E. J. Candes and M. B. Wakin, An Introduction To Compressive Sampling, IEEE Signal Processing Magazine, vol.25, issue.2, pp.21-30, 2008.
DOI : 10.1109/MSP.2007.914731

R. Baraniuk, Compressive Sensing [Lecture Notes], IEEE Signal Processing Magazine, vol.24, issue.4, pp.118-121, 2007.
DOI : 10.1109/MSP.2007.4286571

M. Elad and I. Yavneh, A Plurality of Sparse Representations Is Better Than the Sparsest One Alone, IEEE Transactions on Information Theory, vol.55, issue.10, pp.4701-4714, 2009.
DOI : 10.1109/TIT.2009.2027565

M. Unser, Sampling-50 years after Shannon, Proceedings of the IEEE, vol.88, issue.4, pp.569-587, 2000.
DOI : 10.1109/5.843002

N. L. Pedersen, C. N. Manchón, D. Shutin, and B. H. Fleury, Application of Bayesian hierarchical prior modeling to sparse channel estimation, 2012 IEEE International Conference on Communications (ICC)
DOI : 10.1109/ICC.2012.6363847

W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels, Proceedings of the IEEE, vol.98, issue.6, pp.1058-1076, 2010.
DOI : 10.1109/JPROC.2010.2042415

S. F. Cotter and B. D. Rao, Sparse channel estimation via matching pursuit with application to equalization, IEEE Transactions on Communications, vol.50, issue.3, pp.374-377, 2002.
DOI : 10.1109/26.990897

M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, Compressed Sensing MRI, IEEE Signal Processing Magazine, vol.25, issue.2, pp.72-82, 2008.
DOI : 10.1109/MSP.2007.914728

M. Herman and T. Strohmer, High-Resolution Radar via Compressed Sensing, IEEE Transactions on Signal Processing, vol.57, issue.6, pp.2275-2284, 2009.
DOI : 10.1109/TSP.2009.2014277

R. Jagannath and K. Hari, Block Sparse Estimator for Grid Matching in Single Snapshot DoA Estimation, IEEE Signal Processing Letters, vol.20, issue.11, pp.1038-1041, 2013.
DOI : 10.1109/LSP.2013.2279124

S. Mallat, A wavelet tour of signal processing: the sparse way Academic press, 2008.

Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp.40-44, 1993.
DOI : 10.1109/ACSSC.1993.342465

P. Schniter, L. C. Potter, and J. Ziniel, Fast bayesian matching pursuit, 2008 Information Theory and Applications Workshop, pp.326-333, 2008.
DOI : 10.1109/ITA.2008.4601068

J. Tropp and A. C. Gilbert, Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit, IEEE Transactions on Information Theory, vol.53, issue.12, pp.4655-4666, 2007.
DOI : 10.1109/TIT.2007.909108

S. Chen, D. Donoho, and M. Saunders, Atomic Decomposition by Basis Pursuit, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.33-61, 1998.
DOI : 10.1137/S1064827596304010

S. J. Wright, R. D. Nowak, and M. A. Figueiredo, Sparse Reconstruction by Separable Approximation, IEEE Transactions on Signal Processing, vol.57, issue.7, pp.2479-2493, 2009.
DOI : 10.1109/TSP.2009.2016892

E. Van-den, M. P. Berg, and . Friedlander, SPGL1: A solver for large-scale sparse reconstruction, 2007.

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems, IEEE Journal of Selected Topics in Signal Processing, vol.1, issue.4, pp.586-597, 2007.
DOI : 10.1109/JSTSP.2007.910281

M. Zibulevsky and M. Elad, L1-L2 Optimization in Signal and Image Processing, IEEE Signal Processing Magazine, vol.27, issue.3, pp.76-88, 2010.
DOI : 10.1109/MSP.2010.936023

URL : https://hal.archives-ouvertes.fr/inria-00567455

H. L. Van-trees and K. L. Bell, Bayesian bounds for parameter estimation and nonlinear filtering/tracking, AMC, vol.10, p.12, 2007.
DOI : 10.1109/9780470544198

J. Ziv and M. Zakai, Some lower bounds on signal parameter estimation, IEEE Transactions on Information Theory, vol.15, issue.3, pp.386-391, 1969.
DOI : 10.1109/TIT.1969.1054301

A. J. Weiss and E. Weinstein, A lower bound on the mean-square error in random parameter estimation (Corresp.), IEEE Transactions on Information Theory, vol.31, issue.5, pp.680-682, 1985.
DOI : 10.1109/TIT.1985.1057094

E. Weinstein, Relations between Belini-Tartara, Chazan-Zakai-Ziv, and Wax-Ziv lower bounds, IEEE Transactions on Information Theory, vol.34, issue.2, pp.342-343, 1988.
DOI : 10.1109/18.2648

K. L. Bell, Y. Steinberg, Y. Ephraim, and H. L. Van-trees, Extended Ziv-Zakai lower bound for vector parameter estimation, IEEE Transactions on Information Theory, vol.43, issue.2, pp.624-637, 1997.
DOI : 10.1109/18.556118

D. Fraser and I. Guttman, Bhattacharyya Bounds without Regularity Assumptions, The Annals of Mathematical Statistics, pp.629-632, 1952.
DOI : 10.1214/aoms/1177729344

Z. Ben-haim and Y. Eldar, The Cramér-Rao Bound for Estimating a Sparse Parameter Vector, IEEE Transactions on Signal Processing, vol.58, issue.6, pp.3384-3389, 2010.
DOI : 10.1109/TSP.2010.2045423

P. Pakrooh, L. L. Scharf, A. Pezeshki, and Y. Chi, Analysis of fisher information and the Cramer-Rao bound for nonlinear parameter estimation after compressed sensing, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.6630-6634, 2013.
DOI : 10.1109/ICASSP.2013.6638944

R. Niazadeh, M. Babaie-zadeh, and C. Jutten, On the Achievability of Cram??r???Rao Bound in Noisy Compressed Sensing, IEEE Transactions on Signal Processing, vol.60, issue.1, pp.518-526, 2012.
DOI : 10.1109/TSP.2011.2171953

B. Babadi, N. Kalouptsidis, and V. Tarokh, Asymptotic Achievability of the CramÉr–Rao Bound for Noisy Compressive Sampling, IEEE Transactions on Signal Processing, vol.57, issue.3, pp.1233-1236, 2009.
DOI : 10.1109/TSP.2008.2010379

R. Boyer, B. Babadi, N. Kalouptsidis, and V. Tarokh, Errata to Asymptotic Achievability of the Cramér-Rao Bound for Noisy Compressive Sampling, working paper or preprint Available: https, 2016.

A. Florescu, E. Chouzenoux, J. Pesquet, and S. Ciochina, Cramer-Rao bound for a sparse complex model, 2014 10th International Conference on Communications (COMM), pp.1-4, 2014.
DOI : 10.1109/ICComm.2014.6866673

URL : https://hal.archives-ouvertes.fr/hal-00988369

M. Shaghaghi and S. Vorobyov, Cramér–Rao Bound for Sparse Signals Fitting the Low-Rank Model with Small Number of Parameters, IEEE Signal Processing Letters, vol.22, issue.9, pp.1497-1501, 2015.
DOI : 10.1109/LSP.2015.2409896

K. Qiu and A. Dogandzic, Variance-Component Based Sparse Signal Reconstruction and Model Selection, IEEE Transactions on Signal Processing, vol.58, issue.6, pp.2935-2952, 2010.
DOI : 10.1109/TSP.2010.2044828

P. Stoica, G. Larsson, and A. B. Gershman, The stochastic CRB for array processing: a textbook derivation, IEEE Signal Processing Letters, vol.8, issue.5, pp.148-150, 2001.
DOI : 10.1109/97.917699

R. Prasad and C. R. Murthy, Cramér-Rao-Type Bounds for Sparse Bayesian Learning, IEEE Transactions on Signal Processing, vol.61, issue.3, pp.622-632, 2013.
DOI : 10.1109/TSP.2012.2226165

M. N. Korso, R. Boyer, P. Larzabal, and B. H. Fleury, Estimation Performance for the Bayesian Hierarchical Linear Model, IEEE Signal Processing Letters, vol.23, issue.4, pp.488-492, 2016.
DOI : 10.1109/LSP.2016.2528579

URL : https://hal.archives-ouvertes.fr/hal-01264666

V. Cevher, Learning with compressible priors, Advances in Neural Information Processing Systems, pp.261-269, 2009.

P. Pal and P. Vaidyanathan, Parameter identifiability in Sparse Bayesian Learning, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1851-1855, 2014.
DOI : 10.1109/ICASSP.2014.6853919

J. W. Silverstein and Z. Bai, On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices, Journal of Multivariate Analysis, vol.54, issue.2, pp.175-192, 1995.
DOI : 10.1006/jmva.1995.1051

Z. Bai and J. W. Silverstein, No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices Annals of probability, pp.316-345, 1998.

R. Couillet and M. Debbah, Random matrix methods for wireless communications, 2011.
DOI : 10.1017/CBO9780511994746

URL : https://hal.archives-ouvertes.fr/hal-00658725

W. Hachem, P. Loubaton, X. Mestre, J. Najim, and P. Vallet, LARGE INFORMATION PLUS NOISE RANDOM MATRIX MODELS AND CONSISTENT SUBSPACE ESTIMATION IN LARGE SENSOR NETWORKS, Random Matrices: Theory and Applications, 2012.
DOI : 10.1142/S2010326311500067

URL : https://hal.archives-ouvertes.fr/hal-00790069

J. S. Turek, I. Yavneh, and M. Elad, On MMSE and MAP Denoising Under Sparse Representation Modeling Over a Unitary Dictionary, IEEE Transactions on Signal Processing, vol.59, issue.8, pp.3526-3535, 2011.
DOI : 10.1109/TSP.2011.2151190

URL : https://hal.archives-ouvertes.fr/hal-00474157

S. M. Kay, Fundamentals of statistical signal processing: estimation theory Compressed sensing, IEEE Transactions on Information Theory, vol.52, issue.4, pp.1289-1306, 1993.

E. J. Candes and T. Tao, Decoding by Linear Programming, IEEE Transactions on Information Theory, vol.51, issue.12, pp.4203-4215, 2005.
DOI : 10.1109/TIT.2005.858979

V. Buldygin and Y. Kozachenko, Metric characterization of random variables and random processes, 2000.

M. A. Davenport, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, A simple proof that random matrices are democratic, arXiv preprint, 2009.

R. Baraniuk, M. Davenport, R. Devore, and M. Wakin, A Simple Proof of the Restricted Isometry Property for Random Matrices, Constructive Approximation, vol.159, issue.2, pp.253-263, 2008.
DOI : 10.1007/s00365-007-9003-x

E. Chaumette, P. Larzabal, and P. Forster, On the influence of a detection step on lower bounds for deterministic parameter estimation, IEEE Transactions on Signal Processing, vol.53, issue.11, pp.4080-4090, 2005.
DOI : 10.1109/TSP.2005.857027

URL : https://hal.archives-ouvertes.fr/halshs-00158304

Z. Ben-haim and Y. C. Eldar, Near-Oracle Performance of Greedy Block-Sparse Estimation Techniques From Noisy Measurements, IEEE Journal of Selected Topics in Signal Processing, vol.5, issue.5, pp.1032-1047, 2011.
DOI : 10.1109/JSTSP.2011.2160250

H. Zayyani, M. Babaie-zadeh, and C. Jutten, Compressed sensing Block MAP-LMS adaptive filter for sparse channel estimation and a Bayesian Cramer-Rao bound, 2009 IEEE International Workshop on Machine Learning for Signal Processing, pp.1-6, 2009.
DOI : 10.1109/MLSP.2009.5306268

URL : https://hal.archives-ouvertes.fr/hal-00424165

E. L. Lehmann and G. Casella, Theory of point estimation, 1998.

P. Stoica and R. L. Moses, Spectral analysis of signals, NJ, 2005.

G. H. Golub and C. F. Van-loan, Matrix computations, 2012.

P. Stoica and B. C. Ng, On the Cramer-Rao bound under parametric constraints, IEEE Signal Processing Letters, vol.5, issue.7, pp.177-179, 1998.
DOI : 10.1109/97.700921

P. Stoica and T. L. Marzetta, Parameter estimation problems with singular information matrices, IEEE Transactions on Signal Processing, vol.49, issue.1, pp.87-90, 2001.
DOI : 10.1109/78.890346

B. M. Sadler, R. J. Kozick, and T. Moore, Bounds on bearing and symbol estimation with side information, IEEE Transactions on Signal Processing, vol.49, issue.4, pp.822-834, 2001.
DOI : 10.1109/78.912927

S. Nadarajah, A generalized normal distribution, Journal of Applied Statistics, vol.1, issue.7, pp.685-694, 2005.
DOI : 10.1016/S0378-3758(00)00169-5

S. Yu, A. Zhang, and H. Li, A review of estimating the shape parameter of generalized Gaussian distribution, Journal of Computational Information Systems, vol.8, issue.21, pp.9055-9064, 2012.

M. Novey, T. Adali, and A. Roy, A Complex Generalized Gaussian Distribution— Characterization, Generation, and Estimation, IEEE Transactions on Signal Processing, vol.58, issue.3, pp.1427-1433, 2010.
DOI : 10.1109/TSP.2009.2036049

T. Zhang, A. Wiesel, and M. S. Greco, Multivariate Generalized Gaussian Distribution: Convexity and Graphical Models, IEEE Transactions on Signal Processing, vol.61, issue.16, pp.4141-4148, 2013.
DOI : 10.1109/TSP.2013.2267740

URL : http://arxiv.org/abs/1304.3206

R. Gribonval, V. Cevher, and M. E. Davies, Compressible Distributions for High-Dimensional Statistics, IEEE Transactions on Information Theory, vol.58, issue.8, pp.5016-5034, 2012.
DOI : 10.1109/TIT.2012.2197174

URL : https://hal.archives-ouvertes.fr/inria-00563207

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Courier Corporation, issue.55, 1964.

S. Wagner, R. Couillet, M. Debbah, and D. Slock, Large System Analysis of Linear Precoding in Correlated MISO Broadcast Channels Under Limited Feedback, IEEE Transactions on Information Theory, vol.58, issue.7, pp.4509-4537, 2012.
DOI : 10.1109/TIT.2012.2191700

URL : https://hal.archives-ouvertes.fr/hal-00675502

Z. Ben-haim, Y. C. Eldar, and M. Elad, Coherence-Based Performance Guarantees for Estimating a Sparse Vector Under Random Noise, IEEE Transactions on Signal Processing, vol.58, issue.10, pp.5030-5043, 2010.
DOI : 10.1109/TSP.2010.2052460

URL : https://hal.archives-ouvertes.fr/inria-00567465

M. Vetterli, P. Marziliano, and T. Blu, Sampling signals with finite rate of innovation, IEEE Transactions on Signal Processing, vol.50, issue.6, pp.1417-1428, 2002.
DOI : 10.1109/TSP.2002.1003065

J. A. Urigiien, Y. C. Eldar, and P. Dragotyi, Sampling at the rate of innovation: theory and applications, Compressed Sensing: Theory and Applications, p.148, 2012.
DOI : 10.1017/CBO9780511794308.005

D. Needell and R. Vershynin, Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit, IEEE Journal of Selected Topics in Signal Processing, vol.4, issue.2, pp.310-316, 2010.
DOI : 10.1109/JSTSP.2010.2042412

D. Needell and J. A. Tropp, CoSaMP, Communications of the ACM, vol.53, issue.12, pp.301-321, 2009.
DOI : 10.1145/1859204.1859229