E. Curran, W. Heiser, and D. Pratt, Fluid Phenomena in Scramjet Combustion Systems, Annual Review of Fluid Mechanics, vol.28, issue.1, pp.323-360, 1996.
DOI : 10.1146/annurev.fl.28.010196.001543

W. Heiser and D. Pratt, Hypersonic airbreathing propulsion, AIAA Education Series, 1994.
DOI : 10.2514/4.470356

K. Matsuo, Y. Miyazato, and H. Kim, Shock train and pseudo-shock phenomena in internal gas flows, Progress in Aerospace Sciences, vol.35, issue.1, pp.33-100, 1999.
DOI : 10.1016/S0376-0421(98)00011-6

G. Y. Anderson, C. R. Mcclinton, and J. P. Weidner, Scramjet performance, Scramjet Propulsion of Progress in Astronautics and Aeronautics, pp.369-439, 2000.

M. K. Smart, N. E. Hass, and A. , Flight Data Analysis of the HyShot 2 Scramjet Flight Experiment, AIAA Journal, vol.44, issue.10, pp.2366-2375, 2006.
DOI : 10.1016/S0045-7930(97)00014-5

A. D. Gardner, K. Hannemann, J. Steelant, and A. , Ground testing of the HyShot supersonic combustion flight experiment in HEG and comparison with flight data, AIAA Paper, 2004.

K. Hannemann, J. Martinez-schramm, S. Karl, and J. Steelant, Experimental investigation of different scramjet hydrogen injection systems, Proc. 6th European Symposium on Aerothermodynamics for Space Vehicles, 2009.

K. Hannemann, S. Karl, J. Martinez-schramm, and J. Steelant, Methodology of a combined ground based testing and numerical modelling analysis of supersonic combustion flow paths, Shock Waves, vol.34, issue.4, pp.353-366, 2010.
DOI : 10.1007/s00193-010-0269-8

S. J. Laurence, H. Ozawa, D. Lieber, J. Martinez-schramm, and K. Hannemann, Investigation of Unsteady/Quasi-Steady Scramjet Behavior using High-Speed Visualization Techniques, 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, 2012.
DOI : 10.2514/2.5287

S. J. Laurence, S. Karl, J. Martinez-schramm, and K. Hannemann, Transient fluid-combustion phenomena in a model scramjet, Journal of Fluid Mechanics, vol.4, pp.85-120, 2013.
DOI : 10.1016/S0376-0421(98)00011-6

S. J. Laurence, S. Karl, and K. Hannemann, Experimental and Numerical Investigation of the HyShot II Flight Experiment, p.30
DOI : 10.1007/978-3-319-16835-7_47

S. J. Laurence, D. Lieber, J. Martinez-schramm, K. Hannemann, and J. Larsson, Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part I: Shock-tunnel experiments, Combustion and Flame, vol.162, issue.4, 2014.
DOI : 10.1016/j.combustflame.2014.09.016

URL : https://hal.archives-ouvertes.fr/hal-01344921

S. Karl, K. Hannemann, J. Steelant, and A. Mack, CFD analysis of the HyShot supersonic combustion flight experiment configuration, AIAA Paper, 2006.

S. Karl, K. Hannemann, A. Mack, and J. Steelant, CFD Analysis of the HyShot II Scramjet Experiments in the HEG Shock Tunnel, 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2008.
DOI : 10.1006/jcph.2000.6671

S. Karl, K. Hannemann, A. Mack, and J. Steelant, CFD Analysis of Unstart Characteristics of the HyShot-II Scramjet Configuration in the HEG Shock Tunnel, 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2011.
DOI : 10.1006/jcph.2000.6671

S. Karl, S. J. Laurence, J. Martinez-schramm, and K. Hannemann, CFD Analysis of Unsteady Combustion Phenomena in the HyShot-II Scramjet Configuration, 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, 2012.
DOI : 10.2514/1.40868

R. Pecnik, V. E. Terrapon, F. Ham, G. Iaccarino, and H. Pitsch, Reynolds-Averaged Navier-Stokes Simulations of the HyShot II Scramjet, AIAA Journal, vol.50, issue.8, pp.1717-1732, 2012.
DOI : 10.2514/6.2005-1099

C. Fureby, M. Chapuis, E. Fedina, and S. , CFD analysis of the HyShot II scramjet combustor, Proceedings of the Combustion Institute, vol.33, issue.2, pp.2399-2405, 2011.
DOI : 10.1016/j.proci.2010.07.055

M. Chapuis, E. Fedina, C. Fureby, K. Hannemann, S. Karl et al., A computational study of the HyShot II combustor performance, Proc. Comb. Inst, pp.34-2101, 2013.
DOI : 10.1016/j.proci.2012.07.014

M. Berglund and C. , Fureby, LES of supersonic combustion in a scramjet engine model, Proc. Comb. Inst, pp.31-2497, 2007.

A. W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Physics of Fluids, vol.431, issue.10, pp.3670-3681, 2004.
DOI : 10.1063/1.1350896

J. Larsson and B. Gustafsson, Stability criteria for hybrid difference methods, Journal of Computational Physics, vol.227, issue.5, pp.2886-2898, 2008.
DOI : 10.1016/j.jcp.2007.11.025

J. Larsson, Effect of Shock-Capturing Errors on Turbulence Statistics, AIAA Journal, vol.48, issue.7, pp.1554-1557, 2010.
DOI : 10.1063/1.869152

E. F. Toro, M. Spruce, and M. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, vol.54, issue.1, pp.25-34, 1994.
DOI : 10.1007/BF01414629

Y. Khalighi, J. W. Nichols, S. K. Lele, F. Ham, and P. Moin, Unstructured Large Eddy Simulation for Prediction of Noise Issued from Turbulent Jets in Various Configurations, 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), 2011.
DOI : 10.2514/6.2010-3785

M. Emory, V. Terrapon, R. Pecnik, and G. Iaccarino, Characterizing the operability limits of the HyShot II scramjet through RANS simulations, 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2011.
DOI : 10.1039/b010002l

M. Klein, A. Sadiki, and J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations, Journal of Computational Physics, vol.186, issue.2, pp.652-665, 2003.
DOI : 10.1016/S0021-9991(03)00090-1

A. Saghafian, High-fidelity simulations and modeling of compressible reacting flows, 2014.

C. D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, Journal of Fluid Mechanics, vol.504, pp.73-97, 2004.
DOI : 10.1017/S0022112004008213

V. Sabelnikov, B. Deshaies, L. F. Da, and . Silva, Revisited Flamelet Model for Nonpremixed Combustion in Supersonic Turbulent Flows, Combustion and Flame, vol.114, issue.3-4, pp.577-584, 1998.
DOI : 10.1016/S0010-2180(97)00296-4

J. R. Edwards, J. A. Boles, and R. A. Baurle, Large-eddy/Reynolds-averaged Navier???Stokes simulation of a supersonic reacting wall jet, Combustion and Flame, vol.159, issue.3, pp.1127-1138, 2012.
DOI : 10.1016/j.combustflame.2011.10.009

Z. Hong, D. F. Davidson, and R. K. Hanson, An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements, Combustion and Flame, vol.158, issue.4, pp.633-644, 2011.
DOI : 10.1016/j.combustflame.2010.10.002

A. Saghafian, V. E. Terrapon, and H. Pitsch, An efficient flamelet-based combustion model for compressible flows, Combustion and Flame, vol.162, issue.3, 2014.
DOI : 10.1016/j.combustflame.2014.08.007

S. Kawai and J. Larsson, Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy, Physics of Fluids, vol.24, issue.1, p.15105, 2012.
DOI : 10.2514/3.6323

D. B. Helmer, L. M. Campo, and J. K. Eaton, Three-dimensional features of a Mach 2.1 shock/boundary layer interaction, Experiments in Fluids, vol.594, issue.5, pp.1347-1368, 2012.
DOI : 10.2514/8.1895

L. M. Campo, D. B. Helmer, and J. K. Eaton, PIV investigation of spanwise variation in incident shock boundary layer interactions, in: Turbulence and Shear Flow Phenomena 8, 2013.

I. Bermejo-moreno, J. Larsson, L. Campo, J. Bodart, R. Vicquelin et al., Wallmodeled large eddy simulation of shock/turbulent boundary-layer interaction in a duct, Annu. Res. Briefs, Center for Turbulence Research, pp.49-62, 2011.

J. Larsson, I. Bermejo-moreno, and S. K. Lele, Reynolds- and Mach-number effects in canonical shock???turbulence interaction, Journal of Fluid Mechanics, vol.333, pp.293-321, 2013.
DOI : 10.1063/1.858343