The Proper Use of Mass Diffusion Equations in Drying Modeling: Introducing the Drying Intensity Number
Abstract
This article intends to clearly define the possibilities and limitations offered by a simple diffusion approach of drying. Actually, many works use a simple diffusion equation to model mass transfer during drying, probably because a simple analytical solution of this equation does exist in the case of simple boundary conditions. However, one has to be aware of the limitations of this approach. Using a comprehensive formulation and a relevant computational solution, the most frequent assumptions of the diffusion approach were rigorously tested. It is concluded that analytical solutions must be discarded for several reasons: analytical solutions, either using Dirichlet or third kind boundary conditions, are often misleading and should be avoided; in the drying process, the coupling between heat and mass transfer is mandatory; nonlinearity (variation of diffusivity with moisture content) can hardly be avoided for mass transfer. In order to reach a verdict, a dimensionless number, the Drying Intensity Number (NDI), is introduced. It allows the level of coupling between heat and mass transfer to be easily assessed. Thanks to this number, a guide is proposed for choosing the right level of modeling, depending on the drying configuration.