The homological perturbation lemma and its applications to robust stabilization

Alban Quadrat 1
1 DISCO - Dynamical Interconnected Systems in COmplex Environments
L2S - Laboratoire des signaux et systèmes, Inria Saclay - Ile de France, SUPELEC, CNRS - Centre National de la Recherche Scientifique : UMR8506
Abstract : Within the lattice approach to analysis and synthesis problems, we show how standard results on robust stabilization can be obtained in a unified way and generalized when interpreted as a particular case of the so-called homological perturbation lemma. This lemma plays a significant role in algebraic topology, homological algebra, computer algebra, etc. Our results show that it is also central to robust control theory for (infinite-dimensional) linear systems.
Type de document :
Communication dans un congrès
8th IFAC Symposium on Robust Control Design (ROCOND), Jul 2015, Bratislava, Slovakia. Proceedings of the 8th IFAC Symposium on Robust Control Design (ROCOND). 〈10.1016/j.ifacol.2015.09.425 〉
Liste complète des métadonnées

https://hal-centralesupelec.archives-ouvertes.fr/hal-01259960
Contributeur : Myriam Baverel <>
Soumis le : jeudi 21 janvier 2016 - 12:37:44
Dernière modification le : jeudi 5 avril 2018 - 12:30:13

Identifiants

Citation

Alban Quadrat. The homological perturbation lemma and its applications to robust stabilization. 8th IFAC Symposium on Robust Control Design (ROCOND), Jul 2015, Bratislava, Slovakia. Proceedings of the 8th IFAC Symposium on Robust Control Design (ROCOND). 〈10.1016/j.ifacol.2015.09.425 〉. 〈hal-01259960〉

Partager

Métriques

Consultations de la notice

227