Lower bounds for non-standard deterministic estimation - Archive ouverte HAL Access content directly
Conference Papers Year : 2016

Lower bounds for non-standard deterministic estimation


In this paper, non standard deterministic parameters estimation is considered, i.e. the situation where the probability density function (p.d.f.) parameterized by unknown deterministic parameters results from the marginalization of a joint p.d.f. depending on additional random variables. Unfortunately, in the general case, this marginalization is mathematically intractable, which prevents from using the known deterministic lower bounds on the mean-squared-error (MSE). However an embedding mechanism allows to transpose all the known lowers bounds into modified lower bounds fitted with non-standard deterministic estimation, encompassing the modified Cramér-Rao / Bhattacharyya bounds and hybrid lower bounds.
Fichier principal
Vignette du fichier
[C44].pdf (93.59 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01346613 , version 1 (19-07-2016)



Jérôme Galy, Eric Chaumette, François Vincent, Alexandre Renaux, Pascal Larzabal. Lower bounds for non-standard deterministic estimation. SAM: Sensor Array and Multichannel Signal Processing, Jul 2016, Rio de Janeiro, Brazil. ⟨10.1109/sam.2016.7569710⟩. ⟨hal-01346613⟩
231 View
114 Download



Gmail Facebook Twitter LinkedIn More