M. Åkerholm and L. Salmén, Interactions between wood polymers studied by dynamic FT-IR spectroscopy, Polymer, vol.42, issue.3, pp.434-435, 2001.

D. F. Arseneau, Competitive reaction in the thermal decomposition of cellulose, Can. J. Chem, vol.49, issue.4, pp.632-638, 1971.

A. Bermello, M. Del-valle, U. Orea, and L. R. Carballo, Characterization by infrared spectroscopy of lignins of three eucalyptus species, Int. J. Polym. Mater, vol.51, issue.6, pp.557-566, 2002.

E. Biagini, F. Barontini, and L. Tognotti, Devolatilization of biomass fuels and biomass components studied by TGA/FTIR technique, Ind. Eng. Chem. Res, vol.45, issue.13, pp.4486-4493, 2006.

J. Blackwell, Infrared and Raman spectroscopy of cellulose, 1977.

C. G. Boeriu, D. Bravo, R. J. Gosselink, and J. E. Van-dam, Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy, Ind. Crops Prod, vol.20, issue.2, pp.205-218, 2004.

L. H. Briggs, L. D. Colebrook, H. M. Fales, and W. C. Wildman, Infrared absorption spectra of methylenedioxy and aryl ether groups, Anal. Chem, vol.29, issue.6, pp.904-911, 1957.

N. Brosse, R. E. Hage, M. Chaouch, M. Pétrissans, S. Dumarçay et al., Investigation of the chemical modifications of beech wood lignin during heat treatment, Polym. Degrad. Stab, vol.95, issue.9, pp.1721-1726, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02089136

D. K. Buslov, F. N. Kaputski, N. I. Sushko, V. I. Torgashev, L. V. Solov'eva et al., Infrared spectroscopic analysis of the structure of xylans, J. Appl. Spectrosc, vol.76, issue.6, pp.801-805, 2009.

S. Cavagnol, J. F. Roesler, E. Sanz, W. Nastoll, P. Lu et al., Exothermicity in wood torrefaction and its impact on product mass yields: From micro to pilot scale, Can. J. Chem. Eng, vol.93, issue.2, pp.331-339, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01128752

D. Blasi, C. Lanzetta, and M. , Intrinsic kinetics of isothermal xylan degradation in inert atmosphere, J. Anal. Appl. Pyrolysis, vol.40, issue.4, pp.28-32, 1997.

O. Faix, Classification of lignins from different botanical origins by FT-IR spectroscopy, Holzforschung, vol.45, issue.s1, 1991.

D. Fengel, L. , and M. , Possibilities and limits of the FTIR spectroscopy for the characterization of cellulose. 1. Comparison of various cellulose fibers and bacteria cellulose, Papier, vol.45, issue.2, pp.45-51, 1991.

H. L. Hergert, Infrared spectra of lignin and related compounds. II. Conifer lignin and model compounds, J. Org. Chem, vol.25, issue.3, pp.405-413, 1960.

M. Ka?uráková, N. Wellner, A. Ebringerová, Z. Hromádková, R. H. Wilson et al., Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies, Food Hydrocolloid, vol.13, issue.1, pp.35-41, 1999.

R. A. Kotilainen, T. J. Toivanen, A. , and R. J. , FT-IR monitoring of chemical changes in softwood during heating, J. Wood. Chem. Technol, vol.20, issue.3, 2000.

C. Lapierre, B. Monties, R. , and C. , Thioacidolysis of poplar lignins -Identification of monomeric syringyl products and characterization of guaiacylsyringyl lignin fractions, Holzforschung, vol.40, issue.2, pp.113-118, 1986.

P. Lv, G. Almeida, and P. Perré, Torrefaction of cellulose: Validity and limitation of the temperature/duration equivalence, BioResources, vol.7, issue.3, pp.3720-3731, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01053128

R. H. Marchessault and C. Y. Liang, The infrared spectra of crystalline polysaccharides VIII xylans, J. Polym. Sci, vol.59, issue.168, pp.357-378, 1962.

C. P. Masuku, A. Vuori, and J. B. Bredenberg, Thermal reactions of the bonds in lignin: I. Thermolysis of 4-propylguaiacol, Holzforschung, vol.42, issue.6, pp.361-367, 1988.

A. A. Nada, M. El-sakhawy, and S. M. Kamel, Infra-red spectroscopic study of lignins, Polym. Degrad. Stab, vol.60, issue.2-3, pp.72-76, 1998.

K. K. Pandey, A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy, J. Appl. Polym. Sci, vol.71, issue.12, pp.1969-1975, 1999.

T. T. Qu, W. J. Guo, L. H. Shen, J. Xiao, and K. Zhao, Experimental study of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin, Ind. Eng. Chem. Res, vol.50, issue.18, 2011.

P. Rousset, C. Lapierre, B. Pollet, W. Quirino, and P. Perré, Effect of severe thermal treatment on spruce and beech wood lignins, Ann. For. Sci, vol.66, issue.1, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00883449

P. Rousset, F. Davrieux, L. Macedo, and P. Perré, Characterisation of the torrefaction of beech wood using NIRS: Combined effects of temperature and duration, Biomass Bioenerg, vol.35, issue.3, pp.1219-1226, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000703

D. K. Shen and S. Gu, The mechanism for thermal decomposition of cellulose and its main products, Bioresour. Technol, vol.100, issue.24, pp.6496-504, 2009.

D. K. Shen, S. Gu, K. H. Luo, S. R. Wang, and M. X. Fang, The pyrolytic degradation of wood-derived lignin from pulping process, Bioresour. Technol, vol.101, issue.15, pp.6136-6146, 2010.

D. K. Shen, S. Gu, and A. V. Bridgwater, Study on the pyrolytic behaviour of xylan-based hemicellulose using TGA-FTIR and Py-GC-FTIR, J. Anal. Appl. Pyrolysis, vol.87, issue.2, pp.199-206, 2010.

L. L. Shevchenko, Infrared spectra of salts and complexes of carboxylic acids and some of their derivatives, Russ. Chem. Rev, vol.32, issue.4, pp.201-207, 1963.

I. ?imkovic, J. Hirsch, A. Ebringerová, and J. Königstein, Thermal degradation of model compounds with blocked hemiacetal group related to (4-O-methyl-Dglucurono)-D-xylan, J. Appl. Polym. Sci, vol.33, issue.5, pp.1473-1477, 1987.

Y. M. Wu, Z. L. Zhao, H. B. Li, and F. He, Low temperature pyrolysis characteristics of major components of biomass, J. Fuel. Chem. Technol, vol.37, issue.4, pp.60002-60005, 2009.

H. P. Yang, R. Yan, H. Chen, D. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, vol.86, pp.1781-1788, 2007.

, Article submitted, 2015.