M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes, Theory and Application, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00008518

J. Tourneret, M. Doisy, and M. Lavielle, Bayesian off-line detection of multiple change-points corrupted by multiplicative noise: application to SAR image edge detection, Signal Processing, vol.83, issue.9, pp.1871-1887, 2003.
DOI : 10.1016/S0165-1684(03)00106-3

N. Brunel and F. Barbaresco, Doppler and Polarimetric Statistical Segmentation for Radar Clutter map based on Pairwise Markov Chains, Proc. of IEEE RADAR, 2007.

N. A. Nechval, K. N. Nechval, and E. Vasermanis, Detection of target signals in clutter using change point statistics, Proc. SPIE 4541, Image and Signal Processing for Remote Sensing VII, 2002.

D. V. Hinkley, Inference about the change-point in a sequence of random variables, Biometrika, vol.57, issue.1, pp.1-18, 1970.
DOI : 10.1093/biomet/57.1.1

S. B. Fotopoulos and S. K. Jandhyala, Maximum likelihood estimation of a change-point for exponentially distributed random variables, Statistics & Probability Letters, vol.51, issue.4, pp.423-429, 2001.
DOI : 10.1016/S0167-7152(00)00185-1

S. B. Fotopoulos, S. K. Jandhyala, and E. Kapalova, Exact asymptotic distribution of change-point mle for change in the mean of Gaussian sequences, The Annals of Applied Statistics, vol.4, issue.2, pp.1081-1104, 2010.
DOI : 10.1214/09-AOAS294

E. L. Lehmann and G. Casella, Theory of Point Estimation , Springer Texts in Statistics, 2003.

A. Bartov and H. Messer, Analysis of inherent limitations in localizing step-like singularities in a continuous signal, Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96), pp.21-24, 1996.
DOI : 10.1109/TFSA.1996.546676

A. Swami and B. Sadler, Cramér-Rao bounds for stepchange localization in additive and multiplicative noise, Proc. of IEEE Workshop on Statistical Signal and Array Processing (SSAP), pp.403-406, 1998.

A. Ferrari and J. Tourneret, Barankin lower bound for change-points in independent sequences, IEEE Workshop on Statistical Signal Processing, 2003, pp.557-560, 2003.
DOI : 10.1109/SSP.2003.1289526

URL : https://hal.archives-ouvertes.fr/hal-00376422

P. S. Rosa, A. Renaux, A. Nehorai, and C. H. Muravchik, Barankin-Type Lower Bound on Multiple Change-Point Estimation, IEEE Transactions on Signal Processing, vol.58, issue.11, pp.5534-5549, 2010.
DOI : 10.1109/TSP.2010.2064771

URL : https://hal.archives-ouvertes.fr/inria-00532893

L. Bacharach, A. Renaux, M. N. Korso, and E. Chaumette, Weiss-Weinstein bound for changepoint estimation, Proc. of IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp.477-480, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01234929

D. Ramakrishnan and J. Krolik, Target Detection in Abruptly Non-Stationary Doppler-Spread Clutter, 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, pp.185-188, 2006.
DOI : 10.1109/ICASSP.2006.1660621

D. C. Rife and R. R. Boorstyn, Single tone parameter estimation from discrete-time observations, IEEE Transactions on Information Theory, vol.20, issue.5, pp.591-598, 1974.
DOI : 10.1109/TIT.1974.1055282

H. L. Van-trees and K. L. Bell, Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, 2007.
DOI : 10.1109/9780470544198

E. Weinstein and A. J. Weiss, A general class of lower bounds in parameter estimation, IEEE Transactions on Information Theory, vol.34, issue.2, pp.338-342, 1988.
DOI : 10.1109/18.2647

L. F. Shampine, Matlab program for quadrature in 2D, Applied Mathematics and Computation, vol.202, issue.1, pp.266-274, 2008.
DOI : 10.1016/j.amc.2008.02.012