Z. Yan, D. L. Nika, and A. A. Balandin, Thermal properties of graphene and few-layer graphene: applications in electronics, IET Circ. Device. Syst, vol.9, pp.4-12, 2015.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater, vol.6, pp.183-191, 2007.

A. A. Balandin, Superior thermal conductivity of single-layer graphene, Nano Lett, vol.8, pp.902-907, 2008.

A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater, vol.10, p.569, 2011.

Q. Q. Kong, Hierarchical graphenecarbon fiber composite paper as a flexible lateral heat spreader, Adv. Funct. Mater, vol.24, pp.4222-4228, 2014.

Z. Yan, G. Liu, J. M. Khan, and A. A. Balandin, Graphene quilts for thermal management of high-power GaN transistors, Nat. Commun, vol.3, p.827, 2012.

Z. Gao, Y. Zhang, Y. Fu, M. M. Yuen, and J. Liu, Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots, Carbon, vol.61, pp.342-348, 2013.

S. Subrina, D. Kotchetkov, and A. A. Balandin, Heat removal in silicon-oninsulator integrated circuits with graphene lateral heat spreaders, IEEE Electron Device Lett, vol.30, pp.1281-1283, 2009.

S. Subrina, Modeling based design of graphene heat spreaders and interconnects in 3-D integrated circuits, J. Nanoelectron. Optoelectron, vol.5, pp.281-286, 2010.

H. Malekpour, Thermal conductivity of graphene laminate, Nano Lett, vol.14, p.5155, 2014.

R. Prasher, Graphene spreads the heat, Science, vol.328, pp.185-186, 2010.

Z. Y. Ong and E. Pop, Effect of substrate modes on thermal transport in supported graphene, Phys. Rev. B, vol.84, p.75471, 2011.

S. Ghosh, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater, vol.9, p.555, 2010.

M. M. Sadeghi, I. Jo, and L. Shi, Phonon-interface scattering in multilayer graphene on an amorphous support, Proc. Natl Acad. Sci. USA, vol.110, p.16321, 2013.

L. Lindsay, D. A. Broido, and N. Mingo, Flexual phonons and thermal transport in graphene, Phys. Rev. B, vol.82, p.115427, 2010.

J. H. Seol, Two-dimensional phonon transport in supported graphene, Science, vol.328, p.213, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00818281

Z. Wei, Y. Chen, and C. Dames, Negative correlation between in-plane bonding strength and cross-plane thermal conductivity in a model layered material, Appl. Phys. Lett, vol.102, p.11901, 2013.

T. Luo and J. R. Lloyd, Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study, Adv. Mater, vol.22, p.2495, 2012.

P. E. Hopkins, Manipulating thermal conductance at metal-graphene contacts via chemical functionalization, Nano Lett, vol.12, p.590, 2012.

Z. Ge, D. G. Cahill, and P. V. Braun, Thermal conductance of hydrophilic and hydrophobic interfaces, Phys. Rev. Lett, vol.96, p.186101, 2006.

R. Y. Wang, R. A. Segalman, and A. Majumdar, Room temperature thermal conductance of alkanedithiol self-assembled monolayers, Appl. Phys. Lett, vol.89, p.173113, 2006.

T. Ramanathan, Functionalized graphene sheets for polymer nanocomposites, Nat. Nanotechnol, vol.3, pp.327-331, 2008.

D. Konatham and A. Striolo, Thermal boundary resistance at the graphene-oil interface, Appl. Phys. Lett, vol.95, p.163105, 2009.

K. C. Collins, S. Chen, and G. Chen, Effects of surface chemistry on thermal conductance at aluminum-diamond interfaces, Appl. Phys. Lett, vol.97, p.83102, 2010.

Q. Liang, X. Yao, W. Wang, Y. Liu, and C. P. Wong, A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials, ACS Nano, vol.5, pp.2392-2401, 2011.

Y. Ni, Highly efficient thermal glue for carbon nanotubes based on azide polymers, Appl. Phys. Lett, vol.100, p.193118, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00701651

H. Harikrishna, W. A. Ducker, and S. T. Huxtable, The influence of interface bonding on thermal transport through solid-liquid interfaces, Appl. Phys. Lett, vol.102, p.251606, 2013.

Z. Liang, W. Evans, T. Desai, and P. Keblinski, Improvement of heat transfer efficiency at solid-gas interfaces by self-assembled monolayers, Appl. Phys. Lett, vol.102, p.61907, 2013.

P. J. Obrien, Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers, Nat. Mater, vol.12, p.118, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00782529

J. H. Taphouse, O. N. Smith, S. R. Marder, and B. A. Cola, A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts, Adv. Funct. Mater, vol.24, p.465, 2014.

F. Sun, Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces, Adv. Mater, vol.26, p.6093, 2014.

S. K. Chien and Y. T. Yang, Influence of hydrogen functionalization on thermal conductivity of graphene: Nonequilibrium molecular dynamics simulations, Appl. Phys. Lett, vol.98, p.33107, 2011.

J. Y. Kim, J. Lee, and J. C. Grossman, Thermal transport in functionalized graphene, ACS Nano, vol.6, pp.9050-9057, 2012.

G. Xin, Large-area freestanding graphene paper for superior thermal management, Adv. Mater, vol.26, pp.4521-4526, 2014.

R. M. Pasternack, S. R. Amy, and Y. Chabal, J. Langmuir, vol.24, pp.12963-12971, 2008.

G. Chen and P. Hui, Pulsed photothermal modeling of composite samples based on transmission-line theory of heat conduction, Thin Solid Films, vol.339, pp.58-67, 1999.

Y. Zhao, Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitride thin films, J. Appl. Phys, vol.96, p.4563, 2004.

T. Meier, Length-dependent thermal transport along molecular chains, Phys. Rev. Lett, vol.113, p.60801, 2014.

J. Yang, Phonon transport through point contacts between graphitic nanomaterials, Phys. Rev. Lett, vol.112, p.205901, 2014.

D. Segal, A. Nitzan, and P. Hänggi, Thermal conductance through molecular wires, J. Chem. Phys, vol.119, p.6840, 2003.

L. Hu, Phonon interference at self-assembled monolayer interfaces: Molecular dynamics simulations, Phys. Rev. B, vol.81, p.235427, 2010.

T. Markussen, Phonon interference effects in molecular junctions, J. Chem. Phys, vol.139, p.244101, 2013.

H. Han, Phonon interference and thermal conductance reduction in atomic-scale metamaterials, Phys. Rev. B, vol.89, p.180301, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01154817

H. Han, B. Li, S. Volz, and Y. A. Kosevich, Ultracompact interference phonon nanocapacitor for storage and lasing of coherent terahertz lattice waves, Phys. Rev. Lett, vol.114, p.145501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01154816

Y. Ni, Y. Chalopin, and S. Volz, Significant thickness dependence of the thermal resistance between few-layer graphenes, Appl. Phys. Lett, vol.103, p.61906, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01230132

M. T. Lusk and L. D. Carr, Nanoengineering defect structures on graphene, Phys. Rev. Lett, vol.100, p.175503, 2008.

J. Jiang, B. Wang, and J. Wang, First principle study of the thermal conductance in graphene nanoribbon with vacancy and substitutional silicon defects, Appl. Phys. Lett, vol.98, p.113114, 2011.

T. Hughbanks and R. Hoffmann, Chains of trans-edge-sharing molybdenum octahedra: metal-metal bonding in extended systems, J. Am. Chem. Soc, vol.105, p.3528, 1983.

J. M. Ziman, Electrons and Phonons, 1960.

R. J. Trew, D. S. Green, and J. B. Shealy, AlGaN/GaN HFET reliability, IEEE Microw. Mag, vol.10, p.116127, 2009.

B. Yang, P. Wang, and A. Bar-cohen, Mini-contact enhanced thermoelectric cooling of hot spots in high power devices, IEEE Trans. Compon. Packag. Technol, vol.30, pp.432-438, 2007.

P. Nath and K. L. Chopra, Thermal conductivity of copper films, Thin Solid Films, vol.20, p.5362, 1974.

G. Langer, J. Hartmann, and P. Reichling, Thermal conductivity of thin metal films measured by photothermal profile analysis, Rev. Sci. Instrum, vol.68, p.15101513, 1997.

P. Kumar, Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness, Carbon, vol.94, pp.494-500, 2015.

W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc, vol.80, pp.1339-1339, 1958.

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys, vol.117, p.1, 1995.

S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys, vol.112, p.6472, 2000.

K. Chenoweth, A. C. Van-duin, and W. A. Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation, J. Phys. Chem. A, vol.112, pp.1040-1053, 2008.

H. Sadeghi, S. Sangtarash, and C. Lambert, Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons, Beilstein J. Nanotechnol, vol.6, p.1176, 2015.