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Abstract—The problem of state observation, based on spatially-
sampled output measurements, is addressed for a class of infinite
dimensional systems, modelled by a semi-linear heat equation
augmented with a structured uncertain part involving a set of un-
known parameters. An adaptive observer is designed that provides
online estimates of the system (spatially distributed) state and
unknown parameters based on sampled data (in space). Sufficient
conditions for the observer to be exponentially convergent are es-
tablished. These include an ad-hoc persistent excitation condition
as well as a condition on how the observer gain must be selected in
relation with the space sampling interval.

Index Terms—Nonlinear system, observer design, PDE systems.

I. INTRODUCTION

Adaptive state observers are resorted to deal with online state

and parameter estimation. The first adaptive observers have been

developed for finite-dimensional continuous-time linear systems and

an extensive survey can be found in [1] and [2]. Then, research

efforts have been devoted to designing nonlinear adaptive observers for

(finite-dimensional) nonlinear systems, e.g., [3]–[7]. More recently,

sampled-data (in time) observers have been developed for (finite-

dimensional) nonlinear systems where output measurements are only

available at sampling instants, e.g., [8]–[10].

The problem of observer design for infinite dimensional systems

(IDSs) has also been given a great deal of interest, especially since

the eighties. Several observer design techniques have been developed

including the infinite dimensional Luenberger observer for linear IDSs

(e.g., [11], [12]), the boundary observer design of bilinear IDSs (e.g.,

[13]–[15], [22]), backstepping-based boundary observers for parabolic

partial integro-differential IDSs [16], initial state recovery algorithms

for various linear and nonlinear IDSs [17]–[19], sampled-data (in time

and space) observer for semilinear diffusion IDSs [24].

In the last few years, much interest has been paid to simultaneous

parameter and state estimation for IDSs, within various contexts. In

[20], simultaneous state and parameter estimation has been introduced

to deal with output-feedback adaptive control design for parabolic

PDEs. In this context, the unknown parameters are tuned by gradient-

type laws while the (spatially distributed) state is estimated using open-

loop filters. The convergence of the estimates to their true values is not

established. But, this is not required for the achievement of control ob-

jectives. In [21], simultaneous state and parameter estimation has been

performed to solve a parameter identification problem for reaction-

advection type systems involving a single unknown parameter. Open-
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and closed-loop adaptive identifiers have been proposed where the

unknown parameter is estimated using gradient-type estimators, while

the (spatially distributed) state is estimated using open-loop filters. It is

shown that the parameter estimate converges to its true values, by just

using constant exciting inputs. In [22], simultaneous parameter and

state estimation has been considered within the context of adaptive

stabilization for a wave equation subject to a boundary harmonic

disturbance linearly parameterized along a known set of functions.

An adaptive observer estimating the system state and the (disturbance)

unknown parameters is proposed and the estimation error system is

shown to be asymptotically stable.

In this technical note, the problem of parameter and state estimation

is addressed for IDSs that are described by a semilinear heat equation,

based on sampled (in space) state measurements. The system includes

a structured uncertain part, involving linearly a set of unknown param-

eters. Note that, in the absence of parameter uncertainty, the observer

proposed in [24] applies to the present system. On the other hand, the

class of systems considered here can be viewed as a generalization

of the system considered in [21] as this involves a single unknown

parameters. The corresponding observation problem is dealt with using

an adaptive observer providing online estimates of the system (spa-

tially distributed) state and unknown parameters. The observer design

involves a backstepping state transformation, inspired from adaptive

observers of nonlinear ODE systems [6], [26]. The observer state

and parameter estimators are derived so that the transformed system

coincides with an exponentially stable target system. The observer

derivation entails an ad-hoc persistent excitation condition, under

which all state and parameter estimation errors are guaranteed to be

exponentially vanishing. A second sufficient condition is established

showing that the observer gain depends on the space sampling period.

The technical note is organized as follows: the observation problem

statement, including the class of IDSs, is described in Section II; the

adaptive observer design and analysis are dealt with in Section III; a

conclusion and a reference list end the technical note.

II. OBSERVATION PROBLEM STATEMENT

The system under study is described by a parabolic type PDE of

the form

ut(x, t) = uxx(x, t) + θTφ (y(t), t) , 0 < x < 1, t > 0 (1a)

with the boundary condition

ux(0, t) = 0, t ≥ 0 (1b)

and boundary input actuation:

u(1, t) = U(t), t ≥ 0, (control input) (1c)

where φ : Rp ×R → R
n is a known C1 function; θ ∈ R

n is a

fixed vector of unknown components but its dimension n is known.

The quantity θTφ(y(t), t) might represent a possible structured mod-

elling error. The system is observed via an output vector y(t) ∈ R
p

including all measurements acquired on the system at time t. Specif-

ically, the spatial domain 0 ≤ x ≤ 1 is divided in p known subin-

tervals [xj , xj+1], with p ≥ 1 and x0 = 0 ≤ xj ≤ xj+1 ≤ xp = 1

1

mailto: fouad.giri@unicaen.fr


(j = 0 · · · p− 1). A sensor is placed at the middle of each subinterval

providing online state measurements at those positions

yj(t) = u(xj , t); xj =
xj + xj+1

2
(j = 0, . . . , p− 1). (2a)

Then, the system output vector y(t) is defined as follows:

y(t) = [y0(t), . . . , yp−1(t)]
T . (2b)

Note that the case of single sensor p = 1, or equivalently ∆ = 1, is not

ruled out, where ∆ denotes the maximum space sampling interval, i.e.,

∆ = max
j=0,...,p−1

(xj+1 − xj). (2c)

The goal is to generate accurate online estimates û(x, t) and θ̂,

respectively of the system state u(x, t) ( 0 ≤ x ≤ 1; t ≥ 0) and the

parameter vector θ, based on the output measurements y(t). To achieve

this objective, the following assumption is considered:

Assumption 1: u(x, t) is bounded and the function φ(., t) is

uniformly bounded with respect to the argument t. �

Remark 1:

a) Equation (1a) may capture several heat phenomena. For in-

stance, the simpler case θ ∈ R boils down to the heat system

(1) in [28] (with the sensor being placed at the boundary x =
0). In the general case θ ∈ R

n, (1a) may be viewed as an

approximation of a parabolic type equation of the form

ut(x, t) = uxx(x, t) + θT
1∫

0

ψ (u(x, t), t) dx.

Then, the approximation of the integral term by the rectangle

method leads to an equation similar to (1a).

b) The above boundedness assumption entails the existence of (not

necessarily known) scalars −∞ < um < uM < ∞ and −∞ <
φm < φM < ∞ such that, ∀x ∈ [0, 1], ∀ y∈ [um, uM ]p, ∀t≥0

um ≤ u(x, t) ≤ uM , φm ≤ ‖φ(y, t)‖ ≤ φM .

This assumption will prove to be crucial for the varying gain

matrix λ(x, t) of the observer (defined in the next section) to be

bounded. �

III. OBSERVER DESIGN AND ANALYSIS

A. Observer Design

The system model (1a)–(1c) suggests the following observer

structure:

ût(x, t) = ûxx(x, t)+φT (y(t), t) θ̂(t)−K (û(xj , t)− yj(t))

+ v(x, t), xj ≤ x < xj+1, (j = 0, . . . , p− 1) (3a)

ûx(0, t) = 0 (3b)

û(1, t) =U(t) (3c)

where θ̂(t) is a parameter vector estimate, v(x, t) is an additional

correction term, and K ≥ 0 is the observer gain. Suitable choices of

these quantities will be made based on the subsequent analysis. First,

introduce the following errors:

ũ(x, t) = û(x, t)− u(x, t) (state estimation error) (4a)

θ̃(t) = θ̂(t)− θ (parameter estimation error). (4b)

Subtracting (1a) to (3a), it follows using (1a) and (4a), (4b) that

ũ(x, t) undergoes the following equation:

ũt(x, t) = ũxx(x, t) + φT (y(t), t) θ̃(t)−Kũ(xj , t) + v(x, t),

xj ≤ x < xj+1, (j = 0, . . . , p− 1) (5a)

with the following boundary conditions:

ũx(0, t) = ũ(1, t) = 0 (using (1b−c) and (4b−c)). (5b)

Now, introduce the backstepping transformation, inspired by [6]

z(x, t) = ũ(x, t)− λ(x, t)θ̃(t) (6)

where λ(x, t) ∈ R
1×n is an auxiliary vector function to be defined

later. It is worth noting that, the above transformation has originally

been introduced in [6] for finite dimensional systems described by

nonlinear ODEs. It has proved in many places to be useful for the

design of adaptive observers [7]–[10].

It follows from (6) that z(x, t) undergoes the following equation:

zt(x, t) = ũxx(x, t) + φT (y(t), t) θ̃(t)−Kũ(xj , t) + v(x, t)

− λt(x, t)θ̃(t)− λ(x, t)
˙̃
θ(t) (7)

for all t ≥ 0, xj ≤ x < xj+1 and j = 0, . . . , p− 1. Equation (7)

suggests the following choice of v(x, t):

v(x, t) = λ(x, t)
˙̃
θ(t) (8)

Doing so, (7) simplifies to

zt(x, t)= ũxx(x, t) + φT (y(t), t) θ̃(t)−Kũ(xj , t)−λt(x, t)θ̃(t)
(9)

for all t ≥ 0, xj ≤ x < xj+1 and j = 0, . . . , p− 1. In view of (6),

z(x, t) + λ(x, t)θ̃(t) can be substituted to ũ(x, t) on the right side of

(9). Doing so, one gets

zt(x, t) = zxx(x, t) + λxx(x, t)θ̃(t) + φT (y(t), t) θ̃(t)

−K
(
z(xj , t) + λ(xj , t)θ̃(t)

)
− λt(x, t)θ̃(t)

= zxx(x, t)−Kz(xj , t)

+
(
λxx(x, t) + φT (y(t), t)−Kλ(xj , t)− λt(x, t)

)
θ̃(t)
(10)

for all t ≥ 0, xj ≤ x < xj+1 and j = 0, . . . , p− 1. Equation (10)

suggests the following trajectory for the auxiliary state vector λ(x, t):

λt(x, t) = λxx(x, t)−Kλ(xj , t) + φT (y(t), t) ;
t ≥ 0, xj ≤ x < xj+1, j = 0, . . . , p− 1 (11a)

with the following boundary and initial conditions:

λx(0, t) = λ(1, t) = 0, and λ(x, 0) = 0. (11b)

Doing so, (10) boils down to

zt(x, t)=zxx(x, t)−Kz(xj , t); t≥0, xj≤x<xj+1, (j=0, . . . , p−1).
(12a)

In view of (11b) and (5b), one gets from (6) the following boundary

conditions:

zx(0, t) = z(1, t) = 0 (12b)

Owing to the unknown parameter vector, the following adaptive law

is used:

˙̂
θ(t) = −R(t)ΛT (t)ỹ(t) and θ̂(t) ∈ R

n (13a)

Ṙ(t) =R(t)−R(t)ΛT (t)Λ(t)R(t) with R(t) ∈ R
n×n (13b)

Λ(t) =

⎡
⎢⎣

λ(x0, t)
..
.

λ(xp−1, t)

⎤
⎥⎦ ∈ R

p×n (13c)

ỹ(t) = [û(x0, t)− y0(t), . . . , û(xp−1, t)− yp−1(t)]
T

(13d)

2



where the initial conditions θ̂(0) = θ0 and R(0) = R0 are arbitrarily

chosen but R0 = RT
0 > 0. The structure of the parameter adaptive

law (13a)–(13d) is similar to that used in (finite-dimensional) system

observers, e.g., [5]–[7]. The main difference is that the adaptive gain

Λ(t) is presently generated by a PDE equation [namely, (11a), (11b)],

while such a gain was generated by an ODE equation in the case

of finite-dimension system observers. Except for this difference, the

adaptive law (13a), (13b) is expected to perform as in the finite-

dimensional case. In particular, the matrix R(t) [generated by (13b)]

will be required to stay all the time symmetric and positive definite.

The observer thus designed is constituted of (3a)–(3c), (11a), (11b) and

(13a)–(13c). For convenience, these equations are rewritten together as

follows:

ût(x, t) = ûxx(x, t)+φT (y(t), t) θ̂(t)−K (û(xj , t)−yj(t))

+ λ(x, t)
˙̂
θ(t), for xj ≤ x < xj+1

(j = 0, . . . , p − 1) (14a)

ûx(0, t) =0, û(1, t) = U(t) (14b)

λt(x, t) =λxx(x, t)−Kλ(xj , t) + φT (y(t), t) ;

t ≥ 0, xj ≤ x < xj+1, j = 0, . . . , p − 1 (14c)

λx(0, t) =λ(1, t) = 0, λ(x, 0) = 0 (by definition) ((4d)

˙̂
θ(t) = −R(t)ΛT (t)ỹ(t) (14e)

Ṙ(t) =R(t)−R(t)ΛT (t)Λ(t)R(t). (14f)

B. Observer Analysis

The observer analysis amounts to analyzing the stability of the

following error system:

zt(x, t) = zxx(x, t)−Kz(xj , t);

for all t ≥ 0 and xj ≤ x < xj+1(j = 0, . . . , p− 1)
(15a)

˙̃
θ(t) = −R(t)ΛT (t)

(
Z(t) + Λ(t)θ̃(t)

)
with θ̃ = θ̂ − θ (15b)

Z(t) = [z(x0, t), . . . , z(xp−1, t)]
T ∈ R

p (15c)

zx(0, t) = z(1, t) = 0 (15d)

where (15a) and (15c) are, respectively, copies of (12a) and (14c),

while (15b) is obtained from (14e) replacing there ỹ(t) by Z(t) +

Λ(t)θ̃(t), due to (2a), (2b), (6), and (15d). The error equations (15a),

(15b) are completed by the λ-equation (11a) and the associated bound-

ary and initial conditions (11b).

It is worth noting that the solution (z = 0, λ = 0, θ̃ = 0) is an equi-

librium of the system (15a), (15b). Indeed, it is readily checked that,

if (z(x, t0) = 0, λ(x, t0) = 0, θ̃(t0) = 0), for all 0 < x < 1 and some

t0≥0, then one has (z(x, t)=0, λ(x, t) = 0, θ̃(t) = 0), for all t ≥ t0.

For space limitation, the well posedness of the problem at hand is

concisely discussed in the following remark.

Remark 2:

a) It is readily checked that, the system of (1a), (15a), and (14c)

are simpler forms of equation (21) in [24]. Following mutatis

mutandis the well-posedness analysis developed there, one con-

cludes that a strong solution (u(x, t), z(x, t), λ(x, t)) exists in

the Hilbert space

H 1
2
= D

(
(−A)

1
2

)
=

{
w ∈ H1(0, 1) : wx(0) = w(1) = 0

}

where A = ∂2/∂x2, (−A)1/2 the square root of (−A), and

H1(0, 1) is the Sobolev space of absolutely continuous scalar

functions w : [0, 1] → R or Rn with dw/dx ∈ L2[0, 1]. Then,

the existence and uniqueness of R(t) and θ̃(t) is immediately

obtained from (14f) and (15b), applying the usual existence the-

orem of ODEs. Then, the existence and uniqueness of ũ(x, t) =

z(x, t) + λ(x, t)θ̃(t) follows from (6). This also implies the

existence of û(x, t) = ũ(x, t) + u(x, t).
b) Also, the following Wirtinger’s inequalities will be repeatedly

used in the forthcoming analysis [25]

b∫

a

w2(x, t)dx ≤ 4(b− a)2

π2

b∫

a

w2
x(x, t)dx (16a)

max
a≤x≤b

w2(x, t) ≤
b∫

a

w2
x(x, t)dx (16b)

whatever the function w ∈ H1(a, b) such that w(a) = 0 or

w(b) = 0. �

The next result is on the boundedness of the auxiliary vector λ(x, t).
Proposition 1: The auxiliary state vector λ(x, t), generated by

(14c)–(14d), is uniformly bounded, provided that the gain observer

K in (14a) and the space sampling interval ∆ satisfy the condition:

0 ≤ K∆2 < 4π2. �

Proof: See Appendix A.

Using Proposition 1, it is readily follows from (13c) that:

‖Λ(t)‖ ≤ Λm with Λm = λm
√
p and λm = sup

0≤x≤1,t≥0
‖λ(x, t)‖ .

(17)

To ensure the exponential stability of the system (15a)–(15d), it is

required that the time-varying matrix R(t) [solution of (14f)] exists

and is symmetric positive definite. Now, it is shown in many places

(e.g., [6], [7]) that R(t) enjoys the required properties if the following

persistent excitation (PE) condition holds:

∃δ, ε0, ε1 > 0, ∀ t > 0 : ε0I(m+p)×(m+p)

<

t+δ∫

t

ΛT (s)Λ(s)ds < ε1I(m+p)×(m+p). (18)

Similar PE conditions are needed in system identification and adaptive

observation. Note that, the right inequality simply means that Λ(s) is

bounded which actually is the case due to (17). The left inequality

means that the column vectors of Λ(s) span the vector space R
n+p

on any finite time interval [t, t+ δ], for all t. Under condition (18), it

turns out that the inverse R−1 is also bounded and symmetric positive

definite, i.e., there are positive scalars (r, r), such that

rI(m+p)×(m+p)≤R−1(t)=
(
R−1(t)

)T ≤rI(m+p)×(m+p), ∀t≥0.
(19)

In the sequel, condition (18) is supposed to be true, so that one can

make use of (19). Then, one has the following main result:

Theorem 1: Let the adaptive observer described by (4a)–(4c), (9),

(12a), (12b), and (14a), (14b) be applied to the system (1a), (1b),

(2a), (2b) subject to Assumption 1 and the PE assumption (18). Let

the observer gain K and the space sampling interval ∆ be selected

such that K∆ < 2π2. Then, the estimation errors θ̃(t) and the quantity

max0≤x≤1 |ũ(x, t)| are globally exponentially vanishing. �

Proof: Consider the following Lyapunov function candidate:

V (z, θ̃) = V0(θ̃) +
μ0

2

1∫

0

z2(x, t)dx+
1

2

1∫

0

z2x(x, t)dx (20a)
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with V0(θ̃) = θ̃TR−1θ̃ and μ0 any positive scalar such that

μ0 > p

(
1− K∆

2π2

)−1

. (20b)

Note that μ0 exists because K∆ < 2π2 by assumption (Theorem 1).

From (20a), one gets the following time-derivative:

V̇ (z, θ̃)= V̇0(θ̃)+μ0

1∫

0

z(x, t)zt(x, t)dx+

1∫

0

zxzxt(x, t)dx. (21)

Using (15b) and (14f), one immediately gets

V̇0(θ̃) = θ̃T (t)Ṙ−1(t)θ̃(t) + 2θ̃T (t)R−1(t)
˙̃
θ(t)

= θ̃T (t)
(
−R−1 +ΛT (t)Λ(t)

)
θ̃(t)

− 2θ̃T (t)
(
ΛT (t)Λ(t)θ̃(t) + ΛT (t)Z(t)

)

≤ − θ̃T (t)R−1(t)θ̃(t) + ‖Z(t)‖2 (using Young’s inequality)

≤ − θ̃TR−1θ̃ + p max
0<x<1

|z(x, t)|2 (using (15c))

≤ − V0(θ̃) + p

1∫

0

z2x(x, t)dx (22)

using Wirtinger’s inequality (16b). On the other hand, using (15a), the

third term on the right side of (21) develops as follows:

1∫

0

z(x, t)zt(x, t)dx =

p−1∑

j=0

xj+1∫

xj

z(x, t) (zxx(x, t)−Kz(xj , t)) dx

=

p−1∑

j=0

xj+1∫

xj

z(x, t)zxx(x, t)dx−
p−1∑

j=0

xj+1∫

xj

Kz(xj , t)z(x, t)dx

=

1∫

0

z(x, t)zxx(x, t)dx−
p−1∑

j=0

xj+1∫

xj

K (z(xj , t)−z(x, t)) z(x, t)dx

−
p−1∑

j=0

xj+1∫

xj

Kz2(x, t)dx

= −
1∫

0

z2x(x, t)dx−K

⎛
⎜⎝

p−1∑

j=0

xj+1∫

xj

(z(xj , t)−z(x, t)) z(x, t)dx

−
1∫

0

z2(x, t)dx

⎞

⎠ (23)

where the last equality is obtained using an integration by parts. By

Young’s inequality, one has

−
p−1∑

j=0

xj+1∫

xj

K (z(xj , t)−z(x, t)) z(x, t)dx≤Kξ

2

1∫

0

z2(x, t)dx

+
1

2ξ

p−1∑

j=0

xj+1∫

xj

K (z(xj , t)− z(x, t))2 dx (24)

whatever ξ > 0. Also, the application of (16a) gives

K

2ξ

p−1∑

j=0

xj+1∫

xj

(z(xj , t)−z(x, t))2 dx=
K

2ξ

p−1∑

j=0

xj∫

xj

(z(xj , t)−z(x, t))2 dx

+
K

2ξ

p−1∑

j=0

xj+1∫

xj

(z(xj , t)− z(x, t))2 dx ≤ K∆2

2ξπ2

1∫

0

z2x(x, t)dx.

This together with (23) and (24) yields

1∫

0

z(x, t)zt(x, t)dx

≤ −
1∫

0

z2x(x, t)dx+
Kξ

2

1∫

0

z2(x, t)dx

+
K∆2

2ξπ2

1∫

0

z2x(x, t)dx−K

1∫

0

z2(x, t)dx

≤ −
(
1− K∆2

2ξπ2

) 1∫

0

z2x(x, t)dx−K

(
1− ξ

2

) 1∫

0

z2(x, t)dx.

(25)

Using (22) and (25), one gets

θ̃T (t)Ṙ−1(t)θ̃(t) + 2θ̃T (t)R−1(t)
˙̃
θ(t) + μ0

1∫

0

z(x, t)zt(x, t)dx

≤ −θ̃TR−1θ̃ + p

1∫

0

z2x(x, t)dx

− μ0

⎛
⎝
(
1−K∆2

2ξπ2

) 1∫

0

z2x(x, t)dx+K

(
1− ξ

2

) 1∫

0

z2(x, t)dx

⎞
⎠

≤ −θ̃TR−1θ̃ − μ0

(
1− K∆2

2ξπ2
− p

μ0

) 1∫

0

z2x(x, t)dx

−Kμ0

(
1− ξ

2

) 1∫

0

z2(x, t)dx. (26)

Focusing on the last term on the right side of (21), one has

1∫

0

zx(x, t)zxt(x, t)dx =

1∫

0

zx(x, t)ztx(x, t)dx (27)

using a similar argument as Remark A1 in Appendix A of [27].

Then, one has, using successively an integration by part, (12a) and

the boundary conditions zx(0, t) = z(1, t) = 0

1∫

0

zx(x, t)zxt(x, t)dx = −
1∫

0

zxx(x, t)zt(x, t)dx

= −
1∫

0

z2xx(x, t)dx+

p−1∑

j=1

xj+1∫

xj

Kzxx(x, t)z(xj , t)dx

= −
1∫

0

z2xx(x, t)dx+

p−1∑

j=1

xj+1∫

xj

Kzxx(x, t)z(x, t)dx

+

p−1∑

j=1

xj+1∫

xj

Kzxx(x, t) (z(xj , t)− z(x, t)) dx

≤ −
1∫

0

z2xx(x, t)dx+

1∫

0

Kzxx(x, t)z(x, t)dx

+

p−1∑

j=1

xj+1∫

xj

(
K

η

2
z2xx(x, t) +K

1

2η
(z(xj , t)− z(x, t))2

)
dx

(28)

4



where Young’s inequality has been used in the last inequality and η >
0 is arbitrary. Integrating by part the second integral on the right side

of (28), this yields

1∫

0

zx(x, t)zxt(x, t)dx

≤ −
1∫

0

z2xx(x, t)dx+K (zx(1, t)z(1, t)− zx(0, t)z(0, t))

−K

1∫

0

z2x(x, t)dx+
Kη

2

1∫

0

z2xx(x, t)dx

+
K

2η

p−1∑

j=1

xj+1∫

xj

(z(xj , t)− z(x, t))2 dx

≤
(
Kη

2
− 1

) 1∫

0

z2xx(x, t)dx−K

1∫

0

z2x(x, t)dx

+
K

2η

p−1∑

j=1

xj∫

xj

(z(xj , t)− z(x, t))2 dx

+
K

2η

p−1∑

j=1

xj+1∫

xj

(z(xj , t)− z(x, t))2 dx (29)

where the conditions zx(0, t) = z(1, t) = 0 have again been used.

Applying (16a) to the last two terms on the right side of (29), one gets

1∫

0

zx(x, t)zxt(x, t)dx

≤ −
(
1− Kη

2

) 1∫

0

z2xx(x, t)dx−K

1∫

0

z2x(x, t)dx

+
∆2

2ηπ2

1∫

0

z2x(x, t)dx

≤ −
(
1− Kη

2

) 1∫

0

z2xx(x, t)dx

−K

(
1− ∆2

2ηπ2

) 1∫

0

z2x(x, t)dx). (30)

Let the free parameters η in (30) and ξ in (26) be such that:

ξ = ∆ and η =
∆

π2
. (31)

This ensures that

1− ∆2

2ηπ2
= 1 − ∆

2
> 0 and 1− ξ

2
= 1− ∆

2
> 0 (32)

because 0 < ∆ ≤ 1. Then, the first term on the right side of (30)

entails the following condition on K:

Kη

2
< 1 or, equivalently, K∆ < 2π2 (33)

which is nothing else than the condition in Theorem 1. Combining

(21), (26), and (30) gives, using (31)–(33)

V̇ ≤ − θ̃TR−1θ̃ −Kμ0

(
1− ∆

2

) 1∫

0

z2(x, t)dx

− μ0

(
1− K∆

2π2
− p

μ0

) 1∫

0

z2x(x, t)dx

−K

(
1− ∆

2

) 1∫

0

z2x(x, t)dx. (34)

Note that by (20b), one has

1− K∆

2π2
− p

μ0
> 0. (35)

Then, (34) yields

V̇ ≤ − V0(θ̃)−μ0

(
K

(
1−∆

2

)
+
π2

8

(
1−K∆

2π2
− p

μ0

))

×
1∫

0

z2(x, t)dx

−
(
K

(
1− ∆

2

)
+

μ0

2

(
1− K∆

2π2
− p

μ0

))

×
1∫

0

z2x(x, t)dx

≤ − V0(θ̃)−σ0
μ0

2

1∫

0

z2(x, t)dx−σ1

2

1∫

0

z2x(x, t)dx (36)

≤ − σV (z, θ̃) (37)

with σ = min(1, σ0, σ1), where

σ0 =2K

(
1− ∆

2

)
+

π2

4

(
1− K∆

2π2
− p

μ0

)
> 0 (38)

σ1 =K

(
1− ∆

2

)
+

μ0

2

(
1− K∆

2π2
− p

μ0

)
> 0. (39)

Clearly, inequality (37) implies that V is exponentially vanishing (as

t → ∞) and from (20a) so are θ̃,
∫ 1

0
z2(x, t)dx and

∫ 1

0
z2x(x, t)dx.

Then, using Wirtinger’s inequality (16b), one has

max
0≤x≤1

z2(x, t) ≤
1∫

0

z2x(x, t)dx. (40)

This holds because z(1, t) = 0 (due to (15d)). Then, in turn

max0≤x≤1 |z(x, t)| is also exponentially vanishing. On the other

hand, one has from (6) that ũ(x, t) = z(x, t) + λ(x, t)θ̃(t). As λ(x, t)
is bounded (by Proposition 1), it follows that max0≤x≤1 |ũ(x, t)| is

also exponentially vanishing. This completes the proof of Theorem 1.

�

Remark 3:

a) As 0 < ∆ ≤ 1, the condition K∆/2π2 < 1, introduced in

Theorem 1, is more restrictive than the condition K∆2/4π2<1
required in Proposition 1. Therefore, only the former is retained.

Under that condition, the gain K ≥ 0 can be arbitrarily chosen,

but the spatial sampling interval ∆ must be selected accordingly.

The larger K, the smaller ∆.

b) Using (35), it follows from (38), (39) that σ0 and σ1 are

increasing functions of the gain K. Then, it follows from (36)

that the convergence rate of
∫ 1

0
z2(x, t)dx and

∫ 1

0
z2x(x, t)dx

can be made arbitrarily high by letting K be sufficiently large.

5



Then, it follows from (22) that the convergence rate of

V0(θ̃) can be made arbitrarily close to that of V0(θ̃(0))e
−t by

letting K be sufficiently large. Consequently, it follows from (6)

and (40) that, the convergence rate of max0≤x≤1 |ũ(x, t)| is also

made higher with larger values of K. On the other hand, it has

been pointed out in Part a that, large values of K entail

small values of the sampling interval ∆ or, equivalently, large

number p of required sensors. �

IV. CONCLUSION

We have addressed the problem of estimating the state and parame-

ters of the class of IDSs described by the model (1a)–(1c), (2a), (2b).

The latter is basically a parabolic PDE augmented by the structured

quantity θTφ(y(t), t). The adaptive observer (14a)–(14f) is designed

and shown to enjoy exponential convergence, under the persistent

excitation property (18) and the condition (20b). The latter shows that

the observer gain K must be selected taking into account the space

sampling interval ∆. The smaller ∆ the larger may be the gain K.

APPENDIX A

PROOF OF PROPOSITION 1

Consider the Lyapunov functional candidate:

W (t) =
1

2

1∫

0

λ(x, t)λT (x, t)dx+
1

2

1∫

0

λx(x, t)λ
T
x (x, t)dx (A1)

Using (14c), it follows from (A1):

Ẇ (t) =

1∫

0

λt(x, t)λ
T (x, t)dx+

1∫

0

λx(x, t)λ
T
xt(x, t)dx. (A2)

Following the same approach as in the proof of Theorem 1, the two

terms on the right side of (A2) will be successively upper bounded.

The first term develops as follows:

1∫

0

λt(x, t)λ
T (x, t)dx

=

1∫

0

λxx(x, t)λ
T (x, t)dx−

p−1∑

j=0

xj+1∫

xj

Kλ(xj , t)λ
T (x, t)dx

+

1∫

0

φT (y(t), t)λT (x, t)dx

= −
1∫

0

‖λx(x, t)‖2 dx−
p−1∑

j=0

xj+1∫

xj

Kλ(xj , t)λ
T (x, t)dx

+

1∫

0

λ(x, t)φ (y(t), t) dx

= −
1∫

0

‖λx(x, t)‖2 dx

−
p−1∑

j=0

xj+1∫

xj

K (λ(xj , t)− λ(x, t))λT (x, t)dx

+

1∫

0

λ(x, t)φ (y(t), t) dx−
1∫

0

K ‖λ(x, t)‖2 dx (A3)

where the penultimate last equality is obtained using an integration by

parts of the first term on the right side and the boundary conditions in

(14d). Using Young inequality, one has

1∫

0

λ(x, t)φ (y(t), t) dx

≤ ‖φ (y(t), t)‖2
2ζ

+
ζ

2

1∫

0

‖λ(x, t)‖2 dx (A4)

−
p−1∑

j=0

xj+1∫

xj

K (λ(xj , t)− λ(x, t))λT (x, t)dx

≤ 1

2ω

p−1∑

j=0

xj+1∫

xj

K ‖λ(xj , t)− λ(x, t)‖2 dx

+
Kω

2

1∫

0

‖λ(x, t)‖2 dx& (A5)

whatever ζ > 0 and ω > 0. Using Wirtinger’s inequality (16a), the

first term on the right side of (A5) is bounded as follows:

1

2ω

p−1∑

j=0

xj+1∫

xj

K ‖λ(xj , t)− λ(x, t)‖2 dx

≤ 1

2ω

p−1∑

j=0

xj∫

xj

K ‖λ(xj , t)− λ(x, t)‖2 dx

+
1

2ω

p−1∑

j=0

xj+1∫

xj

K ‖λ(xj , t)− λ(x, t)‖2 dx

≤ K

2ω

∆2

π2

p−1∑

j=0

xj+1∫

xj

‖λx(x, t)‖2 dx (A6)

Using (A4)–(A6), it follows from (A3) that:

1∫

0

λt(x, t)λ
T (x, t)dx ≤ −

(
1− K

2ω

∆2

π2

) 1∫

0

‖λx(x, t)‖2 dx

−
(
K − Kω

2
− ζ

2

) 1∫

0

‖λ(x, t)‖2 dx+
‖φ (y(t), t)‖2

2ζ
. (A7)

Letting ω = K∆2/2ϑπ2 for some 0 < ϑ < 1, inequality (A7) yields

1∫

0

λt(x, t)λ
T (x, t)dx ≤ −(1− ϑ)

1∫

0

‖λx(x, t)‖2 dx

−
(
K − K2∆2

4ϑπ2
− ζ

2

) 1∫

0

‖λ(x, t)‖2 dx+
‖φ (y(t), t)‖2

2ζ
. (A8)

Now, let us focus on the second term on the right side of (A2). First,

notice that equality (27) still holds replacing there z(x, t) by λ(x, t).
Then, one immediately has

1∫

0

λx(x, t)λ
T
xt(x, t)dx =

1∫

0

λx(x, t)λ
T
tx(x, t)dx

= −
1∫

0

λxx(x, t)λ
T
t (x, t)dx (A9)
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using an integration by part and the boundary conditions (14d). The

above equality develops further as follows, using (14c):

1∫

0

λx(x, t)λ
T
xt(x, t)dx

= −
p−1∑

p=0

xj+1∫

xj

λxx(x, t)λ
T
t (x, t)dx

= −
p−1∑

p=0

xj+1∫

xj

‖λxx(x, t)‖2 dx

+K

p−1∑

p=0

xj+1∫

xj

λxx(x, t)λ
T (xj , t)dx

−
1∫

0

λxx(x, t)φ (y(t), t))

= −
1∫

0

λ2
xx(x, t)dx+K

p−1∑

p=0

xj+1∫

xj

λxx(x, t)λ
T (x, t)dx

+K

p−1∑

p=0

xj+1∫

xj

λxx(x, t)
(
λT (xj , t)− λT (x, t)

)
dx

−
1∫

0

λxx(x, t)φ
T (y(t), t)) dx

= −
1∫

0

λ2
xx(x, t)dx+K

1∫

0

λxx(x, t)λ
T (x, t)dx

−
1∫

0

λxx(x, t)φ
T (y(t), t)) dx

+K

p−1∑

p=0

xj+1∫

xj

λxx(x, t)
(
λT (xj , t)− λT (x, t)

)
dx. (A10)

Applying Young’s inequality to the third and fourth quantities on the

right side of (A10) and integrating by part the second integral, equality

(A10) yields, using the boundary conditions (14d)

1∫

0

λx(x, t)λ
T
xt(x, t)dx

≤ −
1∫

0

‖λxx(x, t)‖2 dx−K

1∫

0

‖λx(x, t)‖2 dx

+K

p−1∑

p=0

xj+1∫

xj

υ

2
‖λxx(x, t)‖2

+
1

2υ
‖λ(xj , t)− λ(x, t)‖2 dx

+
̟

2

1∫

0

‖λxx(x, t)‖2 dx+
1

2̟
‖φ (y(t), t))‖2

≤ −
1∫

0

‖λxx(x, t)‖2 dx−K

1∫

0

‖λx(x, t)‖2 dx

+
Kυ

2

1∫

0

‖λxx(x, t)‖2 dx

+
K

2υ

p−1∑

p=0

xj∫

xj

‖λ(xj , t)− λ(x, t)‖2 dx

+
K

2υ

p−1∑

p=0

xj+1∫

xj

‖λ(xj , t)− λ(x, t)‖2 dx

+
̟

2

1∫

0

λ2
xx(x, t)dx+

1

2̟
‖φ (y(t), t))‖2 (A11)

whatever the scalars υ > 0, ̟ > 0. Applying the Wirtinger’s inequal-

ity (16a) to the two terms in the penultimate line in (A11), one gets

1∫

0

λx(x, t)λ
T
xt(x, t)dx

≤ −
1∫

0

‖λxx(x, t)‖2 dx−K

1∫

0

‖λx(x, t)‖2 dx

+
Kυ

2

1∫

0

‖λxx(x, t)‖2 dx+
K∆2

2υπ2

p−1∑

p=0

xj+1∫

xj

‖λx(x, t)‖2 dx

+
̟

2

1∫

0

‖λxx(x, t)‖2 dx+
1

2̟
‖φ (y(t), t))‖2

≤ −
(
1− Kυ

2
− ̟

2

) 1∫

0

‖λxx(x, t)‖2 dx

−K

(
1− ∆2

2υπ2

) 1∫

0

‖λx(x, t)‖2 dx+
1

2̟
‖φ (y(t), t))‖2 .

(A12)

Combining (A12) and (A8), one obtains

Ẇ (t) ≤ −
(
K − K2∆2

4ϑπ2
− ζ

2

) 1∫

0

‖λ(x, t)‖2 dx

− (1− ϑ)

1∫

0

‖λx(x, t)‖2 dx

−K

(
1− ∆2

2υπ2

) 1∫

0

‖λx(x, t)‖2 dx

−
(
1− Kυ

2
− ̟

2

) 1∫

0

‖λxx(x, t)‖2 dx

+

(
1

2ζ
+

1

2̟

)
‖φ (y(t), t)‖2 . (A13)

The above inequality shows that, one first proceeds with the selection

of the design parameters K, ∆ according to the following condition:

K∆2

4π2
< 1 (A14)
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This is nothing other than the assumption (made on K and ∆) in

Proposition 1. Then, let the free parameters (υ, ϑ,̟) be such that

K∆2

4π2
< ϑ < 1, 0 <

ζ

2
≤ K − K2∆2

4ϑπ2

∆2

2π2
< υ <

2

K
,
̟

2
< 1− Kυ

2
. (A15)

It is readily checked that, this choice ensures that

K − K2∆2

4ϑπ2
− ζ

2
≥ 0, 1− ϑ > 0

1− ∆2

2υπ2
> 0, 1− Kυ

2
− ̟

2
> 0.

Then, applying Wirtinger’s inequality (16a) to the second and fourth

terms on the right side of inequality (A13), this develops as follows:

Ẇ (t) ≤−
((

K − K2∆2

4ϑπ2
− ζ

2

)
+

π2(1− ϑ)

4

)

×
1∫

0

‖λ(x, t)‖2 dx

−
(
K

(
1− ∆2

2υπ2

)
+

π2

4

(
1− Kυ

2
− ̟

2

))

×
1∫

0

‖λx(x, t)‖2 dx

+

(
1

2ζ
+

1

2̟

)
‖φ (y(t), t)‖2

≤ − γW (t) +

(
1

2ζ
+

1

2̟

)
‖φ (y(t), t)‖2 (A16)

with

γ = 2min

((
K − K2∆2

4ϑπ2
− ζ

2

)
+

π2(1− ϑ)

4
,

K

(
1− ∆2

2υπ2

)
+

π2

4

(
1− Kυ

2
− ̟

2

))
.

As ‖φ(y(t), t)‖ is bounded (by Assumption 1), it follows

from (A16) that so is W (t). Then, it follows from (A1) that∫ 1

0
‖λx(x, t)‖2dx is bounded. Applying the inequality (16b), one gets

that max0≤x≤1 ‖λ(x, t)‖2 is bounded. Proposition 1 is proved. �
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