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Ultimate bounds and robust invariant sets for
linear systems with state-dependent disturbances

Sorin Olaru and Vasso Reppa

Abstract The objective of this chapter is to present a methodology for computing
robust positively invariant sets for linear, discrete time invariant systems that are
affected by additive disturbances, with the particularity that these disturbances are
subject to state-dependent bounds. The proposed methodology requires less restric-
tive assumptions compared to similar established techniques, while it provides the
framework for determining the state-dependent (parameterized) ultimate bounds for
several classes of disturbances. The added value of the proposed approach is shown
by formulating an optimization-based detection of the mode of functioning in a
switching system.

1 Introduction

The interest in analysis and control design for linear dynamics sétltonstrained
disturbancess a mature subject in control theory [5, 12]. The analysis of dynam-
ical systems affected bgtate and control dependent disturbanéeslso a well-
established subject which can be traced back to the early 70's [20, 29] mainly in the
stochastic control systems framework and latter in the works on the mismatched un-
certainties [4, 19]. We recall for example some historical observations made in [20]
stating that "the general conclusion is that control-dependent noise calls for conser-
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vative control (small gains) while state-dependent noise calls for vigorous control
(large gains)”.

Results dealing with botket-theoreticotions andstate-dependent disturbances
can be mentioned in various studies dedicated to viability theory [1]; propagation
of parametric uncertainties [3]; control of system with uncertainties in the parame-
ters as well as in the input itself [18]; ultimate boudedness control via set-induced
Lyapunov functions [7]; reachability analysis [23], maximal invariant sets [10, 25].
In the present paper, we are interested in the characterization of the ultimate-
boundedness of linear dynamical systems affected by additive disturbances with
the particularity that these disturbances are subject to state-dependent bounds.

From the theoretical point of view, there are different connections with the ma-
ture literature on minimal invariant sets of dynamic systems with bounded distur-
bances [13, 15, 17,22] and in a broader sense to the set-theoretic methods in con-
trol [6, 8, 9]. From a practical standpoint, the characterization of positive invariant
sets can be used for diagnosis. Recently, the set-theoretic methods have been used
in model-based fault diagnosis (FD) and the design of fault tolerant control (FTC)
laws [28]. The positive invariance enables the analysis and offers guarantees for
FD/FTC performance, that is robustness, fault detectability and isolability, and fault
tolerance [11,21, 24,26, 27] under strict set-inclusion or set-separation conditions.

The goal and the main contribution of this chapter is to establish a methodology
for computing robust positively invariant (RPI) sets for a class of discrete linear
systems, affected by disturbances bounded by a state dependent function. In order
to highlight the contribution, in Section 2 we present some established methodolo-
gies for computing state-independent RPI sets and extensions for state-dependent
RPI sets and ultimate bounds, which however require more restrictive assumptions
compared to those used in the present work. Then, in Section 3 we describe a new
approach for the computation of the state dependent (parameterized) RPI sets, pro-
viding some examples for illustrating both the applicability and limitations of the
proposed methodology. In Section 4, we initially discuss the design of the parame-
terized RPI sets for some special classes of systems and the state-dependent function
that bounds the additive system disturbances. Then, we present how the computa-
tion of parameterized sets can be formulated as an optimization problem that can
be applied for detecting the system mode switching (e.g. due to a fault). Section 5
offers some concluding remarks of this work and some future directions.

Notation: Z is the set of all integer<Z. is the set of all nonnegative integers
and Zy,«,] the set of nonnegative integers in the interfig); k1]. R" is then-
dimensional Euclidean space wikik denoting the prescribed norm (Euclidean
norm for simplicity). The closed convex hull of a sewill be denotedConvf Sg.
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The Minkowski sum of two set§;;S;  R" will be denoted byS; S;. The
imageofS R"viag:R"! R™ isdescribed by the sg(S) = fg(x) : x 2 Sg.
Given a functiorf : R" ! R, its level set (contour) fot 2 R is de ned as

Li ()= fx2 R" : f(x) = cg; (1)
while its sublevel set for given 2 R is described as
L; (©=fx2R":f(x) cg: 2)

Denition 1. AsetS R" is star-shapedn x 2 R" if for any pointx 2 S and
0 litholds thatx + (1 )X 2 S.

De nition 2. A functionf : R" ! R, is calledincreasingfrom x 2 R" if any
sublevel set ; (c);c2 R is a star-shaped setin

2 Background

2.1 Problem formulation

Consider a discrete time linear uncertain system:
Xk+1 = AXk + Bwy; ®3)

wherex, 2 R" is the state vector at the time2 Z, andA 2 R" ";B 2 R".

It is considered that dynamics (3) correspond to a closed loop system, for which
the exponential stability is guaranteed in the disturbance-free case according to the
following assumption:

Assumption 1 The matrixA is Schur (all the eigenvalues are inside the unit circle).

In the present chapter we concentrate on the case of a lBamepresented by a
column vector, which is related to a signal 2 R representing the additive distur-
bance. The main characteristic of the additive disturbance will be its boundedness
by a state dependent functibnt R" ! R, such that:

kwik — f (Xk): (4)
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De nition 3. Let us consider the solutioxy : Z, ! R" of (3) denoted asg
x(xo; W%k 1) for a given initial conditiorxy and disturbance sequena€* !

Xk is boundedif there exists a positive constadfxg) < 1 such that the in-
equalitykx(xo; W% 1)k  d(x) holds for allk 2 Z. . If the initial condition
Xo can be chosen arbitrarily large then the solutions of (3ptkally bounded
Xk is ultimately boundedf there exists a bounded s8t R", possibly depen-
dent onxg, and a nonnegative integ@i(Xq; S) < 1 , such thax, 2 S for all
k T(xo;9).

The bounded se&® represents aaltimate boundor the trajectories initiated in
Xo if the sequence of se¥y = fXxog; X1 = AX,  Bf (X) satis e

limsupXx S:
k!l

The setS is aglobal ultimate boundf it is an ultimate bound for anyy 2 R".

The problem to be considered in this paper can be outlined as follows:

Obijective 1:Find suf cient conditions for ultimate boundedness of the state tra-
jectories satisfying (3) taking into account (4).

Objective 2:Describe the parameterization of ultimate bounds with respect to the
initial conditions, when these ultimate bounds are not global. In this respect, we
seek to express ultimate bounds in terms of compact and convex sets.

From the analysis point of view, the robust positive invariance of a set with respect
to the system dynamics is another important notion in the present work.

De nition 4. (RPI set) A set R" is arobust positively invariant (RPI) setith
respectto (3) iAx + Bw 2 forallx 2  and for allw satisfyingkwk  f (x).

Even if an ultimate bound set is natpriori RPI, we will be interested in nding
sets which are both RPI and ultimate bounds for the state trajectories.

1 Often the notion ofylobal boundedness complemented by the attributmiformto emphasize

the possible dependence of the bound on the initial conditgobut not on the initial moment in

time. This addition is super uous for time-invariant dynamics and will be abandoned here.

2 The setsS is aproper supersedf limsup,,; Xk. The meaning of the outer limitifhsup ) is
particular in this context as it is understood in a set-theoretic framework [2] as the set of cluster
points of sequencegxo;wok 1) 2 X.
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2.2 A detour on the state-independent disturbance bounds case

Strong results are available with respect to the RPI sets description in the case of
state-independent bounds on disturbance. Let us consider the class of dynamics:

Xk+1 = AXy + Bwi;wg 2 F; (5)

with a closed, convex bounded get R. The state-independent bounds can be
interpreted as a particular case of (3), with a constant limiting fundtiot) = w
which leads td= = fw: kwk wg.

In order to differentiate the robust positive invariance in the case of state-
independent bounds on disturbances (5) from the state-dependent counterpart (3)-
(4), the following de nitions are introduced.

De nition 5. (F-invariance) A set R" is F -invariant with respect to (5) if
Ax+Bw2 forallx2 andallw2F.

De nition 6. The minimalF -invariant setis de ned as theF -invariant set con-
tained in any close# -invariant set.

The minimalF -invariant set is unique, compact and contains the origindgbntains
the origin. Its -neighborhood represents an ultimate bound for (5). It is well known
[8,15,17] that a Schur matri& leads to a minimak -invariant set described as:

M (F)= lim A'BF: (6)

2.3 Extension to state-dependent bounds

The work in [17] concentrates principally on dynamic systems affected by bounded
disturbances, but contains an extension to systems with bounded nonlinearity which
gives a basic idea on the possible analysis of the state dependent disturbances in a
set-theoretic framework. We reformulate here the main developments by adapting
the construction in [17] to the present framework in order to analyse its mechanism
and stress the working hypothesis.

Assumption 2 The state-dependent bound on the disturbances for system (3) is
described by a functiof(:) for whichf (R") = ff (x) : x 2 R"gis bounded.
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Under the Assumption 2 on the global bounds of the disturbance, one can ini-
tialize Mo = R"™ andFo = Convff (Mg)g. By assumingV; to beF; -invariant
for F; = Convff (M;)g (which trivially holds forMo) one can de ne the set se-
guence:
Mje = M(Fj) ()

as the minimaF; -invariant for
Xk+1 = AXyg + Bwi;wy 2 Fy: (8)

Exploiting the inclusiorM;.;  M;, one can conclude on the existence of convex

sets de ned as:

L L

M1 = Mj andF; = Fj (9)

j=0 j=0
Theorem 3. [17] Under the Assumptions 1 and 2, each of the 9dis | =
0;1;:::;1 is arobust positively invariant set f@B). If the initial statexy belongs
toM; forsomg 2 Z. then the trajectory of the systg@) reaches in nite time an

-neighborhood of the sél; +; and remains in that neighborhood. Thus the system

is ultimately bounded and theneighborhood oM ; represents an ultimate bound.
|

The following remarks motivate our study.

Remark 1.The boundedness restrictions in Assumption 2 are relatively conserva-
tive. The procedure proposed in [17] cannot be initialized in the presence of radially
unbounded functiorfsdescribing the state-dependent limitations on the uncertain-
ties (4) as long aM  will be unbounded.

Remark 2Even in the case that Assumption 2 holds, Theorem 3 proposes a se-
quence of invariant sets but the asymptotic constructidv of leads to a limit-set

(in fact its -neighborhood) which representsstate-independent ultimate bound

This raises a question about the existence of a state-dependence (or parameteriza-
tion) of the ultimate bounds with respect to the initial conditions.

There are simple examples to show that the above procedure can be re ned towards
state-dependent ultimate boun@onsider the dynamics:

a2 Xy

Xi+1 = 0:5xK + Wi, jwij  f(Xk) = ;
ax2 1

(10

3 Afunctionf : R" I Ris radially unbounded ikxk ! 1 =) f(x)!1
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wheref (x) is shown in Figure 1. Using the methodology in [17] that is described

through (7)-(9), the nested set constrpuction converghkito=[ 1:5;1:5]and fails

to identify all the interval§ c;c]with —5-2 ¢ 0:5which are robust positively

invariant and represent tighter ultimate boundsif2 [ ¢;c].

State dependent bound

f(x)

Fig. 1 Graphical description of the state dependent bound.

Figure 2 presents the time-domain simulations for gifferent initial conditions il-
lustrating the existence of invariant s¢tsl:5; L5]and[ —5-2; —3-2].

Fig. 2 Simulations with random initial conditions [n 5; 5] - left; [ 0:5; 0:5] - right.



8 Sorin Olaru and Vasso Reppa

2.4 An existing result on ultimate bounds for systems with state
dependent disturbances

There exist a speci ¢ result [14] providing ultimate bounds expression for linear
systems with state dependent perturbation bounds. The systematic method for their
characterization under monotonicity conditions as underlined by the next theorem.

Theorem 4. [14] Consider the syster(B8), satisfying Assumption 1 with a Jordan
canonical form of the transition matrik = V1V . Suppose that

iBwj g(jxj); forallx 2 R" (11)
with a continuous mag : R} ! R7 verifying
jya Jy2i =) d(yd)  9(ya)): 12)

Consider the map:

T(y) = iy+iVv tig(Viy) (13)
and suppose that a poibtsatsfyingo= T (b) exists. Ley,, 2 R" denote any point
satisfying lim TX(GV lymj) = b If the initial conditionx, satis esjV !X

iV lymjthenforany 2 R? there exist$ = I(;ym) suchthatforalk |I:

iV x¢j b+ (14)
jXkj J Vjb+ jVj (15)

The result is remarkable in several respects. By building the ultimate bounds on
the existence of xed points for (13), the theorem opens the door for the characteri-
zation of different ultimate bound€?) for the same dynamics. Each such ultimate
bound has an associated domain of attraction identi ed via the collection of points
Ym in the statement. More than that, the ultimate bound (14) is robustly positive in-
variant. All these characteristics are providing suitable solutions with respect to the
objectives of the present work. The assumptions are however relatively restrictive as
detailed in the following remarks, thing which motivates the main results presented
in the next section.

Remark 3.The monotonicity condition (12) is not ful lled by thicreasing func-
tionsfrom a particular point, as those described in De nition 2 which are related
to star-shapedness and not with classical convexity of the level set of the bounding
function. The monotonic functions are only a particular subclass of these increasing
functions.
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Remark 4The xed-point condition for the map (13) builds on a series of over-
approximations of the nonlinear state-dependent bounding function as for example
those related to the component-wise absolute values of the maltficesl vV 1.

More than that, a qualitative analysis of the number of such xed points and the
correspondent basin of attraction is only implicitly embedded in the result. The set-
theoretic methods can offer alternative condition and describe parameters for the
existence of ultimate bounds.

3 Main result
For a Schur matriXA 2 R" " and vectoB 2 R" let us de ne the limit set
M
M= M(B;) = Ii|m A'BBy; (16)
k!l i=0
whereB; stands for the unit bdll The setM is minimal robust positively invariant
(RPI) set with respect tax+1 = Axyx + Bwyg 8wy 2 B; or equivalently for all
jwej L
In order to establish the main results we consider the Minkowski funckipn

R" I R, associated to the sht:

ov(X)=inf f 2R; :x2 Mg: ann

Theorem 5. Let us consider the LTI syste(8) with the state-dependent bound de-
scribed byf (x), an increasing function from = 0 2 R" in the sense of De nition
2. Consider the Minkowski functiap (x) of the setM de ned through(16)-(17),
where the matricefA; B ) characterize the syste(8). The parameterized set

m( )= M (18)
is RPI with respect t@3) for any scalar positive parametersin the set
Smu=f 2R.jf(x) ou(x)8x2Lg,( )9 (19)

whereL g, (}) is the level set de ned according {@).

4 The unit ball is de ned with respect to a prede ned nojtjp. In the present case the matrix
B 2 R" ! and thus the corresponding unit ball is de nedRnwhere thej:j, are equivalent for
p2[1;1).
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Proof: First note that \( ) is invariant with respect txxx+1 = Axy +
Bwy; withwy 2 Bj. Indeed using the de nition (16) we have:

M M
m( )= M= I]im A'BB; = Iilm A'Bf Big; (20)
k!l i=0 ki1 i=0
which shows that y( ) is RPI.
Consider now a scalar 2 Sy. From the de nition of the seBy in (19):

f(x1) ou(x1)= 8x12Lg,(): (21)

The fact thaf (x) is an increasing function frod 2 R" ensures on one hand that
L; (c1) L () f Ogifcy ¢ > 0, and on the other the star-shape property
of the sublevel set df (:). Exploiting this last property, for any, 2 y( ) there
exists a scalab lsuchthak, = x g andxy 2 Lg,( ). Fromthe de nition

of the sublevel set (1) we have:

f(x2) f(xq) (22)
From (21) and (22) it yield$ (x2) and subsequently:
JWi] 8k2 M= wm() (23)

In this way, the proof of invariance ofy( ) is completed. |

The problems formulated in Subsection 2.1 can be addressed in light of the The-
orem 5. The next Corollaries resume these basic suf cient conditions for the exis-
tence of ultimate bounds represented by convex sets and their parametrization with
respect to the initial conditions.

Corollary 1. The solutiorx, = x(xo;w* 1) of (3)is globally ultimately bounded
if the setSy in (19) exists and is unbounded. AdditionallyS = R. then the ori-
gin is a robustly asymptotically stable equilibrium point.

Proof: If the setSy is unbounded, then there exists a suljsgt ) S such that

m( )isRPIforall 2 [c;1 ). Butthese sets are also attractive (in the virtue of
the properties of the minimal RPI sets with constant bounds) and by consequence

m (C) will represent a global ultimate bound for the state trajectories. For the sec-
ond part of the Corollary, it is easy to observe that0 and thus any neighborhood
of the origin[ ; ]can be reached in a nite number of iterations independently of
the initial conditions. It follows thax, ! Oask!1 . |

The Corollary 1 offers a suf cient condition for global ultimate boundedness and
robust asymptotic stability in the presence of state dependent disturbances. It is
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worth to mention that this condition admits state dependent bounds described by
radially unbounded functiorfs(:) (which is not the case of Theorem 3). Indeed, the
only condition to be satis ed in Theorem 51i9x) < gm(x); 8x 2 R" and, by

de nition, the functiongy (:) is radially unbounded.

Corollary 2. Consider the systel(®) under the assumptions of Theorem 5 and the
setSy Rs+ in (19). If Sy is unbounded and described by a (possibly in nite)
union of disjoint intervals:

Su=[cc)[ [ee)[ [ [g;a)::: (24)

with0=¢c ¢ <C<Cy,<C<::ii¢c;<¢<:::then mu((1+ )G, )isan

ultimate bound for 2 0; CIC# and anyxg 2 m(c)withc2 [G;Ci+1).

=i+l

Proof: We split the intervalci;Gi+1) = [Ci;G41) [ [G41:Ci+1). On one hand,
for any initial condition in v (c) with ¢ 2 [¢,4 ; Gi+1 ), an ultimate bound can be
obtained using the-outer approximation of y (¢ ., ) with a similar argument used
in Corollary 1. On the other hand, it can be observedxge? (c) (¢ 4q ) for
anyc 2 [c; ¢4 ) and the ultimate boundedness of the trajectories follows from the
robust positive invariance of of (¢4 ). |
Example 1: Consider the dynamical system:

Xirr = 055Xy + Wi jWij  f (Xk) = jXkj?: (25)

Figure 3 shows the relationship betwdgr) andgy (x). The last one represents the
Minkowski function corresponding to the minimal invariantket= [ 2; 2]in (16).
Note that the functiorf (x) is radially unbounded and thus Theorem 3 cannot be
applied. Using Theorem 5 one can describe the set of admissible paraBgters
[2;1 ) leading to admissible invariant setsy( ) = [ 2;2]8 2 Sy and the
global ultimate bound y ((1+ )2) =2(1+ )] 2;2]=(1+ )[ 4;4] > 0.Note
also, in the virtue of the Corollary 1, that the origin is not a robust asymptotically
stable equilibrium point.

The construction of the s&,, in Theorem 5 might be seen as a dif cult task as
long as it involves the Minkowski function of minimal robust positive invariant set
M in (6). It is known thatM being the limit set of an in nite Minkowsi sum has a
nite (explicit) representation in terms of generators only for restricted classes of
LTI dynamics (in the casé*B = B for somek 2 N, and0 1). As such,
for practical reasons, the use of approximations are enabled along the lines of the
next results.
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Fig. 3 Left: the graph off (x) (blue) andgw (x) (green) - describing the envelope (positive and
negative) bounds of the disturbances. The red interval represents the region forf\@sjick

gm (x) and thus correspond to scaling factor® S. Right: time simulations with random initial
conditions in[ 8; 8].

Theorem 6.LetU be apolyhedralRPI set with respect toc+1 = AXk + Bwy with
Wi 2 Bj. The parameterized sety( ) = U is RPI with respect t¢3) for all

n:
Su="f 2R.jf(x) gu(x)8x2Lg,( )g (26)

The proof is similar to the one in Theorem 5 and is omitted.
Example 2: Consider the two dimensional dynamical system:
" # " #" # " #
Xik+1  _ 0202 X1k . 0 W 27)
X2k +1 0 04 Xk 1
wherejwyj  f (Xk) = jX1kj +0:1X 1k j%2jx2x %2 + jx2x)%° andf (2) ful lls the
increasing fronD assumption as illustrated in Figure 4. The minimal invarianiMset
in this case will be replaced by a tight outer invariant approximatipilustrated
in Figure 4 with its level sebs The superposition of the functiofgx) andgy(x)
is given in Figure 5 where it can be seen that their intersection is done along non-
convex curves. The right hand side of the same gure, shows the regions for which
f(x) gu(x) together with a value of the scalarsuch that the parameterized
set y( ) is guaranteed to be RPI. This provides an exempli cation of the analysis
tools available via Theorem 5.

5 This particular function is increasing from= 0 in the sense of De nition 2 but not monotonic
according to (12) and thus the hypothesis of Theorem 4 are not satis ed in this case.
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Fig. 4 Left: the graph of (x). Right: the graph ofjy(x).

Fig. 5 Top: the graph of (x) (red) andgw (x) (green). Bottom: 2D illustration of the shape of the
RPI set in comparison with the region for whitkx)  gy(x).

Remark 5For constructing the parameterized set{ ) one can use low complex-
ity invariant approximation [14, 21, 22] of the ddtin (6), as for example:

U= x:jV X% (0 j i YV ljiBj (28)
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with = V 1AV, corresponding to the Jordan canonical form of the transition
matrix in (3). The functiorgy(:) corresponds to a polyhedral cone and is piecewise
linear over a cone-partition of the states space.

Proposition 1. LetM be the minimal RPI set with respect®.; = Axy + Bwy
withwy 2 B;. If U is a polyhedral RPI approximation ®fl thenSy, Sy, where
Sw andSy are constructed based ¢h9) and(26)for a given functiori (:) increas-
ing fromO.

Proof: Note thatU M by the properties of the minimal RPI set. This fact implies
gu(x)  gu(x) 8x 2 R" and this relationship can be related to the inequalities
involved in (19)-(26) wherd (x)  gu(x) only if f (x)  gu(x). Under the star-
shaped assumption fér(x) it follows thatSy Sy and thus the approximation
will be inherited by the parameterized set of RPI sets for which the suf cient condi-
tions hold. |

An illustration of the impact of the invariant set approximation on the function
entering in the comparison with the state-dependent bound in Theorem 5 in given in
Figure 6.

Fig. 6 The comparision of a tight approximation of the graptgai{x) (blue) based on the tight
approximation of the minimal RPI set in (6) agd(x) (red) based on (28) for the LTI system in
Example 2.

Remark 6. Theorem 5 builds on the assumption of a bounding function increasing
from O which is satis ed for the Examples 1 and 2. However, the system in (10)
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violates this assumption which is based on the star-shape property of the sublevel
set. Indeed, a simple check shows that

L (0:05)=[ 0:071,Q0071][ [0:167,Q306][ [ 0:306; 0:167}

Another example of bounding function which doesn't satisfy the increasing assump-
tion will be the Himmelblau's function for the bound of the disturbance with respect
the system dynamics in (27). This function is presented in Figure 7 with the corre-
sponding contour (level sets) which are non-connected and cannot lead to RPI sets
centered in the origin.

Fig. 7 Left: the graph of Himmelblau's functioh([x1x2]") = ( X2+ x2 11)2+(x1+ X3 7)2.
Right: the corresponding (non-connected) level sets.

In order to apply Theorem 5 for any state-dependent bound on the disturbance
(see Remark 6), embedding via a star-shaped envelope can be used as follows:

Proposition 2. Letf : R" ! R; and apointx 2 R". The functiorh : R" | R,
de ned as
h(x) = (r)’naxlf (x +(1 )X) (29)

is increasing fronx andf (x) h(x) 8x 2 R".

Proof: Direct application of the star-shape properties in De nitions 1-2. ]

For the system in (10), the use of the star-shape err})bgdding (Figure 8) lead to the
identi cation of the set of admissible paramet&g = [ 54 2:0:25)[ [0:75,1)
for the parameterized invariant setyy = [ 2;2]; 2 Sy illustrated by the
comparison betweem(x) andgy (x) in Figure 9.
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Fig. 8 f (x) (blue) in (10) and its star-shaped embeddirig) (red).

Fig. 9 h(x) (red) compared to the Minkowski functiagy (x) (green).

4 Extensions and connections with optimization-based design

4.1 Extensions

Based on the main results of this study presented in Section 3, it is worth to deter-
mine the parameterized sets,( ) for special cases of the bound-functibfx)
summarized in the following corollaries.

Corollary 3. Consider systen). If f (x) is convex then y( ) = M is anin-
variant set for all m with:

m=inff 2R.jf(X) ou(X)8x2Lg,( )9 (30)
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m =supf 2Rijf(x) ou(x)8x2Lg,( )9 (31)

De nition 7. The nonlinear functiof : R"™ ! R, is continuous and cone-
bounded oveR", if there exist non-negative constanisand ; such that

kf (x)k o+ 1kxk8x2 R": (32)

Corollary 4. Consider the systerf8) where the additive uncertainties satig#)
with a cone-bounded functidi(:) as described in De nition 7. The parameterized
set m( )= M isrobustly invariant for all m With 1, given by(30).

Remark 71n [16] several classes of uncertain nonlinear dynamics have been men-
tioned in the context of state dependent uncertainties, as for example:

Xk+1 = AXg + CO(Xk) + Zk; (33)

with ¢;zx 2 R" satisfying elementwise the inequalikgy k Chmax ; kzgk

Zmax With Chax ;Zmax 2 R7, and a scalar function of a vector argument

R" I R..The system (33) is an example of dynamics which can be regarded as a
linear subject to a cone-bounded uncertainty and parameterizedgét9 can be
determined according to Corollary 4.

Corollary 5. Consider the system
Xk+1 = AXg + Bwy + Byu;jwgj  f(xk); (34)

satisfying Assumption 1, with(:) a increasing function fron{l ~ A) 'Byu,
By, 2 R" and a constant signall. The parameterized sety(; u) = M

(I A) Byu is robustly invariant for all 2 Sy (u) with Sy (u) computed
based on Theorem 5 for the systega; = A ¢ + Bwyg subject to constraints
jwej  f(k+ (1 A) 1Byu).

Proof: We observe that in the absence of disturbances, the trajectories converge to
x = (I A) !Byu. Then the analysis can be done with respect to the shifted
dynamicsxx = X+  with the particularity that the functiogy ( «) is star-shaped

in O while the original bounding functioh(:) is described in the original state space
and thus it is computed according to the change of variblg + x). ]
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4.2 Detection of mode switching via set invariance

The positive invariance of a set with respect to the nominal dynamics is a strong
notion and can be exploited for the detection of a switch in the dynamics [28].
The basic idea is to construct off-line the family of invariant sets and monitor in
real time the inclusion of the state in the respective set. In case that the invariance
is violated, then a change of mode is detected. Subsequently, the convergence to
a different invariant (limit set) can lead to the identi cation of the current mode
of functioning. This mechanism has been documented and is well understood for
linear dynamical systems in the presence of bounded disturbances. We will prove
in the next paragraphs the way the theoretical developments on the state-dependent
ultimate bounds can be used in practice.

The off-line construction of the family of invariant sets is realized based on the
following proposition (the proof is omitted for brevity).

Proposition 3. Let us consider a dynamical system described by
Xk+1 = AiXk + Biwg + ByiUisjwij  fi(Xk) (35)

with iy, 2 f 1;2g a switching signal in between two modes. It is considered that
for each mode we can construct independently the parameterized invariant sets
(5 u); 2 S}, (u) according to Corollary 5.

Ifxk 2 44(; u),where }, is RPIwith respect to theth mode of the dynamics
of system (29) with2 f 1;2g; 2 S|, andxx+1 2 |,(; u) then a switch took
place.

Consider additionally that

Sw=lcie) [ ) [ [ [g:ig)ni2fl2g  (36)

andxo 2 H( Hu) Vv H( %) for 2 [¢hdly) S Hu); 22
[2;c2,) S Z(u). The time-invariant mode of functioning can be identi ed
if I%A(le+1 )\ (U=

A simple way to exploit the result is to consider the auxiliary sigmals a de-
gree of freedom for separation of the ultimate bounds for the modes of functioning
in a switching dynamical system. The basic idea is to nd the auxiliary signal
minimum in norm such that the ultimate bounds corresponding to a give state are
separated. Taking into account Proposition 3, we formulate rR" the follow-
ing optimization problem in a compact form:
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min juj (37)
u
; R 7% R 2 = -
subjectto: (g ;U\ (Gyiu)=; (38)

wherej andl are suchthax 2 % ( *;u)\  Z( 2;u). The optimization is non-
linear and highly correlated with the state-dependant bounds.

If Si, are non-connected sets then each sub-interval should be treated indepen-
dently. Note however that the obtained ultimate bounds for each interval of parame-
ters are convex sets and that for speci c classes of state dependent bounds (convex,
cone-bounded$, is a connected set, see Corollary 3-4.

Example: Consider the dynamical system (35) with:

" # " "
1 01 0 0
Al = By = By = : 39
1 09 O 1 1 1u 0 ( )
" # " "
1 1 02 1 1
A= - 1 Bo = ;Bou = ;
273 02 05 S

fi(xk) =0:1+j0:7 sin(Xk:1) Xkaj;fa(xk)=1:

The dynamics of the rst mode is not affected by the exogenous sigraald as
such the parameterized family of ultimate bounds (Figure 10) will be described by
the union of intervals:

SLl,(u) =[1:1;22)[ [5;6:8)[ [8:9;115)[ [138;161)[ [185;208)
[ [22:8;255)[ [26:8;::: (40)
The second mode of functioning is linear and the parameterized invariant set is

given by:
AG;u= M (1 A) Byu (41)

with 2 [1;1)andu 2 R.
Solving 4 Linear Programming problems for each of the intervals in (40) one can
nd the level of u which ensures asymptotic mode detection - Figure 11.

5 Conclusion and further research directions

In this paper we revisit the ultimate bounds for linear systems in presence of additive
disturbances. We extend their characterization from the classical case of x bounds
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Fig. 10 The ultimate bounds ,a( ; u) obtained by exploiting the relationship between the state
dependent noise-bounding functib(x) and the functiomyy(x) on the left. The interval of scaling
factors corresponding to invariant setsl, ( ) - right.

to the state-dependent bounds. It is shown that a particular function can be de ned
over the state space and serve as a comparison for the state-dependent bounds.

In the case of multiple sources of additive disturbance, the present study can be
extended to account for element-wise state dependent bounds by analyzing indepen-
dently each column of the matri&x 2 R" ™.
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Fig. 11 The separation of ultimate bounds for different intervals of scaling coefcients
wcha)\ a@u= ;.
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