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Abstract—In this paper, we study cache-enabled small cell
networks (SCNs) with local regularly requested content sampling
to take into account local user interests for the cache decisions.
We consider Zipf-like local content popularity with variables
indicating the correlation level of user interests in the same
region. Based on stochastic spatial models for the small cell
base station (SCBS) and user distribution, we provide analytical
results on the cache service probability, i.e. the probability that an
arbitrary user finds its requested content cached in its nearby
SCBSs. The tradeoff between the service probability and the
sampling cost is discussed and the optimal sampling range given
by maximizing the service probability under the cost constraint
is derived. Numerical results with different correlation levels of
local user interests are given, which validate our analysis on the
service-cost tradeoff.

Index Terms—small cell caching, user interest correlation

I. INTRODUCTION

Wireless demand for video content has become the dom-
inant source of the exponentially growing data traffic over
wireless networks, requiring adequate capacity increase of
future wireless networks. Traditional methods to increase net-
work capacity under the conventional macrocell architecture,
including more spectrum and improved modulation and coding
schemes, are often costly and will not bring sufficient capacity
gain to cope with the increasing trend of the wireless data
traffic. Network densification with heterogeneous equipment
deployment (e.g. pico and femto base stations) has been
introduced as an expansion to existing macrocell networks to
improve network throughput and spatial reuse of communi-
cation resources. Such low-power and short-range small base
stations can not only reduce traffic load on the macro base
stations (MBSs), but also serve mobile users in small cells
with lower latency.

Nevertheless, in small cell networks (SCNs), the backhaul
capacity becomes the performance and cost bottleneck. De-
ploying high-speed optical fiber backhaul to connect small cell
access points to the core network may not be an economically
viable option. To face this challenge, small cell caching has
emerged as one of the solutions for the backhaul bottleneck,
which exploits the fact that the content is brought closer to
end-users before being requested. The basic idea of cache-
enabled SCNs is to integrate large-capacity storage units at

small cell base stations (SCBSs). Popular video content can
be stored automatically in the cache of SCBSs at off-peak
hours, then serve user requests during peak hours. When a
local user requests for a file already cached in its covering
SCBS, the service latency is largely reduced since it does
not have to pass through the backhaul to retrieve the content
from remote servers. Another benefit of small cell caching is
the exploitation of the high degree of asynchronous content
reuse of wireless video demand, where repeated video content
is requested by different users asynchronously. Caching at
small cells can avoid repeated transmission of the same video
content from the core network to end-users, especially in the
case where local users share similar interest in the requested
content.

The literature of cache-enabled wireless networks concerns
many aspects of caching problems under the structure of
advanced wireless networks, e.g. cacher distribution, content
placement, caching and replacement policy. FemtoCaching
networks with distributed caching helpers are studied in [1].
The optimal file assignment to minimize the expected down-
loading time under the uncoded and coded caching cases is
analyzed. In [2] a small cell caching problem is considered
using tools from stochastic geometry for the network model-
ing, with analytical results given on some basic performance
metrics and fundamental tradeoffs. Prior studies investigating
wireless caching problems often adopt Zipf distribution as
a referential model for the global popularity distribution of
requested content and assumes similar popularity pattern for
all users in the system. Under the consideration of different
interest levels over requested content, a clustering algorithm
is proposed in [3] to group users into clusters based on their
request profile. Optimal caching decisions are then made at
each SCBS by using a distributed regret learning approach to
minimize the total service delay.

In this paper, we consider that caching decisions are made
at SCBSs based on local users’ request pattern rather than
the global content popularity, as in cache-enabled SCNs each
SCBS only serves a small amount of users. Specifically, each
SCBS constructs its local regular content library by sampling
regularly requested files of users in its sampling range, then
determines the set of files to be cached under limited cache



capacity. We choose the conventional “cache the most popular
files” strategy to give baseline analysis on the impact of
user interest correlation on the cache hit/miss probability.
The results can be generalized to cases with more advanced
caching strategies as proposed in [4] and [5]. We assume
Zipf-like distribution for the local regular content popularity
in the same region. Under stochastic spatial models for the
SCBS locations and user distribution, we derive the cache
service probability as a function of the maximum sampling
distance. We also consider that there is a sampling cost, which
is modeled as a distance-dependent function. The tradeoff
between the cache service probability and the sampling cost
is also studied, and the optimal sampling distance subject to
a cost constraint is provided.

II. NETWORK MODELING AND ANALYSIS

A. Network Model and Basic Assumptions

We consider a cache-enabled SCN model with limited
storage space at each SCBS, serving its nearby users within
a certain distance according to its transmit power constraint.
We model the SCBS distribution on the two-dimensional Eu-
clidean plane R2 by a homogeneous PPP Φc = {Yi, i ∈ N+}
with intensity λc, where Yi denotes the position of the i-th
SCBS. Users to be served are distributed according to another
independent homogeneous PPP Φu = {xj , j ∈ N+} with
intensity λu, where xj denotes the position of the j-th user.

We introduce the notion of “local user interest pattern”,
which can be acquired when allowing each SCBS to sample
the regularly requested content of all users in its sampling
region of radius Rp. The small cell cachers decide which files
to cache based on the adopted caching policy. Assume there
exists a maximum distance that a SCBS can serve, denoted
by Rv , the disk centered at the SCBS with radius Rv can be
seen as the service region of this SCBS.

When increasing the sampling range, the SCBSs may have
better knowledge of local user interest pattern, but due to
the limited cache storage only the most popular files will be
stored. Then, for a random user being sampled the probability
of finding its regular content cached at its covering SCBSs
will decrease with the sampling region size. The service range
constraint also gives un upper bound on the probability of
an arbitrary user being served by the small cell cachers. We
denote this service probability by Psv . Increasing the sampling
range also leads to higher cost of the local request pattern
learning at the SCBSs. In this paper we focus on the influence
of the sampling range on the service probability and the
sampling cost for different levels of local interest correlation
among small cell users.

Suppose that each user has a library of size J , which
contains its regularly requested files. For simplicity, we assume
that all the files have equal unit size. Each SCBS has limited
cache storage size denote by M , which is the maximum
number of files that can be stored. Denote by N the number
of users in the sampling region of a SCBS, from point process
theory, we have E[N ] = λuπR

2
p [6].

When users in the same sampling region share similar
interest in requested content, different users may have over-
lapped files in their regular content libraries, so the overall
regular content library size will not grow linearly with the
number of users in this area. Conditioning on having N users
in the sampling region of a typical SCBS, we denote by
C = {c1, . . . , cS} the local content library of the N users
with S representing the library size. Denote by g : N+ → N+

the mapping function from the number of users N to the local
library size S. In reality S = g(N) can be learned numerically
at the SCBSs and the approximate function can be found by
data fitting. Here we assume that g is a piecewise function
and follows S = min (JN, dJ (1 + µ logN)e), where µ is a
constant factor that characterizes the similarity level of local
user interest.

For a given local regular content library, we assume that
the popularity distribution of files in it follows the Zipf-
Mandelbrot law, that is, for the i-th most popular file we have
its request probability as

pi =
Ω

(q + i)γ
(1)

where Ω =

(
S∑
n=1

(q + n)γ
)−1

is the normalization constant,

q is the shift parameter which is related to the shifting based
on the Zipf distribution, and γ is the shape parameter, which
defines the concentration (correlation) level of the content
popularity. Similarly to the g function, the real popularity dis-
tribution can be learned by sampling and sorting the popularity
of all requested files in the local region.

Note that µ in the g function defines how similar are the
regular content libraries of users in the same area, γ in the
popularity distribution defines the relative disparity of content
popularity in the local library. The combination of these two
factors gives full characterization of the correlation level of
local user interest.

B. Service Probability Analysis

We consider at first a baseline caching policy, which is
“cache the most popular files”. Cache entities at the SCBSs
have identical and limited storage size as M files. Assume that
we have a SCBS at the origin with N users in its sampling
region of radius Rp. The local content library size is known
as S. When M ≥ S, all files in the local content library can
be stored at the SCBS. When M < S, due to the limited
cache storage only the most popular M files in the sampling
region can be cached. The cache miss probability Pm, which
is the probability that a random file in the local regular content
library C not being cached, can be given as

Pm =

S∑
i=M+1

pi =

S∑
i=M+1

1

(q + i)γ
S∑
n=1

(q + n)γ
. (2)

Evidently, Pm increases with S, which verifies the intuition
that larger content library size leads to higher cache miss
probability when the cache storage capacity is limited. Assume



that users outside the sampling range of a SCBS have almost
negligible probability to find their regularly requested content
in this small cell cache. The service probability Psv is then
denoted by the probability of the intersection of three events:

• E1 = user’s regular content library being sampled by at
least one SCBS,

• E2 = the requested content being cached,
• E3 = user in the service range of the sampling SCBS.

Furthermore we have E1 ⊆ E3 if Rp ≤ Rv and E3 ⊂ E1
otherwise. In the case where Rp ≤ Rv , Psv can be given by

Psv = P[user being sampled ∩ content being cached]

= 1− P[not being sampled]

−
∞∑
k=1

P[sampled by k cachers] · P[k cache miss]

= 1− e−λcπR
2
p

−
∞∑
k=1

(
λcπR

2
p

)k
k!

exp
(
−λcπR2

p

) k∏
j=1

P jm, (3)

where P jm is the cache miss probability of the j-th SCBS
which has the typical user within its sampling range. When
different small cells have different request correlation levels,
which corresponds to different γ in the Zipf distribution, the
cache miss probability can be given as

P jm =

S∑
i=M+1

1

(q + i)γj
S∑
n=1

(q + n)γj
, (4)

where γj is the shape parameter of the content popularity
distribution in the sampling region of the j-th SCBS. It is
easy to see that Psv increases monotonically with Rp, meaning
that larger sampling distance gives higher probability of a
random user to find its regularly requested content cached in
the covering SCBSs.

In the case where Rp > Rv , the service probability is given
by

Psv = P[user in service range ∩ content being cached]

= 1− e−λcπR
2
v

−
∞∑
k=1

(
λcπR

2
v

)k
k!

exp
(
−λcπR2

v

) k∏
j=1

P jm. (5)

Contrary to the previous case, for fixed Rv the service
probability decreases with Rp, which is easy to understand
since larger sampling region corresponds to higher cache miss
probability for users being sampled, while the number of users
that can be served will not increase with the sampling range

due to the service range constraint. Combining these two cases
we have

Psv = P[user in service range ∩ content being cached]

= 1− e−λcπmin{Rp,Rv}2 −
∞∑
k=1

e−λcπmin{Rp,Rv}2 ·

(
λcπmin{Rp, Rv}2

)k
k!

k∏
j=1

P jm. (6)

From the above result we see that for a given constraint on the
service range of a SCBS, the service probability increases with
Rp till it reaches the service range limit Rv , then it decreases
monotonically with Rp.

C. Sampling Cost Analysis

The regular content sampling allows the SCBSs to learn
the interests of local users, thus the service offered by small
cell cachers can be better adapted to the local request pattern.
On the other hand, the power consumption for the sampling
procedure must be taken into consideration for the purpose
of energy efficiency. Denote by Cs the sampling cost of the
typical SCBS at the origin with sampling region radius Rp,
we introduce a cost function for the sampling process, which
depends on the distance from the sampled users to the SCBS,
i.e.

Cs =
∑

j∈Φu
⋂
B(0,Rp)

f(‖xj − Y0‖) · η (7)

where ‖xj − Y0‖ is the Euclidean distance between the j-th
user in the sampling region and the typical SCBS at the origin,
f is a distance-dependent cost function, η is a constant cost
factor. For simplicity we choose η = 1 and inverse pathloss
model for f as f(x) = xα where α is the pathloss exponent.

From Campbell’s theorem, we have the mean cost when
averaging over different realizations of PPP as

E[Cs] = E

 ∑
j∈Φu

⋂
B(0,Rp)

‖xj − Y0‖α


= 2πλu

∫ Rp

0

rα · rdr

=
2πλu
α+ 2

(
Rα+2
p − 1

)
. (8)

We see that the sampling cost increases linearly with the
user density and follows power law of order α + 2 growth
with the sampling region radius. Note that in dense network
deployments, larger sampling distance results in improved
learning of the request pattern; however the sampling cost may
be prohibitively high and should be taken into account when
designing the optimal sampling distance.

III. OPTIMAL SAMPLING RANGE UNDER COST
CONSTRAINT

In Section II we gave basic results on the service probability
and sampling cost for cache-enabled small cell networks with
local request pattern learning. Based on our assumptions on
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Fig. 1. Service probability vs. sampling range with infinite service range.
q = 0, γ = 1.

user interest correlation, we can gain insight on how the
service probability and cost scale with the sampling range.

Fig. 1 shows an example of the service probability as a
function of the sampling region radius when there are no
constraint on the service range. We see that increasing sam-
pling range gives higher service probability, but the increment
tends to saturate when Rv is relatively large. By taking into
consideration the limited service range while ignoring the
sampling cost, the optimal sampling region size is equal
to Rv since it gives the highest service probability, as we
have analyzed in Section II. In this section, we search the
optimal sampling range which gives sufficiently good service
probability while assuring the sampling cost is below a given
constraint.

We formulate the problem as follow:

R∗p = arg max
Rp

Psv (9)

Subject to:

Rp ∈ [0, Rv], (10)
Cs(R

∗
p) < Cmax, (11)

Cmax is the predefined cost constraint. The first condition
comes from the fact that when Rp > Rv the service probability
decreases monotonically with Rp. The second condition is due
to the sampling cost constraint.

With the help of (8), we can derive the constraint on Rp to
satisfy (11) as

R∗p <

(
Cmax(α+ 2)

2πλu
+ 1

) 1
α+2

. (12)

Since Psv is a monotonically increasing function of Rp
for Rp ∈ [0, Rv], combining these two constraints we
have the optimal sampling distance given by R∗p =

min

(
Rv,

(
Cmax(α+2)

2πλu
+ 1
) 1
α+2

)
.
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Fig. 2. Service probability under different levels of user interest correlation.

IV. NUMERICAL RESULTS

In this section we validate our analysis on cache-enabled
small cell networks with local user interest sampling. We show
the tradeoff between the small cell cache service probability
and the sampling cost for different levels of local user interest
correlation and user densities.

We set λc = 2× 10−5 and λu = 8× 10−4 as the density of
SCBSs and of users to be served. The service region of each
SCBS has radius Rv = 200 m. The regular content library
size of each user is J = 10. The maximum cache storage of a
SCBS is M = 50. We use S = min (JN, dJ (1 + 3 logN)e)
as the mapping function from the number of users to the
overall local content library size. The popularity distribution
is assumed to follow the Zipf-Mandelbrot law with q = 0
(Zipf’s law). We assume the same shape parameter for the
content popularity distribution in the sampling region of all
the SCBSs, meaning that γj = γ for j = 1, · · · ,∞. Note
that considering uniform or different shape parameters for the
popularity distribution does not change the general trend of
how the sampling distance affects the service probability Psv .
Numerical results are presented with different values of the
shape parameter γ ∈ [0.25, 1.5], which correspond to different
user interest correlation levels, in order to see how the cache
service performance scales with local user interest pattern.

A. Service Probability under Different Correlation Levels of
Users’ Interest

In Section II, we saw that the cache service performance
depends on the local user interest correlation level. In Fig.
2 we plot the service probability Psv as a function of the
sampling range Rp for γ = 0.25, 0.5, 1 and 1.5 respectively.

From Fig. 2, we see that Psv increases with Rp before
it reaches Rv = 200 m then decreases when Rp continues
to grow. However, the speed of decrease is relatively small
compared to the growth in Rp ∈ [0, Rv], especially for higher
values of γ. This is because higher γ corresponds to higher
concentration of content popularity. Though increasing library
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Fig. 3. Sampling cost vs. sampling range with distance-dependent cost
function.

size increases the number of files not being cached, the most
popular files are cached with higher probability, which still
leads to lower cache miss probability in the sampling region.

B. Sampling Cost

Fig. 3 shows the simulated sampling cost per SCBS as a
function of the maximum sampling distance with the adopted
distance-dependent cost function. The simulation results are
obtained under different user density settings and by averaging
over 5000 PPP realizations. It shows the dramatic growth of
the cost of local regular content sampling when increasing the
sampling distance Rp. In a high user density scenario, the cost
issue is of growing importance, showing the need for taking
into consideration the sampling cost when searching for the
optimal sampling distance.

V. CONCLUSIONS

In this paper we investigated cache-enabled SCNs with
local user interest sampling managed by SCBSs for local
request pattern learning. We provided analytical and numerical
results on the cache service performance and the sampling
cost, as well as the optimal sampling distance to maximize
the cache service probability under a given cost constraint.
The main takeaway of this paper is the idea of local regular
content sampling and the influence of the sampling distance
on the cache service performance, which will be beneficial for
designing the sampling procedure of cache-enabled SCNs.
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