Bois et Forêts de Tropiques, vol.221, pp.65-76, 1989.

A. Mariaux and P. Narboni, Anisotropie du retrait et structure du bois: essai d'approche statistique, vol.178, pp.36-44, 1978.

C. Masseran and A. Mariaux, Recherche de l'influence des caractères morphologiques transverse des fibres, Bois et Forêts de Tropiques, vol.209, pp.35-47, 1985.

B. A. Meylan and M. C. Probine, Microfibril angle as a parameter in timber quality assessment, Forest Prod J, vol.19, pp.30-34, 1969.

A. A. Mohamad, Lattice Boltzmann method: fundamentals and engineering applications with computer codes, Wood and Fiber Sci, vol.38, pp.576-591, 2006.

R. C. Neagu and E. K. Gamstedt, Modelling of effects of ultrastructural morphology on the hygroelastic properties of wood fibres, J Mater Sci, vol.42, pp.10254-10274, 2007.

P. Perré, Wood as a multi-scale porous medium: observation, experiment, and modelling, keynote lecture. 1st International conference of the European Society for wood mechanics Lausanne Switzerland, pp.403-422, 2001.

P. Perré, MeshPore: a software able to apply image-based meshing techniques to anisotropic and heterogeneous porous media, Drying Technol J, vol.23, 1993.

P. Perré, Experimental device for the accurate determination of wood-water relations on micro-samples, Holzforschung, vol.61, pp.419-429, 2007.

P. Perré, A review of modern computational and experimental tools relevant to the field of drying, Drying Technol, vol.29, pp.1529-1541, 2011.

P. Perré and F. Huber, Measurement of free shrinkage at the tissue level using an optical microscope with an immersion objective: results obtained for Douglas fir (Pseudotsuga menziesii) and spruce (Picea abies), Ann For Sci, vol.64, pp.255-265, 2007.

P. Perré and I. Turner, Determination of the material property variations across the growth ring of softwood for use in a heterogeneous drying model. Part I: capillary pressure, tracheid model and absolute permeability, Holzforschung, vol.55, pp.318-323, 2001.

P. Perré and I. Turner, Determination of the material property variations across the growth ring of softwood for use in a heterogeneous drying model. Part II: use of homogenisation to predict bound water diffusivity and thermal conductivity, Holzforschung, vol.55, pp.417-425, 2001.

P. Perré and I. W. Turner, A heterogeneous wood drying computational model that accounts for material property variation across growth rings, Chem Eng J, vol.86, pp.117-131, 2002.

P. Perré and I. W. Turner, A mesoscopic drying model applied to the growth rings of softwood: mesh generation and simulation results, Maderas. Cienc Tecnol, vol.10, pp.251-274, 2008.

P. Perré, G. Almeida, and X. Frank, Stiffness of normal, opposite, and tension poplar wood determined using micro-samples in the three material directions, Drying Symposium 5 pages Xiamen China Perré P, vol.47, pp.481-498, 2012.

G. Ruiz, M. Oritz, and A. Pandolfi, Three-dimensional simulation of the dynamic Brazilian tests on concrete cylinders, Int J Num Methods Eng, vol.48, pp.963-994, 2000.

L. Salmen, Micromechanical understanding of the cell-wall structure, C R Biolog, vol.327, pp.873-880, 2004.

E. Sanchez-palencia, J. M. Sancho, J. Planas, D. A. Cendón, E. Reyes et al., An embedded crack model for finite element analysis of concrete fracture, Lecture Notes in Physics, vol.127, pp.75-86, 1980.

, New modelling approaches to predict wood properties

M. Sedighi-gilani and P. Navi, Experimental observations and micromechanical modeling of successive-damaging phenomenon in wood cells' tensile behavior, Wood Sci Tech, vol.41, pp.69-85, 2007.

P. Seleson, M. L. Parks, M. Gunzburger, and R. B. Lehoucq, Peridynamics as an upscaling of molecular dynamics, Multiscale Model Simul, vol.8, pp.204-227, 2009.

J. F. Siau, Transport processes in wood, p.245, 1984.

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J Mech Phys Solids, vol.48, pp.175-209, 2000.

S. A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Comput Struct, vol.83, pp.1526-1534, 2005.

S. A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, J Elasticity, vol.88, pp.151-184, 2007.

S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond, p.308, 2001.

D. Sulsky and L. Schreyer, MPM simulation of dynamic material failure with a decohesion constitutive model, Eur J Mech A/Solid, vol.23, pp.423-445, 2004.

D. Sulsky, Z. Chen, and H. Schreyer, A particle method for historydependent materials, Comp Methods Appl Mech Eng, vol.118, pp.179-196, 1994.

P. M. Suquet, Z. E. Sanchez-palencia, V. Springer-verlag-topin, J. Y. Delenne, F. Radjaï et al., Element of homogenization for inelastic solid mechanics in homogenization techniques for composite media, Lecture Notes in Physics, vol.272, pp.413-429, 1985.

D. Ulrich, B. Van-rietbergen, H. Weinans, and P. Rüegsegger, Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques, J Biomech, vol.31, pp.1187-1192, 1998.

U. Watanabe and M. Norimoto, Shrinkage and elasticity of normal and compression woods in conifers, Mokuzai Gakkaishi, vol.42, pp.651-658, 1996.

P. D. Zavattieri, P. V. Raghuram, and H. D. Espinosa, A computational model of ceramic microstructures subjected to multi-axial dynamic loading, J Mech Phys Solids, vol.49, p.2768, 2001.