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Ultimate bounds and robust invariant sets for
linear systems with state-dependent disturbances

Sorin Olaru and Vasso Reppa

Abstract The objective of this chapter is to present a methodology for computing
robust positively invariant sets for linear, discrete time invariant systems that are
affected by additive disturbances, with the particularity that these disturbances are
subject to state-dependent bounds. The proposed methodology requires less restric-
tive assumptions compared to similar established techniques, while it provides the
framework for determining the state-dependent (parameterized) ultimate bounds for
several classes of disturbances. The added value of the proposed approach is shown
by formulating an optimization-based detection of the mode of functioning in a
switching system.

1 Introduction

The interest in analysis and control design for linear dynamics with set constrained
disturbances is a mature subject in control theory [5, 12]. The analysis of dynam-
ical systems affected by state and control dependent disturbances is also a well-
established subject which can be traced back to the early 70’s [20,29] mainly in the
stochastic control systems framework and latter in the works on the mismatched un-
certainties [4, 19]. We recall for example some historical observations made in [20]
stating that ”the general conclusion is that control-dependent noise calls for conser-
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vative control (small gains) while state-dependent noise calls for vigorous control
(large gains)”.

Results dealing with both set-theoretic notions and state-dependent disturbances
can be mentioned in various studies dedicated to viability theory [1]; propagation
of parametric uncertainties [3]; control of system with uncertainties in the parame-
ters as well as in the input itself [18]; ultimate boudedness control via set-induced
Lyapunov functions [7]; reachability analysis [23], maximal invariant sets [10, 25].
In the present paper, we are interested in the characterization of the ultimate-
boundedness of linear dynamical systems affected by additive disturbances with
the particularity that these disturbances are subject to state-dependent bounds.

From the theoretical point of view, there are different connections with the ma-
ture literature on minimal invariant sets of dynamic systems with bounded distur-
bances [13, 15, 17, 22] and in a broader sense to the set-theoretic methods in con-
trol [6, 8, 9]. From a practical standpoint, the characterization of positive invariant
sets can be used for diagnosis. Recently, the set-theoretic methods have been used
in model-based fault diagnosis (FD) and the design of fault tolerant control (FTC)
laws [28]. The positive invariance enables the analysis and offers guarantees for
FD/FTC performance, that is robustness, fault detectability and isolability, and fault
tolerance [11, 21, 24, 26, 27] under strict set-inclusion or set-separation conditions.

The goal and the main contribution of this chapter is to establish a methodology
for computing robust positively invariant (RPI) sets for a class of discrete linear
systems, affected by disturbances bounded by a state dependent function. In order
to highlight the contribution, in Section 2 we present some established methodolo-
gies for computing state-independent RPI sets and extensions for state-dependent
RPI sets and ultimate bounds, which however require more restrictive assumptions
compared to those used in the present work. Then, in Section 3 we describe a new
approach for the computation of the state dependent (parameterized) RPI sets, pro-
viding some examples for illustrating both the applicability and limitations of the
proposed methodology. In Section 4, we initially discuss the design of the parame-
terized RPI sets for some special classes of systems and the state-dependent function
that bounds the additive system disturbances. Then, we present how the computa-
tion of parameterized sets can be formulated as an optimization problem that can
be applied for detecting the system mode switching (e.g. due to a fault). Section 5
offers some concluding remarks of this work and some future directions.

Notation: Z is the set of all integers. Z+ is the set of all nonnegative integers
and Z[k0,k1] the set of nonnegative integers in the interval [k0, k1]. Rn is the n-
dimensional Euclidean space with ∥.∥ denoting the prescribed norm (Euclidean
norm for simplicity). The closed convex hull of a set S will be denoted Conv {S}.
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The Minkowski sum of two sets S1, S2 ⊂ Rn will be denoted by S1 ⊕ S2. The
image of S ⊂ Rn via g : Rn → Rm is described by the set g(S) = {g(x) : x ∈ S}.

Given a function f : Rn → R, its level set (contour) for c ∈ R is defined as

Lf (c) = {x ∈ Rn : f(x) = c} , (1)

while its sublevel set for given c ∈ R is described as

L−
f (c) = {x ∈ Rn : f(x) ≤ c} . (2)

Definition 1. A set S ⊂ Rn is star-shaped in x̄ ∈ Rn if for any point x ∈ S and
0 ≤ α ≤ 1 it holds that αx+ (1− α)x̄ ∈ S.

Definition 2. A function f : Rn → R+ is called increasing from x̄ ∈ Rn if any
sublevel set L−

f (c), c ∈ R+ is a star-shaped set in x̄.

2 Background

2.1 Problem formulation

Consider a discrete time linear uncertain system:

xk+1 = Axk +Bwk, (3)

where xk ∈ Rn is the state vector at the time k ∈ Z+ and A ∈ Rn×n, B ∈ Rn.
It is considered that dynamics (3) correspond to a closed loop system, for which
the exponential stability is guaranteed in the disturbance-free case according to the
following assumption:

Assumption 1 The matrix A is Schur (all the eigenvalues are inside the unit circle).

In the present chapter we concentrate on the case of a matrix B represented by a
column vector, which is related to a signal wk ∈ R representing the additive distur-
bance. The main characteristic of the additive disturbance will be its boundedness
by a state dependent function f : Rn → R+ such that:

∥wk∥ ≤ f(xk). (4)
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Definition 3. Let us consider the solution xk : Z+ → Rn of (3) denoted as xk =

x(x0,w
0:k−1) for a given initial condition x0 and disturbance sequence w0:k−1 =

(w0, . . . , wk−1) ∈ Rk satisfying (4). We say that:

• xk is bounded if there exists a positive constant d(x0) < ∞ such that the in-
equality ∥x(x0,w

0:k−1)∥ ≤ d(x0) holds for all k ∈ Z+. If the initial condition
x0 can be chosen arbitrarily large then the solutions of (3) are globally bounded.1

• xk is ultimately bounded if there exists a bounded set S ⊂ Rn, possibly depen-
dent on x0, and a nonnegative integer T (x0, S) < ∞, such that xk ∈ S for all
k ≥ T (x0, S).

• The bounded set S represents an ultimate bound for the trajectories initiated in
x0 if the sequence of sets X0 = {x0}, Xk+1 = AXk ⊕Bf(Xk) satisfies2

lim sup
k→∞

Xk ⊂ S.

The set S is a global ultimate bound if it is an ultimate bound for any x0 ∈ Rn.

The problem to be considered in this paper can be outlined as follows:
Objective 1: Find sufficient conditions for ultimate boundedness of the state tra-

jectories satisfying (3) taking into account (4).
Objective 2: Describe the parameterization of ultimate bounds with respect to the

initial conditions, when these ultimate bounds are not global. In this respect, we
seek to express ultimate bounds in terms of compact and convex sets.

From the analysis point of view, the robust positive invariance of a set with respect
to the system dynamics is another important notion in the present work.

Definition 4. (RPI set) A set Ω ⊂ Rn is a robust positively invariant (RPI) set with
respect to (3) if Ax+Bw ∈ Ω for all x ∈ Ω and for all w satisfying ∥w∥ ≤ f(x).

Even if an ultimate bound set is not à priori RPI, we will be interested in finding
sets which are both RPI and ultimate bounds for the state trajectories.

1 Often the notion of global boundedness is complemented by the attribute uniform to emphasize
the possible dependence of the bound on the initial condition x0 but not on the initial moment in
time. This addition is superfluous for time-invariant dynamics and will be abandoned here.
2 The set S is a proper superset of lim supk→∞ Xk. The meaning of the outer limit (lim sup) is
particular in this context as it is understood in a set–theoretic framework [2] as the set of cluster
points of sequences x(x0,w0:k−1) ∈ Xk.
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2.2 A detour on the state-independent disturbance bounds case

Strong results are available with respect to the RPI sets description in the case of
state-independent bounds on disturbance. Let us consider the class of dynamics:

xk+1 = Axk +Bwk, wk ∈ F, (5)

with a closed, convex bounded set F ⊂ R. The state-independent bounds can be
interpreted as a particular case of (3), with a constant limiting function f(x) = w̄

which leads to F = {w : ∥w∥ ≤ w̄}.
In order to differentiate the robust positive invariance in the case of state-

independent bounds on disturbances (5) from the state-dependent counterpart (3)-
(4), the following definitions are introduced.

Definition 5. (F-invariance) A set Ω ⊂ Rn is F -invariant with respect to (5) if
Ax+Bw ∈ Ω for all x ∈ Ω and all w ∈ F .

Definition 6. The minimal F -invariant set is defined as the F -invariant set con-
tained in any closed F -invariant set.

The minimal F -invariant set is unique, compact and contains the origin if F contains
the origin. Its ϵ-neighborhood represents an ultimate bound for (5). It is well known
[8, 15, 17] that a Schur matrix A leads to a minimal F -invariant set described as:

M(F ) = lim
k→∞

k⊕
i=0

AiBF. (6)

2.3 Extension to state-dependent bounds

The work in [17] concentrates principally on dynamic systems affected by bounded
disturbances, but contains an extension to systems with bounded nonlinearity which
gives a basic idea on the possible analysis of the state dependent disturbances in a
set-theoretic framework. We reformulate here the main developments by adapting
the construction in [17] to the present framework in order to analyse its mechanism
and stress the working hypothesis.

Assumption 2 The state-dependent bound on the disturbances for system (3) is
described by a function f(.) for which f(Rn) = {f(x) : x ∈ Rn} is bounded.
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Under the Assumption 2 on the global bounds of the disturbance, one can ini-
tialize M0 = Rn and F0 = Conv {f(M0)}. By assuming Mj to be Fj-invariant
for Fj = Conv {f(Mj)} (which trivially holds for M0) one can define the set se-
quence:

Mj+1 = M(Fj) (7)

as the minimal Fj-invariant for

xk+1 = Axk +Bwk, wk ∈ Fj . (8)

Exploiting the inclusion Mj+1 ⊂ Mj , one can conclude on the existence of convex
sets defined as:

M∞ =

∞∩
j=0

Mj and F∞ =

∞∩
j=0

Fj (9)

Theorem 3. [17] Under the Assumptions 1 and 2, each of the sets Mj , j =

0, 1, . . . ,∞ is a robust positively invariant set for (3). If the initial state x0 belongs
to Mj for some j ∈ Z+ then the trajectory of the system (3) reaches in finite time an
ϵ-neighborhood of the set Mj+1 and remains in that neighborhood. Thus the system
is ultimately bounded and the ϵ-neighborhood of M∞ represents an ultimate bound.

The following remarks motivate our study.

Remark 1. The boundedness restrictions in Assumption 2 are relatively conserva-
tive. The procedure proposed in [17] cannot be initialized in the presence of radially
unbounded functions3 describing the state-dependent limitations on the uncertain-
ties (4) as long as M0 will be unbounded.

Remark 2. Even in the case that Assumption 2 holds, Theorem 3 proposes a se-
quence of invariant sets but the asymptotic construction of M∞ leads to a limit-set
(in fact its ϵ-neighborhood) which represents a state-independent ultimate bound.
This raises a question about the existence of a state-dependence (or parameteriza-
tion) of the ultimate bounds with respect to the initial conditions.

There are simple examples to show that the above procedure can be refined towards
state-dependent ultimate bounds. Consider the dynamics:

xk+1 = 0.5xk + wk, |wk| ≤ f(xk) =

∣∣∣∣4x2
k − |xk|

4x2
k − 1

∣∣∣∣ , (10)

3 A function f : Rn → R is radially unbounded if ∥x∥ → ∞ =⇒ f(x) → ∞.
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where f(x) is shown in Figure 1. Using the methodology in [17] that is described
through (7)-(9), the nested set construction converges to M∞ = [−1.5; 1.5] and fails
to identify all the intervals [−c; c] with

√
5−2
2 ≤ c ≤ 0.5 which are robust positively

invariant and represent tighter ultimate bounds if x0 ∈ [−c; c].
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State dependent bound

Fig. 1 Graphical description of the state dependent bound.

Figure 2 presents the time-domain simulations for different initial conditions il-
lustrating the existence of invariant sets [−1.5; 1.5] and [−

√
5−2
2 ;

√
5−2
2 ].
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Fig. 2 Simulations with random initial conditions in [−5; 5] - left; [−0.5; 0.5] - right.
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2.4 An existing result on ultimate bounds for systems with state
dependent disturbances

There exist a specific result [14] providing ultimate bounds expression for linear
systems with state dependent perturbation bounds. The systematic method for their
characterization under monotonicity conditions as underlined by the next theorem.

Theorem 4. [14] Consider the system (3), satisfying Assumption 1 with a Jordan
canonical form of the transition matrix A = V −1ΛV . Suppose that

|Bw| ≤ g(|x|), for all x ∈ Rn (11)

with a continuous map g : Rn
+ → Rn

+ verifying

|y1| ≤ |y2| =⇒ g(|y1|) ≤ g(|y2|). (12)

Consider the map:
T (y)

∆
= |Λ|y + |V −1|g(|V |y) (13)

and suppose that a point b satsfying b = T (b) exists. Let ym ∈ Rn denote any point
satisfying lim

k→∞
T k(|V −1ym|) = b. If the initial condition x0 satisfies |V −1x0| ≤

|V −1ym| then for any ϵ ∈ Rn
+ there exists l = l(ϵ, ym) such that for all k ≥ l:

|V −1xk| ≤ b+ ϵ (14)

|xk| ≤ |V |b+ |V |ϵ (15)

The result is remarkable in several respects. By building the ultimate bounds on
the existence of fixed points for (13), the theorem opens the door for the characteri-
zation of different ultimate bounds (??) for the same dynamics. Each such ultimate
bound has an associated domain of attraction identified via the collection of points
ym in the statement. More than that, the ultimate bound (14) is robustly positive in-
variant. All these characteristics are providing suitable solutions with respect to the
objectives of the present work. The assumptions are however relatively restrictive as
detailed in the following remarks, thing which motivates the main results presented
in the next section.

Remark 3. The monotonicity condition (12) is not fulfilled by the increasing func-
tions from a particular point, as those described in Definition 2 which are related
to star-shapedness and not with classical convexity of the level set of the bounding
function. The monotonic functions are only a particular subclass of these increasing
functions.
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Remark 4. The fixed-point condition for the map (13) builds on a series of over-
approximations of the nonlinear state-dependent bounding function as for example
those related to the component-wise absolute values of the matrices V and V −1.
More than that, a qualitative analysis of the number of such fixed points and the
correspondent basin of attraction is only implicitly embedded in the result. The set-
theoretic methods can offer alternative condition and describe parameters for the
existence of ultimate bounds.

3 Main result

For a Schur matrix A ∈ Rn×n and vector B ∈ Rn let us define the limit set

M = M(B1) = lim
k→∞

k⊕
i=0

AiBB1, (16)

where B1 stands for the unit ball4. The set M is minimal robust positively invariant
(RPI) set with respect to xk+1 = Axk + Bwk ∀wk ∈ B1 or equivalently for all
|wk| ≤ 1.

In order to establish the main results we consider the Minkowski function gM :

Rn → R+ associated to the set M:

gM(x) = inf {λ ∈ R+ : x ∈ λM} . (17)

Theorem 5. Let us consider the LTI system (3) with the state-dependent bound de-
scribed by f(x), an increasing function from x̄ = 0 ∈ Rn in the sense of Definition
2. Consider the Minkowski function gM(x) of the set M defined through (16)-(17),
where the matrices (A,B) characterize the system (3). The parameterized set

ΩM(α) = αM (18)

is RPI with respect to (3) for any scalar positive parameters α in the set

SM = {α ∈ R+|f(x) ≤ gM(x) ∀x ∈ LgM(α)} (19)

where LgM(.) is the level set defined according to (1).

4 The unit ball is defined with respect to a predefined norm |.|p. In the present case the matrix
B ∈ Rn×1 and thus the corresponding unit ball is defined in R where the |.|p are equivalent for
p ∈ [1,∞).
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Proof: First note that ΩM(α) is invariant with respect to xk+1 = Axk +

Bwk, with wk ∈ αB1. Indeed using the definition (16) we have:

ΩM(α) = αM = α lim
k→∞

k⊕
i=0

AiBB1 = lim
k→∞

k⊕
i=0

AiB {αB1} , (20)

which shows that ΩM(α) is RPI.
Consider now a scalar α ∈ SM. From the definition of the set SM in (19):

f(x1) ≤ gM(x1) = α ∀x1 ∈ LgM(α). (21)

The fact that f(x) is an increasing function from 0 ∈ Rn ensures on one hand that
L−
f (c1) ⊇ L−

f (c2) ⊃ {0} if c1 ≥ c2 > 0, and on the other the star-shape property
of the sublevel set of f(.). Exploiting this last property, for any x2 ∈ ΩM(α) there
exists a scalar 0 ≤ β ≤ 1 such that x2 = βx1 and x1 ∈ LgM(α). From the definition
of the sublevel set (1) we have:

f(x2) ≤ f(x1) (22)

From (21) and (22) it yields f(x2) ≤ α and subsequently:

|wk| ≤ α ∀xk ∈ αM = ΩM(α). (23)

In this way, the proof of invariance of ΩM(α) is completed.
The problems formulated in Subsection 2.1 can be addressed in light of the The-

orem 5. The next Corollaries resume these basic sufficient conditions for the exis-
tence of ultimate bounds represented by convex sets and their parametrization with
respect to the initial conditions.

Corollary 1. The solution xk = x(x0,w
0:k−1) of (3) is globally ultimately bounded

if the set SM in (19) exists and is unbounded. Additionally, if SM = R+ then the ori-
gin is a robustly asymptotically stable equilibrium point.

Proof: If the set SM is unbounded, then there exists a subset [c̄,∞) ⊆ S such that
ΩM(α) is RPI for all α ∈ [c̄,∞). But these sets are also attractive (in the virtue of
the properties of the minimal RPI sets with constant bounds) and by consequence
ΩM(c̄) will represent a global ultimate bound for the state trajectories. For the sec-
ond part of the Corollary, it is easy to observe that c̄ = 0 and thus any neighborhood
of the origin [−ϵ, ϵ] can be reached in a finite number of iterations independently of
the initial conditions. It follows that xk → 0 as k → ∞.

The Corollary 1 offers a sufficient condition for global ultimate boundedness and
robust asymptotic stability in the presence of state dependent disturbances. It is
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worth to mention that this condition admits state dependent bounds described by
radially unbounded functions f(.) (which is not the case of Theorem 3). Indeed, the
only condition to be satisfied in Theorem 5 is f(x) < gM(x), ∀x ∈ Rn and, by
definition, the function gM(.) is radially unbounded.

Corollary 2. Consider the system (3) under the assumptions of Theorem 5 and the
set SM ⊆ R+ in (19). If SM is unbounded and described by a (possibly infinite)
union of disjoint intervals:

SM = [c1, c̄1) ∪ [c2, c̄2) ∪ · · · ∪ [ci, c̄i) . . . (24)

with 0 = c̄0 ≤ c1 < c̄1 < c2 < c̄2 < . . . ci < c̄i < . . . then ΩM((1 + ϵ)ci+1) is an

ultimate bound for ϵ ∈
(
0,

c̄i+1−ci+1

ci+1

)
and any x0 ∈ ΩM(c) with c ∈ [c̄i, c̄i+1).

Proof: We split the interval [c̄i, c̄i+1) = [c̄i, ci+1) ∪ [ci+1, c̄i+1). On one hand,
for any initial condition in ΩM(c) with c ∈ [ci+1, c̄i+1), an ultimate bound can be
obtained using the ϵ-outer approximation of ΩM(ci+1) with a similar argument used
in Corollary 1. On the other hand, it can be observed that x0 ∈ Ω(c) ⊂ Ω(ci+1) for
any c ∈ [c̄i, ci+1) and the ultimate boundedness of the trajectories follows from the
robust positive invariance of of Ω(ci+1).

Example 1: Consider the dynamical system:

xk+1 = 0.5xk + wk, |wk| ≤ f(xk) = |xk|
1
2 . (25)

Figure 3 shows the relationship between f(x) and gM(x). The last one represents the
Minkowski function corresponding to the minimal invariant set M = [−2, 2] in (16).
Note that the function f(x) is radially unbounded and thus Theorem 3 cannot be
applied. Using Theorem 5 one can describe the set of admissible parameters SM =

[2,∞) leading to admissible invariant sets ΩM(α) = α[−2; 2] ∀α ∈ SM and the
global ultimate bound ΩM((1+ϵ)2) = 2(1+ϵ)[−2; 2] = (1+ϵ)[−4; 4], ϵ > 0. Note
also, in the virtue of the Corollary 1, that the origin is not a robust asymptotically
stable equilibrium point.

The construction of the set SM in Theorem 5 might be seen as a difficult task as
long as it involves the Minkowski function of minimal robust positive invariant set
M in (6). It is known that M being the limit set of an infinite Minkowsi sum has a
finite (explicit) representation in terms of generators only for restricted classes of
LTI dynamics (in the case AkB = αB for some k ∈ N+ and 0 ≤ α ≤ 1). As such,
for practical reasons, the use of approximations are enabled along the lines of the
next results.
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Fig. 3 Left: the graph of f(x) (blue) and gM(x) (green) - describing the envelope (positive and
negative) bounds of the disturbances. The red interval represents the region for which f(x) >

gM(x) and thus correspond to scaling factors α /∈ S. Right: time simulations with random initial
conditions in [−8, 8].

Theorem 6. Let U be a polyhedral RPI set with respect to xk+1 = Axk+Bwk with
wk ∈ B1. The parameterized set ΩU(α) = αU is RPI with respect to (3) for all α
in:

SU = {α ∈ R+|f(x) ≤ gU(x) ∀x ∈ LgU(α)} (26)

The proof is similar to the one in Theorem 5 and is omitted.
Example 2: Consider the two dimensional dynamical system:[

x1,k+1

x2,k+1

]
=

[
0.2 0.2

0 0.4

][
x1,k

x2,k

]
+

[
0

1

]
wk, (27)

where |wk| ≤ f(xk) = |x1,k|+0.1|x1,k|0.2|x2,k|0.2 + |x2,k|0.5 and f(.) fulfills the
increasing from 0 assumption as illustrated in Figure 4. The minimal invariant set M
in this case will be replaced by a tight outer invariant approximation U, illustrated
in Figure 4 with its level sets5. The superposition of the functions f(x) and gU(x)

is given in Figure 5 where it can be seen that their intersection is done along non-
convex curves. The right hand side of the same figure, shows the regions for which
f(x) ≥ gU(x) together with a value of the scalar α such that the parameterized
set ΩU(α) is guaranteed to be RPI. This provides an exemplification of the analysis
tools available via Theorem 5.

5 This particular function is increasing from x̄ = 0 in the sense of Definition 2 but not monotonic
according to (12) and thus the hypothesis of Theorem 4 are not satisfied in this case.
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Fig. 4 Left: the graph of f(x). Right: the graph of gU(x).

Fig. 5 Top: the graph of f(x) (red) and gM(x) (green). Bottom: 2D illustration of the shape of the
RPI set in comparison with the region for which f(x) ≥ gU(x).

Remark 5. For constructing the parameterized set ΩU(α) one can use low complex-
ity invariant approximation [14, 21, 22] of the set M in (6), as for example:

U =
{
x : |V −1x| ≤ (I − |Λ|)−1|V −1||B|

}
(28)
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with Λ = V −1AV , corresponding to the Jordan canonical form of the transition
matrix in (3). The function gU(.) corresponds to a polyhedral cone and is piecewise
linear over a cone-partition of the states space.

Proposition 1. Let M be the minimal RPI set with respect to xk+1 = Axk + Bwk

with wk ∈ B1. If U is a polyhedral RPI approximation of M then SM ⊇ SU, where
SM and SU are constructed based on (19) and (26) for a given function f(.) increas-
ing from 0.

Proof: Note that U ⊇ M by the properties of the minimal RPI set. This fact implies
gU(x) ≤ gM(x) ∀x ∈ Rn and this relationship can be related to the inequalities
involved in (19)-(26) where f(x) ≤ gU(x) only if f(x) ≤ gM(x). Under the star-
shaped assumption for f(x) it follows that SM ⊇ SU and thus the approximation
will be inherited by the parameterized set of RPI sets for which the sufficient condi-
tions hold.

An illustration of the impact of the invariant set approximation on the function
entering in the comparison with the state-dependent bound in Theorem 5 in given in
Figure 6.

Fig. 6 The comparision of a tight approximation of the graph of gM(x) (blue) based on the tight
approximation of the minimal RPI set in (6) and gU(x) (red) based on (28) for the LTI system in
Example 2.

Remark 6. Theorem 5 builds on the assumption of a bounding function increasing
from 0 which is satisfied for the Examples 1 and 2. However, the system in (10)
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violates this assumption which is based on the star-shape property of the sublevel
set. Indeed, a simple check shows that

L−
f (0.05) = [−0.071; 0.071] ∪ [0.167; 0.306] ∪ [−0.306;−0.167].

Another example of bounding function which doesn’t satisfy the increasing assump-
tion will be the Himmelblau’s function for the bound of the disturbance with respect
the system dynamics in (27). This function is presented in Figure 7 with the corre-
sponding contour (level sets) which are non-connected and cannot lead to RPI sets
centered in the origin.

x1

x
2

−5 −3 −1 1 3 5
−5

−3

−1

1

3

5

Fig. 7 Left: the graph of Himmelblau’s function f([x1x2]T ) = (x2
1+x2−11)2+(x1+x2

2−7)2.
Right: the corresponding (non-connected) level sets.

In order to apply Theorem 5 for any state-dependent bound on the disturbance
(see Remark 6), embedding via a star-shaped envelope can be used as follows:

Proposition 2. Let f : Rn → R+ and a point x̄ ∈ Rn. The function h : Rn → R+

defined as
h(x) = max

0≤γ≤1
f(γx+ (1− γ)x̄) (29)

is increasing from x̄ and f(x) ≤ h(x) ∀x ∈ Rn.

Proof: Direct application of the star-shape properties in Definitions 1-2.
For the system in (10), the use of the star-shape embedding (Figure 8) lead to the

identification of the set of admissible parameters SM = [
√
5−2
4 , 0.25) ∪ [0.75,∞)

for the parameterized invariant sets ΩM = α[−2, 2], α ∈ SM illustrated by the
comparison between h(x) and gM(x) in Figure 9.
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Fig. 8 f(x) (blue) in (10) and its star-shaped embedding h(x) (red).

x
-4 -3 -2 -1 0 1 2 3 4

h
(x
)
v
s
.
g
M
(x
)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Fig. 9 h(x) (red) compared to the Minkowski function gM(x) (green).

4 Extensions and connections with optimization-based design

4.1 Extensions

Based on the main results of this study presented in Section 3, it is worth to deter-
mine the parameterized sets ΩM(α) for special cases of the bound-function f(x)

summarized in the following corollaries.

Corollary 3. Consider system (3). If f(x) is convex then ΩM(α) = αM is an in-
variant set for all αm ≤ α ≤ αM with:

αm = inf {α ∈ R+|f(x) ≤ gM(x) ∀x ∈ LgM(α)} (30)
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αM = sup {α ∈ R+|f(x) ≤ gM(x) ∀x ∈ LgM(α)} (31)

Definition 7. The nonlinear function f : Rn → R+ is continuous and cone-
bounded over Rn, if there exist non-negative constants λ0 and λ1 such that

∥f(x)∥ ≤ λ0 + λ1∥x∥ ∀x ∈ Rn. (32)

Corollary 4. Consider the system (3) where the additive uncertainties satisfy (4)
with a cone-bounded function f(.) as described in Definition 7. The parameterized
set ΩM(α) = αM is robustly invariant for all α ≥ αm with αm given by (30).

Remark 7. In [16] several classes of uncertain nonlinear dynamics have been men-
tioned in the context of state dependent uncertainties, as for example:

xk+1 = Axk + ckg(xk) + zk, (33)

with ck, zk ∈ Rn satisfying elementwise the inequality ∥ck∥ ≤ Cmax, ∥zk∥ ≤
Zmax with Cmax, Zmax ∈ Rn

+, and a scalar function of a vector argument g :

Rn → R+. The system (33) is an example of dynamics which can be regarded as a
linear subject to a cone-bounded uncertainty and parameterized sets ΩM(α) can be
determined according to Corollary 4.

Corollary 5. Consider the system

xk+1 = Axk +Bwk +Buū, |wk| ≤ f(xk), (34)

satisfying Assumption 1, with f(.) a increasing function from (I − A)−1Buū,
Bu ∈ Rn and a constant signal ū. The parameterized set ΩM(α, ū) = αM ⊕
(I − A)−1Buū is robustly invariant for all α ∈ SM(ū) with SM(ū) computed
based on Theorem 5 for the system ξk+1 = Aξk + Bwk subject to constraints
|wk| ≤ f(ξk + (I −A)−1Buū).

Proof: We observe that in the absence of disturbances, the trajectories converge to
x̄ = (I − A)−1Buū. Then the analysis can be done with respect to the shifted
dynamics xk = x̄+ ξk with the particularity that the function gM(ξk) is star-shaped
in 0 while the original bounding function f(.) is described in the original state space
and thus it is computed according to the change of variable f(ξk + x̄).
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4.2 Detection of mode switching via set invariance

The positive invariance of a set with respect to the nominal dynamics is a strong
notion and can be exploited for the detection of a switch in the dynamics [28].
The basic idea is to construct off-line the family of invariant sets and monitor in
real time the inclusion of the state in the respective set. In case that the invariance
is violated, then a change of mode is detected. Subsequently, the convergence to
a different invariant (limit set) can lead to the identification of the current mode
of functioning. This mechanism has been documented and is well understood for
linear dynamical systems in the presence of bounded disturbances. We will prove
in the next paragraphs the way the theoretical developments on the state-dependent
ultimate bounds can be used in practice.

The off-line construction of the family of invariant sets is realized based on the
following proposition (the proof is omitted for brevity).

Proposition 3. Let us consider a dynamical system described by

xk+1 = Aixk +Biwk +Buiūi, |wk| ≤ fi(xk) (35)

with ik ∈ {1, 2} a switching signal in between two modes. It is considered that
for each mode we can construct independently the parameterized invariant sets
Ωi

M(α, ū), α ∈ Si
M(ū) according to Corollary 5.

• If xk ∈ Ωi
M(α, ū), where Ωi

M is RPI with respect to the i-th mode of the dynamics
of system (29) with i ∈ {1, 2}, α ∈ Si

M and xk+1 /∈ Ωi
M(α, ū) then a switch took

place.
• Consider additionally that

Si
M(ū) = [ci1, c̄

i
1) ∪ [ci2, c̄

i
2) ∪ · · · ∪ [cij , c̄

i
j) . . . ; i ∈ {1, 2}, (36)

and x0 ∈ Ω1
M(α

1, ū) ∩ Ω2
M(α

2, ū) for α1 ∈ [c̄1j , c̄
1
j+1) ⊆ S1

M(ū), α
2 ∈

[c̄2l , c̄
2
l+1) ⊆ S2

M(ū). The time-invariant mode of functioning can be identified
if Ω1

M(c
1
j+1, ū) ∩Ω2

M(c
2
l+1, ū) = ∅.

A simple way to exploit the result is to consider the auxiliary signal ū as a de-
gree of freedom for separation of the ultimate bounds for the modes of functioning
in a switching dynamical system. The basic idea is to find the auxiliary signal ū,
minimum in norm such that the ultimate bounds corresponding to a give state are
separated. Taking into account Proposition 3, we formulate for x ∈ Rn the follow-
ing optimization problem in a compact form:
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min
ū

|ū| (37)

subject to: Ω1
M(c

1
j+1, ū) ∩Ω2

M(c
2
l+1, ū) = ∅ (38)

where j and l are such that x ∈ Ω1
M(α

1, ū) ∩ Ω2
M(α

2, ū). The optimization is non-
linear and highly correlated with the state-dependant bounds.

If Si
M are non-connected sets then each sub-interval should be treated indepen-

dently. Note however that the obtained ultimate bounds for each interval of parame-
ters are convex sets and that for specific classes of state dependent bounds (convex,
cone-bounded) Si

M is a connected set, see Corollary 3-4.
Example: Consider the dynamical system (35) with:

A1 =

[
1 0.1

−0.9 0

]
;B1 =

[
0

1

]
;B1u =

[
0

0

]
; (39)

A2 =
1

3

[
1 −0.2

−0.2 0.5

]
;B2 =

[
1

1

]
;B2u =

[
1

0

]
;

f1(xk) = 0.1 + |0.7 ∗ sin(xk,1)− xk,1|; f2(xk) = 1.

The dynamics of the first mode is not affected by the exogenous signal ū and as
such the parameterized family of ultimate bounds (Figure 10) will be described by
the union of intervals:

S1
U(ū) = [1.1; 2.2) ∪ [5; 6.8) ∪ [8.9; 11.5) ∪ [13.8; 16.1) ∪ [18.5; 20.8)

∪ [22.8; 25.5) ∪ [26.8, ... (40)

The second mode of functioning is linear and the parameterized invariant set is
given by:

Ω2
M(α, ū) = αM⊕ (I −A)−1Buū (41)

with α ∈ [1,∞) and ū ∈ R.
Solving 4 Linear Programming problems for each of the intervals in (40) one can

find the level of ū which ensures asymptotic mode detection - Figure 11.

5 Conclusion and further research directions

In this paper we revisit the ultimate bounds for linear systems in presence of additive
disturbances. We extend their characterization from the classical case of fix bounds
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Fig. 10 The ultimate bounds Ω1
M(α, ū) obtained by exploiting the relationship between the state

dependent noise-bounding function f(x) and the function gU(x) on the left. The interval of scaling
factors α corresponding to invariant sets Ω1

M(α) - right.

to the state-dependent bounds. It is shown that a particular function can be defined
over the state space and serve as a comparison for the state-dependent bounds.

In the case of multiple sources of additive disturbance, the present study can be
extended to account for element-wise state dependent bounds by analyzing indepen-
dently each column of the matrix B ∈ Rn×m.
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Fig. 11 The separation of ultimate bounds for different intervals of scaling coefficients
Ω1

M(c1j+1) ∩Ω2
M(1, ū) = ∅.
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