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Oracle Large-System Estimation Performance in
Noisy Compressed Sensing with Random Support -

a Bayesian Analysis
Rémy Boyer, Romain Couillet, Bernard-Henry Fleury and Pascal Larzabal

Abstract—Compressed sensing (CS) enables measurement re-
construction by using sampling rates below the Nyquist rate, as
long as the amplitude vector of interest is sparse. In this work, we
first derive and analyze the Bayesian Cramér-Rao Bound (BCRB)
for the amplitude vector when the set of indices (the support) of
its non-zero entries is known. We consider the following context:
(i) The dictionary is non-stochastic but randomly generated; (ii)
the number of measurements and the support cardinality grow
to infinity in a controlled manner, i.e. the ratio of these quantities
converges to a constant; (iii) the support is random; and (iv)
the vector of non-zero amplitudes follow a multidimensional
generalized normal distribution. Using results from random
matrix theory, we obtain closed-form approximations of the
BCRB. These approximations can be formulated in a very
compact form in low and high SNR regimes. Secondly, we provide
a statistical analysis of the variance and the statistical efficiency of
the oracle linear mean-square-error (LMMSE) estimator. Finally,
we present results from numerical investigations in the context of
non-bandlimited finite-rate-of-innovation (FRI) signal sampling.
We show that the performance of Bayesian mean square error
(BMSE) estimators that are aware of the cardinality of the
support, such as OMP and CoSaMP, are in good agreement with
the developed lower bounds in the high SNR regime. Conversely,
sparse estimators exploiting only the knowledge of the parameter
vector and the noise variance in form of a-priori distributions
of these parameters, like LASSO and BPDN, are not efficient at
high SNR. However, at low SNR their BMSE is lower than that
of the former estimators and may be close to the BCRB.

I. INTRODUCTION

Modern data acquisition systems involve massive array
technology and a deluge of data provided by large and
highly interconnected networks, multi-databases, multidimen-
sional data streaming, etc. Compressive sensing [1]–[3] is a
promising solution to tackle the related new challenges, in
that it allows for retrieving sparse signals with fewer samples
than classical data acquisition theory requires [4]. CS has
been successfully exploited in many realistic applications,
such as channel estimation [5,6], equalization [7], sampling in
magnetic resonance imaging [8], high-resolution radar imaging
[9], and array processing [10]. Along with the CS theory,
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a large collection of sparse recovery estimators has emerged
[1,2]. These include matching pursuit (MP) [11], orthogonal
matching pursuit (OMP) [12]–[14], and basis pursuit (BP) [15]
devised for pilot-assisted channel estimation as an effective
alternative to the traditional least squared estimator (LSE).
Convex optimization solvers such as SpaRSA [16], SPGL1
[17], YALL1 and GPSR [18] or again [19] are also efficient
numerical implementations alternatives to solve the CS prob-
lem.

These estimators however have disparate performance. In
particular, each one yields a different Bayesian Mean Squared
Error (BMSE) as being based on specific model prior assump-
tions (e.g., knowledge of the number of non-zero amplitudes,
of the prior distribution of these amplitudes, of the noise
variance). To study the CS estimation problem in its generality,
lower bounds on the BMSE provide the minimal estimation
performance that a statistically efficient sparse estimator can
achieve. The Bayesian lower bounds [20] are particularly
well adapted as a benchmark for performance evaluation of
Bayesian estimators, such as the Minimum Mean Squared
Error (MMSE) and Maximum A-Posteriori probability (MAP)
estimators, as well as for global performance evaluation of
non-Bayesian estimators, such as the maximum-likelihood
(ML) estimator. Bayesian bounds can be partitioned into
two categories: the Ziv-Zakai family [21], derived from a
binary hypothesis testing problem and the Weiss-Weinstein
family [22], derived from the covariance inequality. The
Ziv-Zakai class contains the Ziv-Zakai, Bellini-Tartara [23],
Chazan-Zakai-Ziv, Weinstein, extended-Ziv-Zakai and Bell
bounds [24]. The Weiss-Weinstein class contains the Bayesian
Cramér-Rao, Bayesian Bhattacharyya [25], Bobrovsky-Zakai,
Reuven-Messer, Weiss-Weinstein, Bayesian Abel bounds and
the combined Cramér-Rao/Weiss-Weinstein bounds.

In this contribution we focus our work on the Van Trees’
Bayesian Cramér-Rao Bound (BCRB) [20] which we shall
show to be well taylored to the CS problem and relatively
easy to derive. Alternatively, authors have derived the deter-
ministic Cramér-Rao Bound (CRB) in [26]–[32] adapted to
deterministic sparse amplitude vector estimation, the Fisher
Information Matrix (FIM) (the matrix inverse of the CRB) in
[33] for a source vector parametrized by the variance of each
sources. The FIM derived in [33] belongs to the family of
the stochastic CRBs [34], whereas the bound considered in
the present article is obtained within a Bayesian context. In
[35], the authors propose a Bayesian lower bound for sparse
hierarchical model. The sparsity is controlled by the selection
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of the probability distribution of a set of hyper-parameters. In
the present work, no assumption on such a hierarchical models
is made. Our probabilistic model induces less parameters to
be estimated than a hierarchical model [36].

In addition, it is assumed in this work that the parameters
of interest are the non-zero amplitudes after the shrinkage
operation of a compressible1 signal. This is not the case in
[33,35] where the authors derive a BCRB to estimate more
parameters of interest than the amount of measurements by
using the Bayesian regularization philosophy. This approach
leads to trivial bounds as demonstrated in the sequel. In
addition, reference [38] discuses some identifiability issues for
sparse signals. In [10], a BCRB is derived for the CS model
but in the particular scenario of the off-grid problem.

To simplify the expressions of the BCRB, we shall consider
in this article the regime where the number of measurements
M and the number K of non-zero amplitudes are both large.
More specifically, assuming that the amplitudes belonging to
the support set admit a sparse representation into a large
M × K dictionary matrix composed of random and inde-
pendent entries, we shall rely on the notion of “deterministic
equivalents” from random matrix theory [39]–[42] to obtain
closed-form approximations of the BCRB. These closed-form
expressions have the advantages of providing useful informa-
tion on the behavior of the CS estimation problem irrespective
of the dictionary and to decrease the computational complexity
of the proposed analytical bounds, which are in general only
mathematically tractable for Gaussian priors [43,44].

The remainder of the article is organized as follows. Sec-
tion II presents the CS model. Section III introduces the
derivation of the asymptotic BCRB, in particular in the context
of extreme signal-to-noise ratio and when the amplitudes
are independent and identically distributed according to a
generalized normal distribution. Section IV presents the same
analysis for the oracle-LMMSE estimator and its statistical
efficiency is discussed. Finally, in Section V, we apply our
results in the context of the FRI signal sampling.

II. THE COMPRESSED SENSING FRAMEWORK

Let y be the M×1 noisy measurement vector in a (standard)
compressed sensing (CS) model [1,2]:

y = Ψs + n, (1)

where n is centered circular white Gaussian noise of unknown
variance σ2 and Ψ is the M × N measurement matrix. Let
s

def.
= Φθ where the matrix Φ is a N ×N orthonormal basis

and θ is the N × 1 amplitude vector. By defining the M ×N
dictionary matrix H

def.
= ΨΦ, model (1) can be recast as

y = Hθ + n. (2)

Define ρmes.
def.
= M

N which quantifies the dictionary redun-
dancy level. Classical sampling theory says that, to ensure no
loss of information, the number of measurements, M , should
be at least equal to N , or equivalently ρmes. = 1. In contrast,
in CS theory this goal is reached for ρmes. � 1 as long as

1Compressible means that the entries of θ sorted in decreasing order are
upper-bounded by a power law [37].

the N × 1 amplitude vector θ is sparse in a given basis Φ
(e.g., the canonical basis of RN , the Fourier basis, etc.) [45].
This allows one to consider the CS theory to solve the ill-
posed problem where the dictionary H is a redundant matrix.
A fundamental question in CS is to determine how large M
must be to enable the recovery of θ. This will depend on
the structural properties of H. In particular, if H satisfies the
Restricted Isometry Property (RIP) of order qK [2,46]2, i.e.,
if there exists εqK ∈ (0, 1) such that

‖θ‖2 (1− εqK) ≤ ‖Hθ‖2 ≤ ‖θ‖2 (1 + εqK) (3)

for all θ ∈ WK
def.
= {θ ∈ RN , ‖θ‖0 ≤ K} with ‖·‖0 denoting

the pseudo-norm l0, then practical recovery algorithms exist
that can efficiently recover any K-sparse amplitude vector if

ρdic. = −O (log ρspar.) (4)

with ρspar.
def.
= K

N being the proportion of non-zero entries
in θ, ρdic.

def.
= M

K the dictionary aspect ratio and O(·)
denoting the “big-O” notation. Determining whether a matrix
H satisfies the RIP is combinatorially complex but it was
shown that, if Φ has independent and identically distributed
sub-Gaussian [47] entries of zero mean and variance 1/M ,
then H satisfies the RIP with high probability [48].3

Let S be the support of θ, i.e. S def.
= {i ∈ [1 : N ], θi 6= 0}

and K
def.
= card(S). The K × 1 vector θS contains the K

non-zero entries in θ, i.e. θS
def.
= {θi, i ∈ S}. With these

definitions, the CS model (2) now reduces to

y = HSθS + n with HS
def.
= ΨΦS . (5)

The N ×K matrix ΦS results by dropping in Φ the columns
corresponding to the zero entries in θ.

We specify the context of our investigations in the following
three assumptions:
A1. The amplitude vector θ is K-sparse with K a priori

known. The vector θS is drawn from a distribution with
pdf p(θS). In Section III.A.2., we assume a generalized
normal prior but other priors can be considered with
marginal modifications of the presented results.

A2. The support S of cardinality K is modeled as a random
(discrete) random variable specified by its distribution on
set Ω which contains all K-sized subset of the indices
{1, . . . ,M} with no repetitions of indices. Notice that
since the support is a discrete variable, the regularity
conditions necessary to derive the CRB are not fulfilled.
The problem of joint support identification and amplitude
estimation is traditionally solved as a model detection
problem followed by a parameter estimation process. This
detection/estimation scheme has been studied in [50]. In
addition, notice that [26,28,29] have investigated oracle
or genie-aided lower bounds for a deterministic amplitude
vector.

A3. To ensure the RIP property with high probability, H is
assumed to be a non-stochastic matrix in the noise domain

2Integer q depends on the considered estimator.
3Specifically, Pr

(∣∣∣‖Hθ‖2 − ‖θ‖2
∣∣∣ ≥ εqK ‖θ‖2) ≤ 2e−MRε2qK for

some R > 0 [49].
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[28,32] whose entries are drawn independently from a
sub-Gaussian distribution with zero mean and variance
1/M . In the sequel, H is treated as a known matrix in
the context of the large system regime where M,K →∞
with ρmes. → ρ̄mes. ∈ (0, 1), ρspar. → ρ̄spar. ∈ (0, 1) and
ρdic. → ρ̄dic. = −O (log ρ̄spar.) ∈ (1,∞) using relation
(4).

Under these assumptions, we shall derive Bayesian lower
bounds on the accuracy of estimating the amplitude vector.

III. ASYMPTOTIC BAYESIAN LOWER BOUNDS

Let θ̂S(y) be an oracle-estimator of θS that is derived
assuming that the support S is known (see e.g., [6,28,51,52]
and Section IV for examples).

We define the conditional Bayesian covariance matrix and
the conditional Bayesian mean-square error (BMSE) of θ̂S(y)
given S:

Var
(
θ̂S

)
def.
= Ey,θ|HS ,S

[
(θS − θ̂S(y))(θS − θ̂S(y))T

]
(6)

BMSES
def.
= Tr

[
Var

(
θ̂S

)]
= Ey,θ|HS ,S

∥∥∥θS − θ̂S(y)
∥∥∥2

,

(7)

where Ez|q(·) is the expectation over the conditional distri-
bution of the random variable z given q and Tr[·] denoted
the matrix trace operator. Averaging over the distribution of S
yields the global covariance matrix and the global BMSE of
θ̂S(y):

Var
(
θ̂S

)
def.
= ES

[
Var

(
θ̂S

)]
=
∑
S∈Ω

Pr(S)Var
(
θ̂S

)
(8)

BMSEΩ
def.
= ES [BMSES ] =

∑
S∈Ω

Pr(S)BMSES . (9)

The above quantities are coined global in the sense that they
involve taking an expectation over the distribution of the
support S.

A. Global Bayesian lower bounds

1) Derivation of the van Trees’ lower bound: We first
define the K × K Bayesian information matrix (BIM) BS
with entries

[BS ]ij =

[
Var

(
∂ log p(y,θS)

∂θS

)]
ij

(10)

def.
= Ey,θS

(
∂ log p(y,θS)

∂θi

∂ log p(y,θS)

∂θj

)
(11)

− Ey,θS

(
∂ log p(y,θS)

∂θi

)
Ey,θS

(
∂ log p(y,θS)

∂θj

)
,

(12)

where θi, i ∈ S is the i-th entry of vector θS . We have [20]

Var
(
θ̂S

)
≥ CS

def.
= B−1

S (13)

BMSES ≥ CS
def.
= Tr[CS ] (14)

Var
(
θ̂S

)
≥ ES [CS ] (15)

BMSEΩ ≥ CΩ
def.
= ES [CS ] . (16)

Assume that the joint pdf p(y,θS) fulfills some mild
regularity conditions [53]. Making use of the identity
log p(y,θS) = log p(y|θS) + log p(θS) we can express the
BIM as the sum of two terms:

BS = JS + GS , (17)

where JS is the “data”-part and GS is the “prior”-part of the
BIM.
Due to the model assumptions, the conditional distribu-
tion of the observation y given θS is Gaussian: y|θS ∼
N (HSθS , σ

2I). So, log p(y|θS) follows a log-normal dis-
tribution, meaning that its second derivative exists and that
E
(
∂ log p(y|θS)

∂θi

)
= 0. Consequently, for i, j ∈ S × S , the

“data”-part of the BIM is

[JS ]ij = Ey,θS

(
−∂

2 log p(y|HS ,θS)

∂θi∂θj

)
= EθS [FS ]ij (18)

with the Fisher information matrix (FIM)

[FS ]ij = Ey|θS

(
−∂

2 log p(y|θS)

∂θi∂θj

)
. (19)

For y|θS following a normal distribution N (m,Σ) we can
invoke the Slepian-Bang formula [54]

[FS ]ij =

(
∂m

∂θi

)T
Σ−1 ∂m

∂θj
+

1

2
Tr

[
∂Σ

∂θi
Σ−1 ∂Σ

∂θj
Σ−1

]
(20)

=
1

σ2
[HT
SHS ]ij . (21)

The last expression is obtained from ∂m
∂θS

= [. . . ∂m
∂θi

. . .] =

HS and ∂Σ
∂θi

= 0 for i ∈ S.
The “prior”-part of the BIM has the form

[GS ]ij =

[
Var

(
∂ log p(θS)

∂θS

)]
ij

, (22)

where the prior distribution of θS is left unspecified for the
moment, see Section III-A3. Making use of the above results,
we obtain:

BS =
HT
SHS
σ2

+ GS (23)

CS = Tr(B−1
S ) = σ2Tr

((
HT
SHS + σ2GS

)−1
)
.(24)

2) Maximal support set cardinal and model identifiability:
It is usual (see [35] for instance) to assume K > M in a
Bayesian framework, meaning that we wish to estimate more
non-zero amplitudes than the number of measurements. In this
case, HT

SHS is rank deficient so that GS is selected to have
full rank to ensure invertibility of BS . This is usually referred
to as “Bayesian Regularization”. This strategy however leads
to meaningless lower bounds especially in the low noise
variance regime. We next address the low noise variance
regime. We first show that no estimator with finite BMSES
exists if K > M and then provide a closed-form expression
of the limit of BMSES when the noise variance converges
towards 0.
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a) Numerical analysis of the “Bayesian Regulariza-
tion” approach: Define the condition number of the BIM:
κ (BS)

def.
=
∥∥B−1
S
∥∥

2
‖BS‖2 = ‖CS‖2 ‖BS‖2 ∈ [1,∞) [55].

We have the following lemma.
Lemma 3.1: Assume that the 2-norm of the BIM is finite.

Then BMSES is upper bounded according to:

BMSES ≥
κ (BS)

‖BS‖2
. (25)

Proof Invoking the covariance inequality property in (14) and
Tr[CS ] > ‖CS‖24, we obtain BMSES > ‖CS‖2. The above
expression results then from the definition of the condition
number of the BIM.

We can, now, apply the above Lemma in the context of the
“Bayesian Regularization” approach and we are ready to show
the following result.

Proposition 3.2: Assume that K > M and ‖BS‖2 is finite.
In the low noise variance regime, meaning σ2 → 0, no
estimator θ̂S(y) with a finite BMSES exists.

Proof We can write for the condition number of the BIM

κ (BS) = κ

(
HT
SHS
σ2

+ GS

)
= κ

(
HT
SHS + σ2GS

)
. (26)

Using this expression, we have

κ (BS)
σ2→0−→ κ(HT

SHS) =∞ (27)

because matrix HT
SHS is singular when K > M . Now using

Lemma 3.1 yields BMSES
σ2→0−→ ∞ provided the 2-norm of

BS is finite.

As we can see, computing the inverse of BS is an ill-
conditioned problem in the low noise variance regime if
K > M . In addition, an infinite condition number implies
that the class of estimators considered in [35] exhibits infinite
BMSES . This also means that the “Bayesian Regularization”
philosophy yields useless Bayesian lower bounds in realistic
operational context.
Deriving lower bounds with singular FIM is an important
problem tackled recently in e.g., [56,57]. The singularity of
the FIM can be interpreted as a lack of identifiability of the
observation model due to parameters ambiguities, e.g. when
the model is underdetermined (as just considered), but also
due to scaling and permutation [58].

b) BMSE limit where K > M and independent ampli-
tudes: Assume K > M , thus HT

SHS is a M -rank matrix and
its SVD is HT

SHS =
∑K
i=1 diuiu

T
i where ui and di are the i-

th singular vector and value, respectively. Due to the singular-
ity of matrix HT

SHS , we have di = 0, M + 1 ≤ i ≤ K. Now
consider a prior that stipulates the entries of the amplitude
vector to be independent, so that GS = cIK for some positive
c. Then the BCRB is given by

CS = Tr

((
HT
SHS
σ2

+ cIK

)−1
)

= Tr
(
W−1

)
, (28)

4Notice that BS is assumed to be non-singular. Thus, CS = B−1
S exists

and is full-rank. In this case, the inequality is strict.

where W is a diagonal matrix with diagonal entries Wii =
di
σ2 +c for 1 ≤ i ≤M and Wii = c for M+1 ≤ i ≤ K. Thus,
the conditional BMSE is lower bounded by the “regularized”
BCRB according to

BMSES ≥
M∑
i=1

σ2

di + σ2c
+
K −M

c
≥ K −M

c
. (29)

According to this result the BMSES of any estimator is lower-
bounded by K−M

c and therefore does not converge to 0 as
the noise variance converges towards 0. In our view, this is
a limitation of the “Bayesian regularization” approach. As
a conclusion, we claim that regularized lower bounds are
irrelevant. In the sequel, it is always assumed that K < M .

3) Amplitude vector prior: The expressions for CS and its
low and high noise variance approximations depend on the
deterministic matrix GS which is determined by the prior on
θS , i.e. p(θS). In this section, we specialize this prior to be a
centered generalized normal distribution and compute explicit
expressions for CS for it.

Specifically, we assume that θS follows a centralized gener-
alized normal distribution [59]–[62], i.e. θS ∼ GN (0,DS , β)
where β is the real positive shape parameter and DS is the
dispersion matrix of the distribution. We further assume that
the entries of θS are independent, i.e. DS is diagonal and of
the form DS = diag{(α2

i )i∈S}, where αi > 0 is the scale
parameter of entry θi, i ∈ S. The pdf of θS reads

p(θS) ∝ e−|θ
T
SD−1
S θS |β (30)

where ∝ means “proportional to”. The scale parameters can

be written as α2
i =

σ2
θi

SDRβ
where SDRβ = Γ(3/β)

Γ(1/β) is the Signal
to Distortion Ratio (SDR) [63] with Γ(·) the Gamma function
[64] and σ2

θi
is the variance of θi, i ∈ S.

The generalized normal distribution encompasses the Lapla-
cian, Gaussian, uniform pdfs and degenerate Dirac distribu-
tions as special cases for β = 1, β = 2, β → ∞ and
β → 0, respectively, see Fig. 1. We denote in the following
RθS = diag(σ2

θi
)i∈S . Notice that RθS = DS when β = 2.

We choose this prior due to its universality. Other priors can be
adopted, though, with marginal modification of our derivations
and results.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Amplitude : θ

p
(θ
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Fig. 1. Graph of the generalized normal pdf for different values of the shape
parameter β.
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We now provide the explicit expression for GS for this
setting. Since the entries of θS are independent, we have

[GS ]ij =

[
Var

(
∂ log p(θS)

∂θS

)]
ij

(31)

=

{
Var

(
∂ log p(θi)

∂θi

)
for i = j,

0 otherwise
. (32)

Moreover from (30), p(θi) ∝ e
−|θi|

β

α
β
i . The score function of

θi is thus given by

∂ log p(θi)

∂θi
= − ∂

∂θi

|θi|β

αβi
= − β

αβi
sgn(θi)|θi|β−1 (33)

with sgn(·) denoting the sign function. It is straightforward to
show the first moment of the score function is zero.

Because of the identity sgn2(θi) = 1 for θi 6= 0 we can
write

Var

(
∂ log p(θi)

∂θi

)
= E

((
∂ log p(θi)

∂θi

)2
)

(34)

=
β2

α2β
i

E
(
|θi|2(β−1)

)
. (35)

Assuming that 2(β − 1) is integer-valued, we have
E
(
|θi|2(β−1)

)
= α

2(β−1)
i

Γ(2−1/β)
Γ(1/β) [60]. This finally entails

GS = gβSDRβR−1
θS
, (36)

with gβ
def.
= β2 Γ(2−1/β)

Γ(1/β) . Making use of the above propositions
and definitions we obtain for the conditional BCRB

CS = σ2Tr
((

HT
SHS + σ2gβSDRβR−1

θS

)−1
)
. (37)

B. Asymptotic analysis

The above expressions for CS still depend on the non-
stochastic, known and randomly generated matrix HS . In this
section, we leverage on results from the theory of random
matrices to analyze the (almost sure) convergence of the
BCRB in the asymptotic limit when M,K → ∞ such that
ρdic. = M/K → ρ̄dic. ∈ (1,∞).

1) Existence of a finite variance estimator in the asymptotic
scenario: As discussed in Section III-A2, a key factor influ-
encing the behavior of the BCRB is the “numerical stability”
of the inverse of matrix HT

SHS . More specifically, if matrix
HT
SHS is singular, then no estimator with finite variance

[57] exists and the estimation of the entire parameter vector
is impossible. To quantify this point, we have to study the
condition number of HT

SHS . We can show that

κ
(
HT
SHS

)
=
λmax

(
HT
SHS

)
λmin

(
HT
SHS

) → (
1 +

√
1/ρ̄dic.

1−
√

1/ρ̄dic.

)2

(38)

almost surely. Thus, the condition number remains low (“nu-
merical stability”) if the number of measurements is much
larger than the cardinality of the support set. Conversely,
as ρ̄dic. decreased towards 1, the condition number goes
to infinity. This means that if the number of measurements

and the cardinality of the support set tend to be close, then
the inversion of matrix HT

SHS is in fact an ill-conditioned
problem and no finite-variance estimator exists.

2) Asymptotic Bayesian lower bound: First, we shall re-
quire the following regularity assumption as the system di-
mensions grow: as M →∞ with ρdic. → ρ̄dic.,

0 < lim inf
K

λ1(RθS ) ≤ lim sup
K

λK(RθS ) <∞. (39)

Based on [39], we have the following proposition.
Proposition 3.3: Assume that (39) holds. Then, as M →∞

with ρdic. → ρ̄dic.,
1

K
CS − σ2eM → 0 (40)

almost surely, where eM is the unique positive solution to the
equation in e

e =
1

K
Tr

(
1

1 + eρ̄−1
dic.

IK + σ2gβSDRβR−1
θS

)−1

. (41)

Proposition 3.3 states that, as M → ∞ with ρdic. → ρ̄dic.,
the random variable 1

K CS can be asymptotically well approx-
imated by the deterministic, but not necessarily converging,
quantity σ2eM where eM is implicit. Observe that we can
rewrite (41) as

e =

∫ (
1

1 + eρ̄−1
dic.

+ σ2gβSDRβt
−1

)−1

µM (dt), (42)

where µM , 1
K

∑K
i=1 δλi(RθS ) is the empirical (normal-

ized) counting measure of the eigenvalues of RθS . Assum-
ing now that µM → µ weakly for some measure µ with
support supp(µ) ⊂ (0,∞) and using the fact that eM ≤
1/(σ2gβSDRβ) lim supK λK(RθS ), we find that eM → e(∞),
unique positive solution to the equation in e

e =

∫ (
1

1 + eρ̄−1
dic.

+ σ2gβSDRβt
−1

)−1

µ(dt). (43)

In particular,

1

K
CS → C(∞) , σ2e(∞) (44)

almost surely.
a) Asymptotic BCRB in extreme noise variance regimes:

Although Proposition 3.3 does not provide any closed-form
expression. We study below its approximation in the low noise
variance regime.

Proposition 3.4: For M →∞ with ρdic. → ρ̄dic. and σ → 0
we have

1

σ2K
CS −

ρ̄dic.

ρ̄dic. − 1
→ 0 (45)

almost surely.

Proof To prove the above proposition recall from [65] that
the extension of eM to the mapping C → C \ supp(µM ),
z 7→ eM (z), unique solution of (41) with σ2 = −z, is the
Stieltjes transform of the measure with support supp(µM ).
Since ρ̄dic. > 1 and (39) is in place, ∪∞M=1supp(µM ) ⊂
(0,∞), so that eM (z) is analytic at z = 0. In particular,
eM → e◦M as σ → 0 with e◦M the unique positive solution
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to e◦M = 1 + e◦M ρ̄
−1
dic., which here is explicitly given by

e◦M = ρ̄dic.

ρ̄dic.−1 . Now, from [40], lim infn λmin(HT
SHS) > 0

almost surely, so that σ−2 1
K CS is uniformly (across M )

continuous at σ = 0.

The above proposition means that the BCRB in the large
dimensional regime is a function of the noise variance and of
ρ̄dic. only. That is, the actual support set S only intervenes
through its cardinality K. An alternative expression involves
the ratio between the sparsity ratio of the amplitude vector
over the dictionary redundancy level.

Remark 3.5: For small noise variance, the asymptotic BCRB
can be closely approximated by

C(∞) ≈ σ2 ρdic.

ρdic. − 1
=

σ2

1− ρspar.

ρmes.

. (46)

Remark 3.6: In the high noise variance regime, irrespective
of random matrix considerations, it is immediate that

1

K
CS − gβSDRβ

1

K
Tr(RθS )→ 0 (47)

as σ →∞.
The above remark is evident since the measurements carry

no information when the noise variance is large, only the prior
on the parameters is relevant in that regime. In the next section,
we derive the BCRB for an arbitrary noise variance when
the prior is a centralized generalized normal distribution with
identical dispersion.

b) Generalized normal prior with identical dispersion:
When RθS = σ2SNRIK (identical dispersion regime) with

SNR
def.
=

σ2
θ

σ2
=

Γ(3/β)

Γ(1/β)

α2

σ2
(48)

Proposition 3.3 particularizes as follows:
Proposition 3.7: Assume a generalized normal prior with

identical dispersion for the amplitudes. Then, as M → ∞
with ρdic. → ρ̄dic.

1

K
CS → C(∞) def.

= r

(
SNR

gβSDRβ

)
(49)

almost surely, where

r(x) =
U(x)

2

(√
1 +

4V(x)

U(x)2
− 1

)
(50)

with U(x) = σ2 (ρ̄dic. + (ρ̄dic. − 1)x) and V (x) = σ4ρ̄dic.x.

Proof Based on Proposition 3.3, solving (41) for e leads to
the resolution of a quadratic polynomial in e defined by

P (e;x) = e2 + U (x) e− V (x) , (51)

where x = SNR
gβSDRβ

. Choosing the positive root leads to the
above proposition.

We now derive a closed-form expression of the BCRB for
the important case where the amplitude vector is highly sparse.

Proposition 3.8: Assume a generalized normal prior with
identical dispersion for the amplitudes. If the amplitude vector
is highly sparse, i.e., ρ̄dic. � 1, we have

C(∞) =
σ2
θ

SNR + gβSDRβ
+O(ρ̄2

dic.). (52)

Proof The first-order Taylor approximation of r(x) in (50)
for large ρ̄dic. reads r(x) = σ2 x

1+x + O(ρ̄2
dic.). Substituting

x = SNR
gβSDRβ

yields r( SNR
gβSDRβ

) =
σ2
θ

SNR+gβSDRβ
+O(ρ̄2

dic.).

c) Asymptotic BCRB: In the large system limit the BCRB
defined in (16) takes a very simple expression.

Proposition 3.9: As M →∞ with ρdic. → ρ̄dic. and σ → 0

1

K
CΩ − C(∞) → 0. (53)

Proof As noted in Proposition 3.4, the asymptotic BCRB,
C(∞), derived for a given realization of the support S is only
a function of the ratio ρ̄dic.. Thus,

CΩ =
∑
S∈Ω

Pr(S|L)CS → C(∞) lim
M,K→∞

∑
S∈Ω

Pr(S|L)︸ ︷︷ ︸
1

= C(∞). (54)

The above proposition is important from a computational
point of view since the brute force computation of CΩ, which
involves a costly numerical matrix inversion, becomes rapidly
intractable as M and K grow large. Moreover, (53) is valid
for any prior distribution of the random support.

IV. STATISTICAL ANALYSIS OF THE ORACLE LMMSE
ESTIMATOR

Oracle estimators can be viewed as a gold standard against
which practical sub-optimal approaches are compared [51,66].
This class of estimators is also called genie-aided estimators
since they assume perfect knowledge of the support set. This
assumption seems severe at first glance but in practice, it can
be checked by means of numerical simulations that if the
noise variance is sufficiently small, the assumption of perfect
estimation of the support set is realistic.

The optimal estimator for the Bayesian linear model is
the Minimum Mean Squared Error (MMSE) estimator [44].
Unfortunately, the variance of the MMSE estimator admits no
closed-form expression unless the amplitude vector follows a
Gaussian prior. For other priors, as for instance the Laplacian
distribution, the analytic derivation of the variance of the
MMSE estimator is intractable. Thus, we focus our analysis
on the oracle linear MMSE (LMMSE) estimator which we
denote in the sequel as θ̂S(y).

The Bayesian Gauss-Markov Theorem [44] provides condi-
tional variance of the oracle LMMSE estimator:

Var
(
θ̂S

)
= Tr

((
1

σ2
HT
SHS + R−1

θS

)−1
)
. (55)

When the amplidude prior is the generalized normal prior with
identical dispersion

Var
(
θ̂S

)
= σ2

θTr
((

SNR HT
SHS + IK

)−1
)
. (56)

A. Asymptotic variance

Notice that expression (56) is formally similar to that of
the BCRB in (37). Consequently, by using the same method
as applied to prove Proposition 3.7 we obtain the following
proposition.
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Proposition 4.1: For M →∞ with ρdic. → ρ̄dic.

1

K
Var

(
θ̂S

)
→ Var(∞)

(
θ̂
)

def.
= r(SNR) (57)

almost surely where r(x) is defined in (50).
Remark 4.2: The variance of the oracle LMMSE estimator

is given by

VarΩ(θ̂) =
∑
S∈Ω

Pr(S)Var
(
θ̂S

)
. (58)

In the large dimensional limit the variance of the oracle
LMMSE estimator has the same invariance property towards
the support as given in Proposition 3.9 for the asymptotic
BCRB. Thus, in the sequel we only study Var(∞)

(
θ̂
)

.
In the following proposition, we derive a closed-form

expression for the variance of the oracle-LMMSE for the
important case where the amplitude vector is highly sparse.

Proposition 4.3: Provided the amplitude vector is highly
sparse, i.e., ρ̄dic. � 1, we have

Var(∞)
(
θ̂
)

=
σ2
θ

SNR + 1
+O(ρ̄2

dic.). (59)

Proof The proof is straightforwardly derived from the proof
of Proposition 3.8 for x = SNR.

B. Asymptotic statistical efficiency of the oracle-LMMSE es-
timator

Using the derived closed-form expressions, it is now easy
to compare the asymptotic variance of the oracle-LMMSE
estimator with the Bayesian lower bound. With the definition

Cβ =
C(∞)

Var(∞)
(
θ̂
) =

r
(

SNR
gβSDRβ

)
r(SNR)

. (60)

we obtain the next proposition.
Proposition 4.4:

P1. For a sufficiently large SNR ratio Cβ is given by

Cβ

{
= 1, for β = 2,
< 1, for β 6= 2.

(61)

P2. At small SNR ratio Cβ is given by

Cβ =
1

gβSDRβ
+O(SNR2). (62)

Proof P1. First, notice that if the prior is Gaussian,
g2SDR2 = 1. Thus C(∞) = Var(∞)

(
θ̂
)

.
Second, it is straightforward to see that r(x) is an
increasing function and since SNR

gβSDRβ
< SNR for all

β 6= 2 we conclude that Cβ < 1 and therefore that
C(∞) < Var(∞)

(
θ̂
)

.
P2. Assuming that x is small, we have

f(x) =
4ρ̄dic.x

(ρ̄dic. + (ρ̄dic. − 1)x)2
=

4

ρ̄dic.
x+O(x2) (63)

g(x) =
√

1 + f(x)− 1 =
1

2
f(x) +O(f(x)2). (64)

Using these approximations and (50), we obtain an ap-
proximated root for small x according to

r(x) = σ2x+O(x2). (65)

Thus, at small SNR we have

C(∞) =
σ2
θ

gβSDRβ
+O(SNR2) (66)

Var(∞)
(
θ̂
)

= σ2
θ +O(SNR2). (67)

Now, inserting these approximations in (60) yields (62).

From Proposition 4.4, we draw the following conclusions:
• At small SNR the asymptotic variance of the oracle

LMMSE estimator is proportional to C(∞). The propor-
tionality coefficient Cβ expressed in dB reads

Cβ [dB] = −10 log10(gβ)− 10 log10(SDRβ). (68)

It is tabulated in Table I for selected values of β.
An important result in the context of the CS is that
the oracle LMMSE estimator for the Laplacian prior
(β = 1) is not statistically efficient at small SNR and
the proportionality coefficient is about −3 dB.

• At high SNR the variance of the oracle LMMSE estima-
tor, Var(∞)

(
θ̂
)

, and bound C(∞) have the same asymp-
totic behavior wrt. the SNR. Specifically, these quantities
are almost identical for β 6= 2 and equal if β = 2. When
the prior is Gaussian the oracle LMMSE estimator, which
coincides with the oracle MMSE estimator, is statistically
efficient. However, for any other prior the oracle LMMSE
estimator is never statistically efficient. This is also true
for the Laplacian prior.

V. APPLICATION TO CS OF FINITE-RATE-OF-INNOVATION
(FRI) SIGNALS

A. The FRI model

Consider a non-bandlimited continuous-time signal with a
finite number of weighted Dirac impulses:

x(t) =
∑
`∈S

θ`δ(t− τ`), (69)

where τ` and a` are respectively the time-delay and the
amplitude of the `-th Dirac. Signals of this form are sparse in
time and encompass a wide range of realistic signals. Notice
that signal x(t) is non-bandlimited and thus cannot be sampled
in the Shannon framework without error. However, a major
theory has been developed in [67,68] which allows to over-
come the Shannon theory [4]. So, we consider the following
estimation problem described in Fig. 2. Consider a normalized
sinc sampling kernel defined by g(t) = 1

TS
sinc

(
t
TS

)
where

1/TS is the sampling rate. Then, uniform sampling at rate
1/TS of signal x(t) yields the samples

sk =

∫ ∞
−∞

g(t− kTS)x(t)dt (70)

=
1

TS

∑
`∈S

θ` sinc

(
τ`
TS
− k
)
, k ∈ [1 : N ]. (71)
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TABLE I
RATIO Cβ IN DB

β 1 (Lap.) 2 (Gauss.) 3 4 5 6 7 8 9 10
Cβ [dB] −3 0 −0.5 −1.4 −2.2 −2.9 −3.5 −4 −4.6 −5

Define the orthogonal basis matrix (see Fig. 2-(a)) as

[Φ]kk′ =
1

TS
sinc

(
τk′

TS
− k
)
, k, k′ ∈ [1 : N ]. (72)

and assume that vector θ is K-sparse. We then have

s = Φθ = ΦSθS , (73)

where S is the support set. Vector s is a stream of filtered Dirac
impulses. It is well-known that this class of signals has a finite
rate of innovation where the rate of innovation is defined in
function of the number of degrees of freedom (2K) per unit
of time (N ). In our scenario, this rate is given by ρ = 2ρ̄spar..
This means that in the FRI framework, the number of pulse, K,
grows at the same rate as the window length N or equivalently
as M . In addition, in the sequel, we consider sampling rates
given by 1/TS → 2ρ̄spar..

Fig. 2. (a) Derivation of the basis matrix based on the “sinc” sampling kernel
g(t), (b) CS for FRI signals.

Define a M × N non-stochastic but randomly generated
measurement matrix Ψ with M < N , see also Fig. 2-(b). The
under-sampled observation vector with ratio ρmes is given by

y = Ψs + n = ΨΦSθS + n, (74)

where s is the uncompressed measurement vector of size N .
First notice that due to the orthonormality of the “sinc” basis,
matrix ΨΦ satisfies the RIP conditions with high probability.
Due to identification constraint, we impose that K < M . As
indicated before K grows as the same rate as N , which implies
that M grows at the same rate as K.

B. Numerical investigations

We assume a Laplacian prior θS with location vector 0 and
scale matrix 1

2RθS , i.e., θS ∼ GN
(
0, 1

2RθS , 1
)
.

In Fig. 3, we compare the asymptotic BCRB and the
variance of the LMMSE estimator with the corresponding
matrix-based expressions given by (37) and (56) normalized

by K = 5. We can see that that in the asymptotic regime is
already reached for this small value of K. This means that
RMT provides accurate results already for practical scenarios.
We also notice that for the Laplacian prior the oracle-LMMSE
is suboptimal in the low SNR regime.

Fig. 3. Two BCRBs and variance of the oracle LMMSE estimator vs. SNR:
K = 5, M = 50, N = 100.

We now compare the asymptotic BCRB and the variance
of the oracle LMMSE estimator to those of three popular
sparse estimators, namely basis pursuit denoising (BPDN), or-
thogonal matching pursuit (OMP), and compressive sampling
matching pursuit (CoSaMP):
• BPDN solves the following optimization problem:

θ̂S = min
θ
||θ||21 subject to ||y −Hθ||2 ≤ σ2. (75)

The algorithm exploits the following knowledge: (i) the
amplitude prior follows a Laplacian prior and (ii) the
noise variance is known. The cardinality of the support
has to be estimated. The minimization problem (75) is
solved by using the standard SPGL1 MatLab toolbox [17]
with a maximal number of iterations of 1000.

• OMP and the CoSaMP [69,70] belong to the family of
greedy algorithms. In contrast to BPDN, they are faster
and generic in the sense that the amplitude prior does
not need to be specified. In addition, they do not need
to know the noise variance but assume the knowledge of
the cardinality of the support.

In Fig. 4, we compare the estimation accuracy of the above
sparse estimators with the asymptotic BCRB and the variance
of the oracle-LMMSE estimator in the context of CS of FRI
signals. We perform our analysis for the high and low SNR
regimes.
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• High SNR regime: We can see that OMP and CoSaMP
have a BMSE very close to the BCRB in the high SNR
regime. This property can be explained as follows. At
high SNR the support set is estimated with high accuracy,
provided its cardinality is known; thus OMP inherits
the optimality of the least square estimator in case of
Gaussian noise. CoSaMP is a modified OMP, so it has
globally the same behavior as the latter. In addition, since
the specific shape of the amplitude prior has a marginal
impact on the BCRB at sufficiently high SNR and the
noise variance is decoupled from the other parameter
estimates, it is natural to conclude that the proposed lower
bound can well predict the performance of OMP and
CoSaMP in this regime. Conversely, the poor accuracy
of BPDN in the high SNR regime is due to the error in
the estimation of the cardinality of the support.

• Low SNR regime: In this regime, the BCRB is solely
governed by the a priori distribution of the amplitudes
since the available measurements are heavily corrupted
by noise. Thus, in this regime BPDN reaches the BCRB
derived for a Laplacian prior. OMP and CoSaMP do
not exploit the knowledge of the prior. This explains
why their MSE is very far from the BCRB and goes
to infinity as σ2 → ∞. So, in the low SNR regime the
BCRB provides a good prediction of the performance of
algorithms based on criterion (75).

Fig. 4. Asymptotic BCRB, variance of the oracle LMMSE estimator, and
BMSE of three benchmark sparse estimators vs. SNR: K = 5, M = 50,
N = 100.

VI. CONCLUSION

In the context of the CS problem, we derive and study
the Bayesian performance estimation for K-sparse generalized
normal amplitudes belonging to a random support of known
cardinality K for large non-stochastic but randomly generated
dictionaries. By “large”, we assume in this work that the
dimensions of the dictionary grows at the same rate. This
context is well adapted to exploit results from Random Matrix

Theory. Compact closed-form expressions of the BCRB are
derived in (i) extreme SNR regimes, (ii) for highly-sparse
amplitude vector and (iii) for generalized normal amplitudes
with identical dispersion matrix. In particular, we show that
in the asymptotic context our Bayesian lower bound is valid
for any support priors. This result is important from a com-
putational point of view. The second part of this contribution
presents a statistical efficiency analysis of the oracle LMMSE
estimator. We show that the oracle-LMMSE for any priors
(excepted the Gaussian one) is never efficient in particular at
low SNR. Finally, we apply our results in the context of FRI
signal sampling and the derived bounds are compared to the
performance of the most popular sparse estimators such as
OMP, CoSaMP and the BPDN.
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