Radiative Properties of Silica Nanoporous Matrices

Abstract : Superinsulating materials are currently of much interest because of the price of energy on the one hand and CO 2 emissions attributed to offices and houses cooling and heating on the other hand. In this work, we aim at understanding and modeling the radiative transfer within silica nanoporous matrices that are the principal components of nanoporous superinsulating materials. We first elaborate samples of various thicknesses from a pyrogenic silica powder. These samples are characterized using two spectrophotometers on the whole wavelength range [250 nm; 20 µm]. Using a parameter identification technique, we compute the radiative properties of the various samples. Then, our samples being made of packed quasi-spherical particles, we use the Mie theory to model the radiative properties of these materials. Due to the observed discrepancies between the experimental radiative properties and those computed from the Mie theory with a uniform value of 10 nm for the scatterer diameter (value derived from TEM images), we determine an effective scatterer diameter that allows a good agreement between the experimental radiative properties and the Mie results. Nevertheless, in the short wavelength range, the Mie theory gives results that significantly differ from the experimental radiative properties. This behavior is attributed to structure effects as the wavelength is of the same order of magnitude as the diameter of the scatterer that is now regarded as an aggregate of nanoparticles. Hence, to take into account these effects, we use the discrete dipole approximation (DDA). The DDA extinction coefficient spectra appear to be much closer to the experimental results than the Mie spectra, and these first results are quite encouraging.
Type de document :
Article dans une revue
International Journal of Thermophysics, Springer Verlag, 2008, 29, 〈10.1007/s10765-008-0474-1〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

Contributeur : Franck Enguehard <>
Soumis le : lundi 14 mars 2016 - 10:09:33
Dernière modification le : mardi 16 janvier 2018 - 16:24:09




Sylvain Lallich, Franck Enguehard, Dominique Baillis. Radiative Properties of Silica Nanoporous Matrices. International Journal of Thermophysics, Springer Verlag, 2008, 29, 〈10.1007/s10765-008-0474-1〉. 〈hal-01287437〉



Consultations de la notice