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Abstract: �e study of oscillations, from a dynamical-systems-theory viewpoint is a subject of interest
in a variety of research domains ranging from physical sciences to engineering. One of the main
motivations to study the behaviour of solutions of these complex systems lies in their role in modelling
of collective behaviour, such as synchrony, which appears naturally in some biological systems but
also in technological creations such as power grids. In particular, Stuart-Landau oscillators are used
to model the so-called Andronov bifurcation, from oue equilibrium to a limit cycle. In this paper, we
employ modern tools of stability theory to analyse the behaviour of solutions of Stuart-Landau forced
and unforced oscillators. We establish su�cient conditions for global asymptotic and input-to-state
stability with respect to sets.
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1. INTRODUCTION

Generally speaking, an oscillation may be thought of as the
repetition of a pa�ern; examples of oscillations in nature are
endless: circadian rhythm, heart beating, neuron �ring, breath-
ing cycles, �re�ies’ lightening, etc. For the purpose of analysis
of oscillating phenomena, as well as motivated by technology
design, scientists and engineers have come up with a number
of famous (mathematical) models of oscillators: the Lorenz sys-
tem Lorenz (1963), the van der Pol system van der Pol (1920),
the Lotka-Volterra equations Lotka (1910) etc. While the la�er
correspond to so-called self-sustained autonomous oscillators,
certain coupled limit-cycle oscillators constitute mathematical
models that allow to analyse collective behaviour. �is plays
an important role in physics, chemistry, biology, neuroscience,
engineering, robotics Kamimura et al. (2003) and even com-
puter animation Park et al. (2009). Hence, coupled nonlinear
oscillators appear in various se�ings as e.g., in gene regula-
tory networks Hasty et al. (2001), neuro-muscular regulation
of movement and posture Kelso and Kay (1987); Haken et al.
(1985a), electronic oscillator circuits Ramana et al. (2000) and
Josephson-junction arrays Wiesenfeld et al. (1996) to name a
few.

A particularly signi�cant phenomenon, intrinsically linked to
collective behaviour of oscillators, is synchronisation. Roughly
speaking, this is the capability of (self-sustained) oscillators to
coordinate their motion as a consequence of weak interaction,
e.g., to oscillate at the same frequency, with or without phase
dri�.

One of the pioneering schools in the formal study of syn-
chronisation of oscillators is that of A. A. Andronov –see e.g.,
Andronov et al. (1987, (2nd ed. 1959 in Russian). �e so-called
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Andronov-Hopf bifurcation, which consists in the birth of a
limit cycle out of an equilibrium point, is modelled by the
equations of the same name (also known as Stuart-Landau os-
cillators). �eir limit case, has become one of the most popular
models of oscillators, in the control community, the so-called
Kuramoto’s model, which consists in a set of phase oscillators
rotating at disordered intrinsic frequencies and with nonlinear
couplings (the sine of their phase di�erences) Kuramoto (1975).
�is model is broadly used, for instance, in the analysis of
power grids Dör�er et al. (2013) and neuronal activity. Indeed,
neuronal synchrony is involved in many healthy brain func-
tions but can also lead to pathological phenomena such as
Parkinson disease or epilepsy, which are known to be linked
to coherent neuronal hyper-activity. It is well accepted Tass
(2007); Sarnthein et al. (2003) that appearance of such patho-
logical brain rhythms is caused by the synchronisation in a
large population of interacting neurons.

Whether they represent a collective behaviour or an isolated
phenomenon, mathematical models of oscillators, in spite of
their relative simplicity, capture fundamental characteristics
of many a priory di�erent systems with oscillatory behaviour.
Whence the importance of studying oscillators’ solutions. In-
deed, the analysis of coupled oscillators is an area of ac-
tive research not only in these application domains but also
in dynamical systems Nicolis and Prigogine (1977); Jackson
(1992) and automatic control E�mov (2014); Sha� et al. (2013);
Pogromsky and Matveev (2013); see also some of the references
therein.

One approach of analysis, in the case when some type of
collective synchrony appears, consists in considering each
oscillator as being forced by a weak time-dependent input from
other oscillators in the network Izhikevich (2007). Motivated
by such a qualitative consideration, analysis of the collective
behaviour can be reduced to to that of a low-dimensional
dynamics (see e.g., Pyragas et al. (2004); Reddy et al. (2000);



Tukhlina et al. (2007) and therefore on a macroscopic level, the
collective dynamics can be viewed as a projection of a high-
dimensional system describing the coupled oscillators onto a
centre manifold corresponding to the synchronised motion.

At another level of abstraction, a mathematical concept that
captures well the oscillatory behaviour is recurrence. �e func-
tion x : R→ Rn is called recurrent if for any ε > 0 there exists
Tε > 0 such that for any t ≥ 0 there exists T (t, ε) ∈ (0, Tε)
such that

|x(t+ T (t, ε))− x(t)| < ε

In words, a recurrent trajectory keeps on passing arbitrarily
close to any point and the time intervals between passages
through a point and its ε-vicinity are not necessarily equal but
their length cannot grow inde�nitely.

�e concept of recurrence clearly points at well-established
notions in stability theory, in particular, stability of sets
Yoshizawa (1966); Lin et al. (1996); Teel et al. (2002) and or-
bital stability. For instance, when studying the behaviour of
a dynamic autonomous system with an oscillatory behaviour,
one may want to know whether there exist closed orbits with
the property that solutions starting away from them converge
asymptotically to them or whether trajectories starting arbi-
trarily close to the orbits remain close to it forever a�er.

In this paper we analyse the behaviour of the Stuart-Landau
oscillator from such a stability-theory viewpoint. �e di�culty
in the study of stability for Stuart-Landau oscillators is that the
set of solutions of the di�erential equations is composed of two
disjoint subsets: one closed orbit and one equilibrium point;
the former being stable and a�ractive and the la�er being anti-
stable (unstable and repelling). Our contribution is twofold:
�rst, we study the stability of the unforced oscillator and then,
with respect to additive bounded disturbances. We employ
modern tools of input to state stability, tailored for systems
with disjoint sets of equilibria Angeli and E�mov (2013).

�e behaviour of limit cycle oscillators under external distur-
bances was considered e.g., in Mackey et al. (1990); Wieczorek
(2011) where the e�ects of stochastic external signal were anal-
ysed or in Montbrió (2004) where e�ects of high-frequency
external signals were considered. Beyond the analysis of os-
cillations’ slutions, control of is also an important problem in
many applications –see e.g., Fradkov and Pogromsky (1998).

�e rest of this paper is organised as follows. In the next sec-
tion we discuss the model of the generalised Stuart-Landau os-
cillator, which is described in complex coordinates. In Section
2 we present our main results, before concluding with some
remarks, in Section 3.

Notation. For a complex number, z ∈ C, we use the common
notation z = zR + izI where i :=

√
−1 and zR, zI ∈ R

denote, respectively, the real and imaginary parts of z. We
denote by z̄ the complex conjugate of z, i.e., z̄ = zR −
izI. Correspondingly, for complex vectors z ∈ CN , z =
[z1 · · · zN ]> (where > denotes the usual transpose operator)
and complex matrices M ∈ CN×P , M = [mij ], we denote
by z̄ and M , their respective complex conjugates, i.e., z̄ =

[z̄1 · · · z̄N ]> and M = [m̄ij ]. Finally, we denote by ∗ the
transpose conjugate operator for complex matrices and vectors
hence, z∗ = [z̄1 · · · z̄N ]. Also, we use | · | to denote |z| = z̄z
and |z| = z∗z. For a closed set A ⊂ Cn and x ∈ Cn, we
de�ne |x|A := inf

y∈A
|x− y|.

2. THE GENERALIZED STUART-LANDAU OSCILLATOR

�e Stuart-Landau equation, which represents a normal form
of the Andronov-Hopf bifurcation, is given by

ż = −ν|z|2z + µz (1)
where z ∈ C denotes the state of the oscillator, ν, µ ∈ C
are parameters de�ned as ν = νR + iνI and µ = µR + iµI.
�e real component of µ, µR, determines the distance from the
Andronov-Hopf bifurcation. In the literature, the system (1)
with µR > 0, is known as the Stuart-Landau oscillator Aoyagi
(1995), Kentaro and Yasumasa (2008), Ma�hews et al. (1991). It
is also known as the Andronov-Hopf oscillator Perko (2000).
�e Stuart-Landau equation is in normal form, which means
that the limit cycle dynamics of many other oscillators can
be transformed onto or can be approximated by the dynamics
given by equation (1), Iooss and Adelmeyer (Jan 1999). We cite,
for example, the papers Haken et al. (1985b), Tass and Haken
(1996) where the van der Pol oscillator and the Haken-Kelso-
Bunz (HKB) model in the neuro-physiological applications are
approximated by the equations (2a) and (2b).

�e analysis of oscillators (1) is well documented in the
literature via, e.g., Lyapunov-exponents methods (see e.g.,
Kuznetsov (1998) and Perko (2000), for a detailed overview),
or using the second Lyapunov method (see e.g., Ma�hews and
Strogatz (1990) and Pham and Slotine (2007)). Of particular
interest in the study Stuart-Landau oscillators is the case when
νR > 0 since otherwise, in the case that νR < 0, the solutions
of the system may explode in �nite time and if νR = 0, the
oscillator becomes a simple �rst-order linear system. It is also
clear that the origin is unstable if µR > 0. Its behaviour on the
phase plane is illustrated in Figure 1

Fig. 1. Trajectories of the Stuart-Landau oscillator on the com-
plex plane.

�e behaviour of the system is more clearly illustrated in polar
coordinates. �at is, let z = reiϕ then, the equations for the
radial amplitude r and the angular variableϕ can be decoupled
into:

ṙ= µRr − νRr
3 (2a)

ϕ̇= µI − νIr
2. (2b)

When µR < 0, Equation (2a) has only one stable �xed point
at r = 0. Moreover, the la�er is Lyapunov (globally expo-
nentially) stable. However, if µR > 0, this equation has a
stable �xed point r =

√
µR
νR

, while r = 0 becomes unstable.



�is implies, in this case, that the trajectories of the system
converge to a circle of radius r, starting from initial conditions
either inside or outside the circle. �us, the la�er is an a�ractor
and the system (1) exhibits periodic oscillations. In this case, z
represents the position of the oscillator in the complex plane
and z(t) has a stable limit cycle of the amplitude |z| =

√
µR
νR

on which it moves at its natural frequency. �e bifurcation of
the limit cycle from the origin that appears at the value µR = 0
is known in the literature as the Andronov-Hopf bifurcation.
�e curves

Γα =

√
µR

νR

[
cos(t)
sin(t)

]
(3)

de�ne the limit cycle of the system.
Remark 1. In the analysis of (the solutions of) (1) we use
some statements originally formulated for systems whose state
space is Euclidean. In this regard, it is convenient to stress
that, for a dynamical system ẋ = f(x), with x ∈ CN , one
can de�ne stability in the sense of Lyapunov similarly as for
systems whose state-space is restricted to RN . Indeed, for a
complex vector x = xR + ixI ∈ CN , we may de�ne the vector
x̃ ∈ R2N as x̃ := [x>R x>I ]>. Note that, in particular, |x̃|2 =
|x|2. �en, provided that f admits the decomposition f(x) :=
fR(xR,xI) + ifI(xR,xI), we may re-express the dynamics of
ẋ = f(x) in a 2N -dimensional Euclidean space, via

ẋR = fR(xR,xI)

ẋI = fI(xR,xI)

and stability of the origin {x = 0} ⊂ CN is equivalent to
the stability of {x̃ = 0} ⊂ R2N . Consequently, we may
safely invoke statements originally formulated for systems on
Euclidean spaces, to draw conclusions regarding stability of
solutions of systems in the complex (hyper)plane.

Furthermore, note that the assumption that f admits the pre-
vious factorisation is a mild assumption that holds for (at least
once) di�erentiable functions, in particular polynomials, the
exponential function etc.

2.1 Stability of the unforced Stuart-Landau oscillator

As we have explained, the set

W :=

{
z ∈ C : |z| =

√
µR

νR

} ⋃
{z = 0} (4)

is invariant for the trajectories of the unforced oscillator (1).
More precisely, the following theorem generalises a statement
from Pham and Slotine (2007) concerning the case of real
coe�cients, i.e., with νR = 1 and νI = 0.
�eorem 1. For the unforced Stuart-Landau oscillator, de�ned by
Equation (1), the following statements hold true:

(1) if µR ≤ 0 then the origin z ≡ 0 is globally exponentially
stable;

(2) if µR > 0 then the limit cycle W1 =
{
z ∈ C : |z| =√

µR/νR
}
is almost globally asymptotically stable and the

origin {z = 0} is antistable 1 . Moreover, in this case, the
oscillation frequency onW1 is de�ned by

ω = µI −
νI
νR
µR.

1 �at is, the poles of the linearised system have all positive real parts.

Proof of Item 1. Global asymptotic stability of the origin {z =
0} may be established using the Lyapunov function candidate
V (z) = |z|2 = z̄z. Indeed, taking the derivative of V along
trajectories of (1) we obtain

V̇ (z) =
[
− ν̄|z|2z̄ + µ̄z̄

]
z + z̄

[
− ν|z|2z + µz

]
=−(ν + ν̄)|z|4 + (µ+ µ̄)|z|2

=−2νR|z|4 + 2µR|z|2.

Since µR ≤ 0, we have V̇ (z) ≤ −|µR||z|2 for all z ∈ C and
global exponential stability of the origin follows.

Proof of Item 2. Anti-stability of the origin follows trivially
by evaluating the total derivative of V (z) = |z|2 along the
trajectories of Equation (1) linearised around the origin, i.e.,
ż = µz. Indeed, locally, V̇ (z) = µR|z|2 where µR > 0.

Next, to analyse the stability of the limit cycleW1, we intro-
duce the Lyapunov function candidate

V (z) =
1

4νR

[
|z|2 − α

]2
, (5)

where α = µR/νR. Notice that V (z) = 0 for all z ∈ W1 and it
is positive otherwise.

Evaluating the total derivative of V , along the solutions of (1),
we get

V̇ (z) =
1

2νR

[
|z|2 − α

][
˙̄zz + z̄ż

]
=

1

2νR

[
|z|2 − α

][
(−ν̄|z|2z̄ + µ̄z̄)z + z̄(−ν|z|2z + µz)

]
and, a�er regrouping the terms in the last bracket, we obtain

V̇ (z) =
1

2νR

[
|z|2 − α

][
− (ν + ν̄)|z|4 + (µ+ µ̄)|z|2

]
=

1

νR

[
|z|2 − α

][
− νR|z|2 + µR

]
|z|2

=−
[
|z|2 − α

]2|z|2.
We conclude that V̇ is negative de�nite with respect toW1 that
is, V̇ < 0 for all z 6∈ W1 and V̇ = 0 for all z ∈ W1. Since the
origin is an antistable equilibrium point,W1 is almost globally
asymptotically stable.

It also follows that r →
√
µR/νR hence, a�er Equation (2b) and

ω = ϕ̇, we have ω → µI − (νIµR)/νR. �

2.2 Stability of the forced Stuart-Landau oscillator

For the case when µR > 0, in the previous section we proved
that the Stuart-Landau oscillator without input, given by (1),
presents a limit cycle which is almost globally asymptotically
stable. Now, we analyse the stability and robustness of the
solutions of a forced generalised Stuart-Landau oscillator, as
de�ned by the equation

ż = −ν|z|2z + µz + u (6)
where u ∈ C is an input to the oscillator. �at is, we analyse
the input-to-state stability of this system, i.e., stability with
respect to external disturbances. Furthermore, the notion of
almost input-to-state stability, introduced in Angeli (2001) (see



also Angeli and Praly (2011)), applies to the case of an equi-
librium point which is stable for all initial states except for a
set of measure zero. For Stuart-Landau oscillators, for which
there exists a disjoint invariant set, not consituted of disjoint
equilibria, we use a recently developed re�ned tool for input-
to-state stability with respect to decomposable invariant sets
–see Angeli and E�mov (2013). For the sake of clarity we start
by pu�ing in context the essential technical tools that we use.

�e mathematical se�ing �e main advantage of the ap-
proach introduced in Angeli and E�mov (2013) is that it allows
to analyse the robustness properties of the complex invariant
sets without the use of tools involving manifolds and dimen-
sionality arguments, while being applicable to the case when
the invariant set is compact. For the sake of self-containedness,
we brie�y recall below the essential de�nitions and statements
from Angeli and E�mov (2013) which are required for the
robustness analysis of (6).

Consider a nonlinear system
ẋ = f(x, d), (7)

where the map f : M × D → TxM is assumed to be of
class C1, M is an n dimensional C2 connected and orientable
Riemannian manifold without boundary and D is a closed
subset of Rm containing the origin.

LetW be a compact invariant set containing all α and ω limit
sets of the unforced system

ẋ = f(x, 0)

and which admits a �nite decomposition without cycles, i.e.,

W =

k⋃
i=1

Wi (8)

whereWi denote non-empty disjoint compact sets which form
a �ltration ordering of W . According to Angeli and E�mov
(2013) cycles and �ltration ordering are de�ned as follows.
First, we introduce the “domains of a�raction” and “repulsion”
of a set Λ, respectively, as

W s(Λ) :=
{
x◦ ∈M : |x(t, x◦, d)|Λ → 0 as t→ +∞

}
Wu(Λ) :=

{
x◦ ∈M : |x(t, x◦, d)|Λ → 0 as t→ −∞

}
.

�en, for two subsets, Λ ⊂ M and Γ ⊂ M , we de�ne the
relation Λ ≺ Γ as

Λ ≺ Γ ⇔ W s(Λ) ∩Wu(Γ) 6= ∅. (9)
Based on these notations, we say that the decomposition
W1, . . . , Wk ofW presents an r-cycle if there is an ordered r-
tuple such thatW1 ≺ · · · ≺ Wr ≺ W1; a 1-cycle if for some
i we have [Wu(Λi) ∩W s(Λi)] − Λi 6= ∅. Finally, a �ltration
ordering is an ordered sequence of sets Λi such that Λi ≺ Λj
for i ≤ j.
For the case of the Stuart-Landau oscillator, we have the fol-
lowing. Firstly, W ⊂ C de�ned in (4) is a compact invariant
set which contains the α and ω limit sets of (6). �is set admits
the �nite decomposition in compact sets:

W =W1 ∪W2, W1 :=

{
z ∈ C : |z| =

√
µR

νR

}
W2 :=

{
z = 0

}
.

�en, we have following for the system (6):

• W s(W1) =
{
z◦ ∈ C : |z(t, z◦) |W1

→ 0 as t → +∞
}

.
�is corresponds to the set of initial conditions gener-

ating trajectories which converge to the circumference
W1. Since, according to �eorem 1,W1 is almost globally
asymptotically stable, W s(W1) = C− {0}.

• Wu(W1) =
{
z◦ ∈ C : |z(t, z◦) |W1

→ 0 as t →
−∞

}
. �is corresponds to the set of initial conditions

generating trajectories that are repulsed away from the
circle W1 hence, Wu(W1) = ∅ since W1 is almost
globally a�ractive.

• W s(W2) =
{
z◦ ∈ C : |z |W2

= |z(t, z◦)| → 0 as t →
+∞

}
. �is corresponds to the domain of a�raction of the

origin, however, we know from the proof of �eorem 1
that {0} is antistable hence, W s(W2) = ∅.

• Wu(W2) =
{
z◦ ∈ C : |z(t, z◦) |W2

→ 0 as t → −∞
}

.
�is corresponds to the set of initial states generating tra-
jectories which are repulsed away from the origin, hence,
it corresponds to the disk whose boundary corresponds
toW1, taken away the origin, i.e., Wu(W2) =

{
z ∈ C :

0 < |z| <
√
µR/νR

}
.

We conclude thatW admits the �ltration orderingW1 ≺ W2

because [C− {0}] ∩Wu(W2) 6= ∅ but it contains no 2-cycle
becauseW2 6≺ W1 sinceW s(W2)∩Wu(W1) = ∅. It contains
no 1-cycle either because [Wu(W1) ∩W s(W1)] − W1 = ∅
and [Wu(W2) ∩W s(W2)]−W2 = ∅.

�e previous characterisation of decomposable compact in-
variant sets constitutes a formal framework to establish con-
ditions under which a perturbed system admits an input-to-
stable stability Lyapunov function, as de�ned next.
De�nition 2.1. Angeli and E�mov (2013). We say that a C1

function V : M → R is an input-to-state-stability Lyapunov
function for (7) if there exist K∞ functions α1, α2, α and γ,
and a non-negative real c such that

α1(|x |W) ≤ V (x) ≤ α2(|x |W) + c, (10)
the function V is constant on each Wi and the following
dissipation condition holds:

DV (x)f(x, d) ≤ −α(|x |W) + γ(|d|). (11)

�e following statement, which corresponds to a paraphrasis
of (Angeli and E�mov, 2013, �eorem 1), serves to establish
robust stability of Stuart-Landau oscillators (6). Indeed, as we
show farther below, Stuart-Landau oscillators admit input-to-
state stability Lyapunov functions.
�eorem 2. Consider the nonlinear system (7) and let W corre-
spond to the union of disjoint compact invariant sets containing
all α and ω and limit sets of the unforced system ẋ = f(x, 0),
such that W admits a �ltration ordering without cycles. �en,
the following are equivalent:

• the system (7) possesses the asymptotic gain property, i.e.,
there exists η ∈ K∞ such that, for all x ∈ M and all
measurable essentially bounded inputs d, the solutions of
(7), with initial conditions x◦, are de�ned for all t ≥ 0 and

lim sup
t→+∞

|x(t, x◦, d) |W ≤ η(‖d‖∞) (12)

where ‖d‖∞ := sup
t≥0
|d(t)|.

• �e system (7) admits an input-to-state stability Lyapunov
function therefore, it is input to state stable with respect to
the input u and the setW .

Robustness analysis of Stuart-Landau oscillator We are ready
to apply the framework brie�y recalled above to analysis of the
system (6) which, as we have showed, possesses an invariant



set decomposable in invariant compacts which admit a �ltra-
tion ordering with no cycles. �ese compacts correspond to the
(antistable) origin of the complex plane and the almost globally
asymptotically stable circle of radius

√
µR/νR. According to

�eorem 2, in order to establish input to state stability with
respect toW it is su�cient and necessary to establish that the
Stuart-Landau oscillator possesses the asymptotic gain prop-
erty. To that end, we start by de�ning the norm | · |W , as
follows.

W2

W1
√
α√

α/2

Fig. 2. Illustration of |z |W

|z |W =


√

3 |z| if |z| ≤
√
α/2,√∣∣ |z|2 − α ∣∣ if |z| ≥
√
α/2

(13)

α := µR/νR

�e following result ensures that the system (6) possesses the
asymptotic gain property, i.e., asymptotically, the distance be-
tween the oscillator’s trajectory and set W becomes propor-
tional to the size of perturbations, ‖d‖∞.
�eorem 3. Consider the system (6) with initial conditions z◦ ∈
C and let the set W be de�ned by (4). �en, the system (6) has
the asymptotic gain property, i.e.,

lim sup
t→+∞

|z(t, z◦, u) |W ≤ η
(
‖u‖∞

)
. (14)

Proof. It follows using the input-to-state-stability Lyapunov
function candidate V de�ned in (5), which we used previously
to prove almost global asymptotic stability for the system (6).
One can show that this function satis�es the inequalities (10),
(11). �is is omi�ed here due to space constraints.

�

3. CONCLUSIONS

We presented two results on the stability of disjoint sets of
equilibria for Stuart-Landau oscillators. Our results are moti-
vated by the study of collective behaviour of interconnected
oscillators, in particular, by the capacity of these systems to
exhibit synchrony. Current research is carried out in this di-
rection.
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Nicolis, G. and Prigogine, I. (1977). Self-organization in
nonequilibrium systems, volume 191977. Wiley, New York.

Park, A.N., Mukovskiy, A., Slotine, J.J., and Giese, M.A. (2009).
Design of dynamical stability properties in character anima-
tion. In VRIPHYS, 85–94.

Perko, L. (2000). Di�erential Equations and Dynamical Systems.
Springer.

Pham, Q.C. and Slotine, J.J. (2007). Stable concurrent synchro-
nization in dynamic system networks. Neural Networks,
20(1), 62–77.

Pogromsky, A.Y. and Matveev, A.S. (2013). A non-quadratic
criterion for stability of forced oscillations. Systems &
Control Le�ers, 62(5), 408–412.

Pyragas, K., Pyragas, V., Kiss, I.Z., and Hudson, J.L. (2004).
Adaptive control of unknown unstable steady states of dy-
namical systems. Physical Review E, 70(2), 026215.

Ramana, R.D.V., Sen, A., and Johnston, G.L. (2000). Experimen-
tal evidence of time-delay-induced death in coupled limit-
cycle oscillators. Physical Review Le�ers, 85(16), 3381–3384.

Reddy, D.V., Sen, A., and Johnston, G.L. (2000). Dynamics of
a limit cycle oscillator under time delayed linear and non-
linear feedbacks. Physica D: Nonlinear Phenomena, 144(3),
335–357.

Sarnthein, J., Morel, A., von Stein, A., and Jeanmonod, D.
(2003). �alamic theta �eld potentials and eeg: high tha-
lamocortical coherence in patients with neurogenic pain,
epilepsy and movement disorders. �alamus & Related Sys-
tems, 2(03), 231–238.

Sha�, S.Y., Arcak, M., Jovanović, M., and Packard, A.K. (2013).
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