A symbolic approach to some identities for Bernoulli-Barnes polynomials

Abstract : The Bernoulli–Barnes polynomials are defined as a natural multidimensional extension of the classical Bernoulli polynomials. Many of the properties of the Bernoulli polynomials admit extensions to this new family. A specific expression involving the Bernoulli–Barnes polynomials has recently appeared in the context of self-dual sequences. The work presented here provides a proof of this self-duality using the symbolic calculus attached to Bernoulli numbers and polynomials. Several properties of the Bernoulli–Barnes polynomials are established by this procedure.
Type de document :
Article dans une revue
International Journal of Number Theory, World Scientific Publishing, 2016, 12 (03), pp.649-662. 〈10.1142/s1793042116500421 〉
Liste complète des métadonnées

https://hal-centralesupelec.archives-ouvertes.fr/hal-01294173
Contributeur : Christophe Vignat <>
Soumis le : lundi 28 mars 2016 - 04:19:18
Dernière modification le : jeudi 5 avril 2018 - 12:30:05

Identifiants

Citation

Lin Jiu, Victor H. Moll, Christophe Vignat. A symbolic approach to some identities for Bernoulli-Barnes polynomials. International Journal of Number Theory, World Scientific Publishing, 2016, 12 (03), pp.649-662. 〈10.1142/s1793042116500421 〉. 〈hal-01294173〉

Partager

Métriques

Consultations de la notice

211