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Echo Response of Faults in Transmission Lines:
Models and Limitations to Fault Detection

Andrea Cozza,Senior Member, IEEE, Lionel Pichon

Abstract—This paper introduces models of the time-domain
echoes generated by faults in transmission lines excited bytest
signals, e.g., as in applications of time-domain reflectometry.
Faults here considered include local modifications of the propa-
gation characteristics of a transmission line. It is shown that the
response of faults are strongly dispersive in nature, whichimplies
that the peak of their echo is far from providing an accurate
measure of the severity of the fault, as it heavily depends onthe
frequency content of the test signal, as well as on the lengthof the
fault. It is argued that fault detection in transmission lines is an
ill-posed problem that requires a priori knowledge on the fault
itself. These results are important for applications of time-domain
reflectometry methods, particularly for early-warning monitoring
of potentially critical faults from their onset, since it is shown
that echoes from faults tested at relatively low frequencies can
lead to underestimate their actual severity.

Index Terms—Transmission lines, fault detection, soft faults,
echo detection, time-domain reflectometry.

I. I NTRODUCTION

Transmission lines are subject to unwanted modifications,
such as partial cuts in their coating and shielding, changing
distances between its conductors, filling medium, etc. Mod-
ifications of this kind are seldom a critical issue, though
they can affect the integrity of signal/energy transmission
infrastructures. More importantly, the repetitive actionof ex-
ternal factors (static forces, vibrations, thermal expansions,
corrosive products, etc.) can eventually lead to a permanent
and irreversible modification in the geometry and/or materials
in a transmission line. Typically, modifications of this kind
occur over very short portions of a line, in the millimeter
range.

Since such modifications can affect the nominal behavior of
a transmission line, it is common to refer to them as faults.
For clear reasons, the most important modifications are short
and open circuits: these are usually called hard faults and can
electrically severe a line into two separate portions. But their
onset can be related to less critical faults, sometimes referred
to as soft faults, which can eventually develop into hard faults.
It is important to be capable of detecting faults before they
reach a critical state, when they still act as weak perturbations
in the nominal behavior of a line.

While general faults can take a number of shapes (partial
cuts, crushed conductors, etc.), they all share the same struc-
ture, depicted in Fig. 1: the nominal characteristic impedance
Zo of a line is locally modified to a valueZF , over a section
of lengthw. The transition region between the nominal and
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Fig. 1. Double impedance-step representation of a local fault in a transmission
line of characteristic impedanceZo, and relevant quantities for the derivation
of the responseΓF (ω) of a fault of impedanceZF .

modified lines is assumed to be much shorter thanw, and will
thus be neglected as a second-order contribution. See [1] for
a review of typical faults in two-wire transmission lines.

The most widely used approach for detecting faults in
transmission lines is the extended group of time-domain re-
flectometry (TDR) techniques. In a general manner, their aim
is to detect the presence (and ideally the position and severity)
of a discontinuity in a transmission line, by submitting it to
a test signala(t) through an electrical port, while monitoring
the reflected signalb(t) [2]–[4].

Assuming a reflected signal proportional to the test signal,
one should ideally be capable of assessing the severity of the
fault, e.g., expressed through its reflection coefficient atthe
fault position

Γo =
ZF − Zo

ZF + Zo
(1)

which, for weakly lossy lines is fundamentally real-valued. Γo

thus provides an effective measure of the deviation from the
nominal impedance of the line.Γo as described in (1) should
not be thought of as an input reflection coefficient measured
at one end of a line, but as the reflection introduced by the
fault at its position along the line under test.

This standard interpretation of echoes from single-step
discontinuities is routinely applied to any TDR application:
not only in the actual case of loads at the end of a line or the
case of a open or short circuit along a line, where it is justified,
but it is also extended to other configurations, such as the
case of local modifications in the propagation parameters ofa
transmission line [5]–[7], the general kind of fault discussed
in this paper.

Previous investigations into the special case of soft faults
were presented in [1]. While correctly modeling a fault as
a two-step discontinuity, and acknowledging the existence
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of a double reflection as the physical mechanism behind
weak echoes, it falls short of deriving models describing the
time-domain response, or echoes, generated by faults when
submitted to test signals. In a more general way, it can be
noticed that the major motivation in most papers on TDR
techniques is increasing the contrast between fault echoesand
other unrelated signals, with little attention paid to eventual
differences between the shape of the test and echo signals.
The use of narrow-band test signals makes things worse, as
they do not allow to easily infer differences between test and
echo signals. The end of sec. III provides details about this
conclusion.

Faults in transmission lines are characterized by three pa-
rameters: 1) the single-step reflection coefficientΓo, defined as
in (1), 2) the fault extensionw and 3) the propagation speedc
along the faulty section. All of them take part in the definition
of the response of a fault to a test signal.

In fault detection one mostly looks for the position and
severity|Γo| of the fault, which is assumed (sometimes implic-
itly) throughout available literature as being the proportional
coefficient between test signals and echoes [7], [8], thus
directly accessible.

It is the aim of this paper to prove that this assumption is
incorrect and that faults in transmission lines are characterized
by echo responses that are not simply proportional to the test
signal, but are rather more closely related to its first time
derivative. Sec. II introduces models of the response of a
fault to test signals, for different special cases. The practical
implications of these results are discussed in sec. III, with a
particular attention to potential errors and ambiguities in the
interpretation of TDR results, while a numerical validation
is presented in sec. IV. Two main results are demonstrated in
this paper: the impossibility of assessing the severity of afault
without prior information or assumptions on its physical ex-
tension and the very high risk of underestimating the severity
of a fault if expecting it to be related to the peak amplitude of
the echoes it produces. Alternative procedures exist, at least
for soft-fault detection, that are not based on echo processing
but rather on subspace processing [9], [10], implemented in
the frequency-domain, where fault severity is not based on the
amplitude of the echoes they procude.

II. FAULT MODELS

We are here interested in modelling the interaction of an
impinging signala(t) with a fault described as in Fig. 1. Wave
propagation will be assumed to be dominated by a TEM or
quasi-TEM mode, as found in the majority of cables used in
practical scenarios. Since test signals are usually limited to the
VHF-UHF bandwidths, higher-order modes can be neglected.
Edge effects will also be neglected, assuming propagation to
be the dominant physical phenomenon. These include direct
capacitive coupling between the two edges of a faulty section
and could thus have an impact at low frequencies for a
very short fault, breaking the translation invariance underlying
transmission-line theory of uniform lines.

In order to simplify our derivation, we will work in the
frequency domain, where the Fourier-spectrum of the reflected
signal can be expressed as

b(ω) = ΓF (ω)a(ω), (2)

with ΓF (ω) the reflectivity of the fault, as measured from
the left of the reference plane A. The propagation over the
section A-B is described by means of forward and backward
propagating power wavesa(ω) and b(ω), respectively, while
over the fault section it will be described by another set of
such waves, noted as primed quantities in Fig. 1. In order to
deriveΓF (ω), it suffices to impose the continuity of voltage
and current over the plane B.

To this effect, we need to recall the relationships between
the voltageV (ω), the currentI(ω) and power waves along a
uniform transmission line of characteristic impedanceZc [11],
[12]

a(ω) = [V (ω) + ZcI(ω)] /2
√

Zc

b(ω) = [V (ω)− ZcI(ω)] /2
√

Zc,
(3)

where the characteristic impedance will be assumed to be
frequency independent, as expected for weakly dispersive
structures. For the case in Fig. 1, imposing the continuity of
the voltage and current across the reference planeA results in
[

a(ω)e−jkod + b(ω)e+jkod
]

√

Zo = [a′(ω) + b′(ω)]
√

ZF
[

a(ω)e−jkod − b(ω)e+jkod
]

/
√

Zo = [a′(ω)− b′(ω)] /
√

ZF ,
(4)

whereko = ω/co is the propagation constant for the nominal
line, with co the associated propagation speed. These two
equations can be combined together, yielding

2a(ω)e−jkod = a′(ω)β+ + b′(ω)β−

2b(ω)e+jkod = a′(ω)β− + b′(ω)β+,
(5)

with β± = ζ ± 1/ζ andζ =
√

ZF /Zo. Since

b′(ω) = −Γoa
′(ω)e−j2kw, (6)

with k = ω/c the propagation constant for the faulty section
and c the associated propagation speed, recalling (2), the
reflectivity of the fault measured from section A can be written
as

ΓF (ω)

Γoe−2jkod
=

1− e−2jkw

1− Γ2
oe

−2jkw
=

2je−jkw sin(kw)

1− Γ2
oe

−2jkw
, (7)

whereΓoe
−2jkod is the reflection generated by the first dis-

continuity at the beginning of the faulty section. We will
systematically study the ratioΓF /Γo throughout the paper,
as it provides a direct measure of the differences between the
actual reflection coefficientΓF as observed from a testing port,
with respect to the single-step reflection coefficientΓo which,
though not directly accessible, quantifies the severity of afault
as a modification in the characteristic impedance of the line.

Eq. (7) asserts that the double-step discontinuity found in
local faults does not react to test signals producing echoes
proportional toΓo, apart in presence of hard faults (Γo → ±1).
Far more important are the practical implications of (7), in
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Fig. 2. Amplitude and phase-shift angle for the echo response ΓF (ω)
predicted by (7), for six values of|Γo|, namely 0.1, 0.2, 0.5, 0.7, 0.9 and 0.99,
in increasing order according to the direction of the arrowsin the graphics.
The red dots represent the soft-fault (weak perturbation) approximation (8).

particular understanding under what conditions the severity
of a fault (i.e.,Γo) can be accurately estimated. A special
attention will be paid to the time-domain responses of soft
faults, which are sometimes naively regarded as producing
scaled-down echoes similar to those of hard faults. Our results
prove that apart for the case of hard faults, assessing a fault
severity from TDR echoes is an ill-posed problem.

In the following sections approximations of (7) derived for
special configurations will be presented. The distanced will
be assumed equal to zero for the sake of simplicity. Due to
the periodicity ofΓF (ω), we will limit our analysis to the first
period. In fact, only the lower frequency region of this first
period is actually of interest as long asw . λ, with λ the
shortest guided wavelength associated to the test signal.

A. Soft faults

In the case the impedance discontinuity can be regarded as
a weak perturbation of the nominal one, i.e., withZF ≃ Zo

or |Γo| ≪ 1, (7) can be expressed as

ΓF (ω)

Γo
= 2je−jkw sin(kw) +O

(

Γ2
o

)

. (8)

This result is compared with the general expression (7) in
Fig. 2, where (8) appears to be a good approximation as long as
|Γo| < 0.2, i.e., forZF /Zo ∈ [0.67, 1.5]. This relatively large
range of deviations from the nominal impedance implies that

soft faults should not necessarily be expected to correspond to
very weak modifications, as confirmed in the results presented
in sec. IV.

Approximation (8) could also be derived directly by apply-
ing to the line in Fig. 1 the small-reflection approximation
described in [12]: the testing wave is first reflected at section
B, with a constant reflectivityΓo, while practically heading un-
modified towards section C, where it would undergo the same
phenomenon, but this time with a reflection coefficient−Γo.
Multiple interactions along the faulty section are neglected, as
reasonable for a vanishingly lowΓo. Depending on the fault
lengthw, the two echoes can therefore partially cancel out,
leading to a weak overall echo. This mechanism was already
highlighted in [1].

While (8) is valid over a wide frequency range, its practical
implications are not easily apparent. Moreover, the tendency
to associate weak echoes to soft faults is demonstrated to be
incorrect in sec. IV. More general and useful expressions are
proposed in the next two sections.

B. Electrically-short faults

The results in Fig. 2 show that as long asw/λ . 1/4 the
responseΓF (ω) resembles that of a high-pass filter, but for
the case of soft faults. This idea can be put into equations by
looking for an approximation of the kind

ΓF (ω)

Γo
≃ Ajω

jω + p
, (9)

wherep is a real-valued pole andA a constant. These two
quantities can be found by computing the Padé approximant
of (7), for the case of a first degree numerator and denominator.
Padé approximants are the best approximation of an original
function at a given point, since it ensures that all the derivatives
of the original and approximated functions coincide at a
reference point [13], here chosen to beω = 0.

The result of this procedure is

A =
2

1 + Γ2
o

(10a)

p =
1− Γ2

o

1 + Γ2
o

c

w
. (10b)

The exact result (7) is compared with the zero-pole approxima-
tion (9) in Fig. 3, for different values ofΓo. As expected, the
approximation works well in the lower frequency range, where
the fault is electrically short. In order to verify this condition,
it is convenient to define the characteristic frequency of the
fault, i.e., the frequency at which the multiple reflectionsat
the two ends of the fault are in phase and would lead to a
resonance, as

fc
.
=

c

w
≃ 30√

ǫewcm
GHz, (11)

here expressed in GHz for a fault extension measured in
centimeters;ǫe is the effective relative dielectric constant of
the faulty section. Sincew/λ = f/fc, (11) shows that the
assumption of an electrically short fault holds in practical
situations where a fault is typically shorter than a centimeter
and the test signals seldom reach the GHz range.
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Fig. 3. Comparison of the exact (black solid lines) and zero-pole (red dots)
models for the fault echo responseΓF (ω). Six different values ofΓo are
shown, 0.1, 0.2, 0.5, 0.7, 0.9 and 0.99, in increasing order according to the
direction of the arrows in the graphics.

These results show that the effects of the presence of the
pole are more heavily felt as soon asΓo increases, even at
relatively low frequencies. While (10) states thatp will move
at higher frequencies for soft faults, for harder faults it will
appear well before. The accuracy of the approximation for
soft faults is not as good since it is dominated by delay
terms, which cannot be well approximated by means of a finite
number of poles, as well known from control theory [14]. Yet,
its accuracy strongly varies with the frequency range spanned
by the test signals used for TDR fault detection. In particular,
in the lower-frequency range the approximation is rather good,
as shown later.

It is therefore useful to regardfo = p/2π as a critical
frequency of the fault, since it determines the nature of its
echoes, as discussed in sec. III.

The main advantage of (9) with respect to (7) is that
the former can be transformed into a simple time-domain
expression, thus providing the opportunity to understand how
a fault responds to test signals. The result of this operation is

ΓF (t) ≃
2Γo

1 + Γ2
o

[

δ(t)− p u(t)e−pt
]

, (12)

whereδ(t) is Dirac’s delta distribution andu(t) is Heaviside’s
unit-step function.

The main effect of the pole is observable in the exponential
term in (12): its practical impact will be discussed in sec. III.
It is already clear from (12) that the echo resulting from a fault
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Fig. 4. Normalized time-domain echoes for an electrically-short fault,
expected for a baseband Gaussian test signal with (a)Bo/fc = 0.01 and
(b) Bo/fc = 0.1. The different curves correspond to increasing values of
Γo equal to 0.1, 0.2, 0.5, 0.7, 0.9 and 0.99, according to the direction of the
arrows. Exact results (black solid lines) and approximations from the zero-pole
model (red dots) are shown.

is certainly not simply proportional to the test signal, dueto
this additional exponential term, which makes the response
dispersive. In the case of hard faults (12) simplifies into

lim
|Γo|→1

ΓF (t) = Γoδ(t), (13)

as expected for a line terminated by a short or open circuit.
Only in this case, the echo follows the original shape of the
test signal.

Examples of the echoes expected under the electrically-short
fault condition are shown in Fig. 4, obtained for a baseband
unit Gaussian test signal

a(t) = e−(t/To)
2/2 (14a)

a(ω) =
√
2πToe

−(ω/2πBo)
2/2, (14b)

where To is a time-scale constant andBo = 1/2πTo. The
results in Fig. 4 refer to a set of faults of same length, for
several values ofΓo. Two different frequency bandwidths
where considered for the test signal, namelyBo/fc equal
to 0.01 and 0.1, withfc the characteristic frequency of the
fault defined in (11). While in both cases the faults can be
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considered as electrically short, the echoes they produce can
be quite different in shape and amplitude.

If fault echoes were directly proportional to the reflection
coefficientΓo, then all the normalized echoes in Fig. 4 should
attain a peak value equal to 1 att = 0. In fact, this condition
is almost met only in the case of a hard fault withΓo = 0.99,
for the case of a very wide bandwidth,Bo/fc = 0.1. Indeed,
while still within the short-fault assumption, it already implies
a need for ultra-wide band signals, since taking as an example
the case of a 1-cm long fault in a line withǫe = 1, (11)
requires thatBo = 3 GHz, which is not a usual choice for a
test signal.

In all the other cases the peak reflection is lower than
expected for the single-step paradigm. Moreover, asΓo de-
creases, the tail occurring in the late-time response of the
echoes gives way to an odd-symmetry echo with lower am-
plitude. This transition was linked to the partial cancellation
of echoes discussed in sec. II-A. The echoes now closely
resemble the first time derivative of the test signal (see sec.
II-C).

As soon as the bandwidth of the test signal is reduced, this
trend becomes more pronounced, with echoes much weaker
than expected from|Γo|. As discussed in sec. III, the risk of
underestimating the actual severity of the fault is very likely,
if the current use of the amplitude of echoes as a measure of
the fault severity is maintained.

In all the results presented in Fig. 4 the comparison between
the exact solution (7) and the short-fault approximation (9) is
in good agreement, with some minor differences in the case
of soft faults tested over a wide bandwidth, seen in Fig. 4(b).

C. Low-frequency response : derivative approximation

In practice, for test signals with a frequency content limited
to frequencies somewhat smaller thanfo, or

w

λ
=

f

fc
.

fo
fc

=
1

2π

1− Γ2
o

1 + Γ2
o

, (15)

(9) reduces to
ΓF (ω)

Γo
≃ 2w/c

1− Γ2
o

jω, (16)
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Fig. 6. Maximum normalized frequencyf/fc for which the derivative
approximation holds, as a function of the fault severity|Γo|, evaluated taking
a safety factor 2 below the frequencyfo/fc in the condition (15).

i.e., to a derivative response, with an echo

b(t) ≃ Γo

1− Γ2
o

2

fc
ȧ(t). (17)

This approximation is expected to hold as long asf/fc is
smaller than the value shown in Fig. 6, as required by (15),
taking a safety factor equal to 2.

Fig. 5 shows some comparisons of this approximation with
the exact result (7), in the frequency domain. Among the
results shown in Fig. 4, those satisfying the condition (15)
do indeed yield a derivative echo, with a peak reflection
much smaller than|Γo|: this is the case in Fig. 4(a), for
all configurations with|Γo| 6 0.9. See next section for the
practical implications related to this result.

III. C ONSEQUENCES ON THE INTERPRETATION OF ECHOES

FOR FAULT DETECTION

The results derived in the previous section are of practical
importance, since they provide a better understanding of the
conditions that lead a fault to respond in a seemingly different
manner depending on the test signal. This claim can be
better understood by taking the case of the baseband unit
Gaussian test signal defined in (14). Under the low-frequency
approximation (17), the peak value reached by the echo is
equal to

max
t

|b(t)| = |Γo|
1− Γ2

o

Bo

fc

4π√
e
. (18)

The implications of this result are twofold: 1) the peak
reflection should not be interpreted as a measure of the
fault severity|Γo|; 2) |Γo| could be assessed from (18) only
if the characteristic frequencyfc were known beforehand,
which requires having access to the fault extension and to the
propagation speed along the faulty section. While the orderof
magnitude of the propagation speed can be approximated with
the nominal value expected for the original transmission line,
the fault extension can vary wildly. In other words, the only
quantity that can be properly assessed isΓo/fc

|Γo|
fc

≃
√
e

4πBo
max

t
|b(t)|, (19)
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under the approximation|Γo| . 1. In fact, since fc is
unknown, (18) cannot be solved for|Γo| exactly, so that it
is necessary to neglect the1− Γ2

o term in the denominator.
Moreover, the echo reaches its peak value not at an instant

depending only on the position of the fault, but also on the
shape of the test signal. As a matter of fact, (17) implies that

argmax|b(t)| = ±To, (20)

here the inflexion points of the test signal, so that interpreting
the echo of a fault as if it were proportional to the test signal
leads to a systematic error about its position, since for a fault
centered over the positiond, one would come to the conclusion
that the actual position is ratherd±Toco. ForBo = 30 MHz,
the apparent fault position would be biased by about 1.6 m, if√
ǫe = 1. This bias only depends on the test signal.
Another source of ambiguity are the double-peak echoes

resulting from pulsed test signals. Again, the standard inter-
pretation of such echoes would lead to inferring the presence
of two close faults. While we already recalled that for soft
faults the echo can be regarded as such, (20) clarifies that this
interpretation could be misleading. Since most of the time
faults are tested over frequencies for which their electrical
length is negligible, the double reflection generated by a
generic fault would not translate into an identifiable double
echo, but rather in the derivative of the test signal, since for
short faults echoes are proportional to the derivative of the test
signal, as discussed in sec. II-B.

The effect of an increasing bandwidth on the fault echoes
are illustrated by the results in Fig. 4. The most striking
implication is that for faults of the same severity, testing
them over a narrower frequency bandwidth yields a weaker
echo, even forΓo as high as 0.9. It is therefore possible
to dismiss a fault as not worth of attention, even though
the line is already deeply modified, a direct consequence of
the frequency-dispersive nature of a fault response. Realistic
examples supporting this conclusion are presented in the next
section. A more general implication is that a given fault can
present different responses depending on the bandwidth of the
test signal, producing echoes that can pass from derivative
to proportional. A changing response is clearly a source of
ambiguity in the interpretation of the nature of a fault.

In case the detection of an echo required exceeding a thresh-
old voltagevth, e.g., in connection to the noise background at
the test port, then such a condition would translate into

Bo

vth
>

√
2e

4π

fc
ΓoZo

, (21)

for a Gaussian test signal. For the special case ofZo = 50 Ω,
(21) becomes

Bo

vth
>

0.785

Γo
√
ǫewcm

GHz/V, (22)

whereǫe is the effective dielectric constant of the line.
Hence, the proper detection of faults in transmission linesis

more likely if using wideband test signals, unless the length of
the fault is not negligible, or if it is very severe or if the signal-
to-noise ratio is very high, i.e., for a low detection threshold.

Finally, a simple way of making sure that an echo is
caused by a fault would be to submit it to test signals of
increasing bandwidth. As the peak reflection increases with
the bandwidth, the echo could be pointed out as coming from
a fault and not a single-step discontinuity: reflections at line
junctions and loads would not change in their peak intensity.

While the derivative approximation does not allow retrieving
at the same timeΓo and fc, the structure of the zero-pole
model (9) indicates that it should be possible do so, by fitting
the parameters in (12) to the fault echo. To this end, it would
be necessary to use test signals with a bandwidth extending
beyond the critical frequencyfo. In practice, this option is
hardly viable, since it would require very wide bandwidths
not likely to be compatible with electronic systems connected
to the line under test (see Sec. IV).

As a further example of currently used TDR test signals, the
case of a signalae(t) modulating a carrier at the frequencyft
would imply

ȧ(t) =
d

dt
{ae(t) sin(2πftt)}

= ȧe(t) sin(2πftt) + ae(t)2πft cos(2πftt),
(23)

which, for a narrow-band signal yields

ȧ(t) ≃ 2πftae(t) cos(2πftt) = 2πfta(t+ 1/4ft). (24)

Hence, (17) would result into

b(t) ≃ 4πΓo

1− Γ2
o

ft
fc

a(t+ 1/4ft). (25)

As for the case of the Gaussian test signal, the ratio between
the echo peak amplitude and that of the test signal is not a
direct measure of the fault severity, but is strongly dependent
on the characteristics of the test signal, in particular thecarrier
frequency in this case. The additional delay associated to the
fault echo is also dependent on the test signal and acts as a
systematic error in the estimation of the fault position. The
fact that for this kind of test signals the echo is practically
proportional to the test signal comes with the risk of con-
cluding that the single-step paradigm is accurate. The reason
why the response of faults is often assumed as proportional
likely lies there. Clearly, (25) shows that such an interpretation
is not correct, as the intensity of the reflection depends on
the frequencyft at which the line is tested. Moreover, the
signature of a fault is again an echo intensity increasing with
the frequency of the test signal: this property should help in the
identification of line faults against reflections at junctions and
loads, which have a proportional response, thus not dependent
on the chosen test signal.

In the case of a unitary test signal, i.e., withmaxt |a(t)| = 1,
then the peak reflection from the fault echo allows assessing

|Γo|
fc

≃ maxt |b(t)|
4πft

, (26)

as similarly found in (19) for a baseband test signal, but in this
case the intensity of the fault echo increases with the frequency
of the carrier of the test signal.

In practice, one of the hardest issues in fault detection
is to be able to discriminate reflections caused by harmless
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discontinuities (e.g., water drops along a line) from actual
degradations [1]. Our models show the likely reason for this
issue: the peak of fault echoes is proportional to|Γo|/fc, thus
also to |Γo|w. Hence, echoes of the same intensity can be
generated by short faults of relatively high severity or longer
ones of weaker severity. This ambiguity is inevitable and is
confirmed in the numerical analysis presented in the next
section.

IV. N UMERICAL ANALYSIS

In this section we check the accuracy of the models in-
troduced so far. Reference data are generated by means of
numerical simulations. There are several reasons for choosing
a numerical validation rather than an experimental one. First,
it is necessary to know the characteristic impedance of the
faulty section. In practice, given a faulty line, there is no
simple way of de-embedding it from measurements, as claimed
in this paper. Second, while removing a portion of a coaxial
cable is not difficult, to ensure that it is done in a controlled
and reproducible way is far less simple, since cables typically
present transversal dimensions of a few millimeters, while
mixing hard and soft materials, thus difficult to cut in a
controlled way. Finally, it is important to test configurations
as divers as possible, involving structures that are not easily
reproduced in a laboratory setting.

The models derived in sec. II were validated by means of
numerical simulations of coaxial (sec. IV-A) and two-wire
transmission lines (sec. IV-B). The simulations were carried
out with CST’s Microwave Studio, over the frequency range
from DC up to 12 GHz. We had to push the simulation to such
high frequencies in order to confirm the dispersive response
of faults. The wavelength at 12 GHz is2.5/

√
ǫe cm, with

√
ǫe

the effective refractive index of the dielectric materialsin the
line. Typical values of

√
ǫe are below 1.5, so that the cross-

section of the two-wire configuration tested in this section
can be arguably regarded as still electrically small. Hence, the
models derived in the previous sections can be expected to
hold even at such high frequencies, since the conditions for
assuming a dominant TEM-like propagation mode are met.
The main issue in going to such high frequencies is the need
to take into account propagation losses due to dissipation along
the lines. We have chosen to neglect losses, for two reasons.
First, losses can be accommodated into the proposed models,
just by considering a complex propagation constant. Taking
them into account would then only complicate the analysis,
as it would introduce a further parameter to study. Second,
test signals are typically designed well below the GHz range,
where propagation losses are required to be negligible, as
otherwise test signals interacting with faults and going back
to the test port could be altered.

Several configurations of faults are presented in this section.
For all of them, the numerical setup follows the structure in
Fig. 1, with a nominal transmission line and a faulty portionof
lengthw. For each configuration the characteristic impedance
of the nominal and faulty sections were computed, as well as
the propagation speed. The severity of the fault is assessedby
computing the single-step reflection coefficientΓo, as defined
in (1).
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Fig. 7. Transversal cut of the coaxial line used in the numerical validation,
with an internal conductor of radiusri = 0.5 mm, external conductor
of radius ro = 3 mm, a dielectric with relative permittivityǫd = 2.1
(polytetrafluoroethylene, PTFE). The modified line is (a) partially cut along
a distanceD from its axis or (b) a simplified pigtail connection, where the
external conductor is reduced to an angular region of 45 degrees, with the
dielectric totally removed.

The aim of this section is threefold: 1) to prove that by
knowingΓo andfc it is possible to predict the echo response
of the fault by means of the models proposed in sec. II; 2)
that the peak value of the signal reflected by the fault does
not represent the severity of the fault; 3) that the proposed
simplified models, particularly (19) based on the derivative
approximation, allows assessing the parameter|Γo|/fc. All
time-domain results involve baseband Gaussian pulses, fora
varying bandwidth.

A. Coaxial line

The first set of tests involves the coaxial line depicted in
Fig. 7. Two types of faults were considered: 1) a longitudinal
cut along the line, exposing the internal portion of the cable, as
in Fig. 7(a); 2) a simplified pigtail connection, as in Fig. 7(b),
where the external conductor is reduced to a wire. This last
configuration can be found in makeshift connections or could
represent an advanced stage of deterioration in the original
coaxial line. The main motivation for considering the pigtail
connection is to observe the case of a relatively severe fault.

Five faults were considered: for the case in Fig. 7(a), three
cut depths were studied, withD = −0.2, 0 and 0.5 mm, the
pigtail configuration in Fig. 7(b), all forw = 10 mm and
finally the case of a dent in the line, withD = 0 mm and
w = 2 mm.

The single-step reflectivityΓo, effective relative permittivity,
critical and characteristic frequencies of the five faulty sections
are summarized in Table I. Superficial cuts into the line
involve a relatively weak single-step reflection, thus havea
negligible impact on signal propagation, whereas the pigtail
insert, displayingΓo = 0.45, can still not be assimilated to a
hard fault. Yet, the case of a cut withD = −0.2 mm, though
corresponding to justΓo = 0.29, cannot be regarded as a light
modification, since in this case the internal conductor is almost
severed. This last configuration is therefore interesting as an
example of how the intuitive association between weak fault
echoes and light wear in a transmission line is inexact.
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Fig. 8. Comparison between the numerical results for the configurations
resumed in Table I, circles, and the prediction from (7), solid lines.

The validity of the exact echo-response model (7) is demon-
strated in Fig. 8, where the data in Table I are fed to (7), witha
good agreement between the numerical and theoretical results.

The time-domain responses of the echoes generated by the
pigtail transition in Fig. 7(b) are shown in Fig. 9, for several
bandwidths, characterized byBo, defined in (14). Although the
pigtail transition presents a normalized reflectivityΓF (ω)/Γo

apparently closer to that expected for soft faults (Fig. 8) than
for hard ones, it would be incorrect to rule out the use of
the zero-pole approximation (9). The derivative approximation
(16) is confirmed to hold for frequencies wheref/fc is
smaller than the values proposed in Fig. 6: for|Γo| = 0.45,
f/fc . 0.05fo, i.e., from Table I,f/fc . 1.5 GHz. For wider
bandwidths the zero-pole approximation keeps providing ac-
curate results.

The cases (a) and (b) in Table II should be expected
to provide the same estimates ofΓo, assuming an a priori
knowledge offc. Their minor disagreement is likely due to
the non-negligible capacitive coupling between the two edges
of the dent.

The accuracy of the proposed models suggests that they
could be used not only as an analysis tool, but also the other
way around, as a way of estimating the severity of the fault
from its echoes. For the sake of simplicity, we will limit our
analysis to the case of the derivative approximation, since

TABLE I
SINGLE-STEP REFLECTION COEFFICIENT, EFFECTIVE RELATIVE

DIELECTRIC PERMITTIVITY, CHARACTERISTIC FREQUENCYfc = c/w,
CRITICAL FREQUENCYfo = p/2π AND Γo/fc , FOR SEVERAL FAULTY

COAXIAL -LINE SECTIONS CONSIDERED IN THE NUMERICAL VALIDATION

IN SEC. IV-A. D IMENSIONSD AND w ARE EXPRESSED IN MM.

Configuration Γo ǫe fc fo Γo/fc
(GHz) (GHz) (ps)

cut, D = 0.5, w = 10 0.078 1.91 21.7 3.40 3.61
cut, D = 0, w = 10 0.19 1.80 22.3 3.30 8.61
dent,D = 0, w = 2 0.19 1.80 112 16.5 1.72
cut, D = −0.2, w = 10 0.29 1.77 22.5 3.02 12.9
pigtail, w = 10 0.45 1.00 29.9 3.16 15.1
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Fig. 9. Validation of the zero-pole model (9) and the derivative model (16),
for the fault in Fig. 7(b) submitted to a Gaussian test signalwith : (a) Bo =
1.25 GHz, (b)Bo = 2.5 GHz and(c)Bo = 5 GHz. Numerical results are
shown as red circles, predictions from the zero-pole model as solid black
lines and for the derivative model as dashed lines. The critical frequency is
fo = 3.16 GHz.

in practice the condition of electrically-short faults holds, in
which case (18) is valid for Gaussian test signals. Clearly,
other test signals can be considered.

This idea is validated by the results presented in Table II,
for five faults and three bandwidths of the test signals. Starting
from the peak intensity of the echoes, the severity of the fault
is estimated back. The data in Table I serve as reference.
From these results it is evident that the echo itself should
not be interpreted as a measure of the severity of the fault.
In particular, as discussed in sec. III, its peak amplitude can
widely change of several orders of magnitude depending on
the frequency bandwidth covered by the test signal.

More importantly, Table II confirms that the only parameter
that can be derived under the derivative approximation is the
ratio Γo/fc. In order to translate it into a measure of the
fault severity, the lengthw of the fault needs to be known
or assumed being contained in a given range of values. The
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TABLE II
RESULTS FOR ATDR IDENTIFICATION OF FAULTS IN A COAXIAL LINE , AS
IN FIG. 7(A), WITH : (A) D = 0, w = 10 MM ; (B) D = 0, w = 2 MM ; (C)

D = 0.5, w = 10 MM ; (D) D = −0.2, w = 10 MM ; (E) PIGTAIL

CONNECTION,w = 10 MM . ESTIMATES DERIVED FROM THE ECHOES

RESULTING FROMGAUSSIAN TEST SIGNALS WITH THREE VALUES OF
BANDWIDTHS Bo , FOR : (1) Γo/fc ; (2) Γo , UNDER THE ASSUMPTION OF

A PRIORI KNOWLEDGE OF THE FAULT EXTENSIONw AND THE

PROPAGATION SPEED WITHIN THE FAULTY SECTION; (3) Γo , UNDER THE
ASSUMPTION OF A PRIORI KNOWLEDGE OF THE FAULT EXTENSIONw,
ASSUMING THE PROPAGATION SPEED IN THE FAULTY SECTION TO BE

EQUAL TO THAT OF THE NOMINAL TRANSMISSION LINE.

Case Bo maxt |b(t)| Γo/f
(1)
c Γ

(2)
o Γ

(3)
o

(GHz) (ps)

(a)
0.1 6.57 10−3 8.62 0.192 0.178
0.3 2.03 10−2 8.86 0.198 0.183
1 6.61 10−2 8.68 0.194 0.179

(b)
0.1 1.66 10−3 2.17 0.242 0.225
0.3 4.67 10−3 2.04 0.228 0.211
1 1.47 10−2 1.93 0.216 0.200

(c)
0.1 2.65 10−3 3.48 0.00753 0.00718
0.3 8.21 10−3 3.59 0.0778 0.0741
1 2.69 10−2 3.53 0.0765 0.0729

(d)
0.1 1.29 10−2 13.5 0.303 0.279
0.3 3.17 10−2 13.9 0.312 0.287
1 0.102 13.4 0.302 0.278

(e)
0.1 1.73 10−2 22.6 0.677 0.469
0.3 5.06 10−2 22.1 0.662 0.458
1 0.154 20.2 0.604 0.418

ratioΓo/fc is accurately estimated from the peak value of the
reflected signals, within a few percent points. Assuming an
a priori knowledge ofw, or at least advancing typical guess
values, alsoΓo could be precisely extracted from the echoes,
at least in principle. A further unknown is the speed of signal
propagation along the faulty line. Taking it to be equal to the
nominal value results in a source of systematic errors, even
though of limited intensity.

The only significative disagreement appears for the case of
the pigtail connection: having neglected the term1/(1 − Γ2

o)
in the passage from (18) to (19), the severity assessed from
the echoes is overestimated by this term, equal in this case
to about 25 %. Using the value offc in Table I, the exact
inversion of (18) provides the values 0.505, 0.497 and 0.470
for |Γo|, respectively for the three values ofBo in Table II.

Unfortunately, the exact inversion of (18) is possible onlyif
explicitly assuming an a priori knowledge of the characteristic
frequencyfc: since it is more realistic to regard it as unknown,
it is safer, for a robust estimation, to apply (19).

B. Two-wire line

A further validation was carried out for the case of a two-
wire line, detailed in Fig. 10(a). Three typologies of faults
were considered, with reference to Fig. 10: (a) a partial cut
in the line; (b) the presence of a droplet of water over the
line coating; c) a metallic slab partially inserted into theline
coating. Cases (b) and (c) represent configurations where the
line conductors are not yet affected: they stand for configura-
tions where external actions can eventually lead to a fault.In
fact, a water droplet can be any aqueous solution of corrosive
liquids, which are a potential threat to the line integrity,while

TABLE III
SINGLE-STEP REFLECTION COEFFICIENT, EFFECTIVE RELATIVE

DIELECTRIC PERMITTIVITY, CHARACTERISTIC FREQUENCYfc = c/w,
CRITICAL FREQUENCYfo = p/2π AND Γo/fc , FOR THE FOUR FAULTY

TWO-WIRE-LINE SECTIONS CONSIDERED IN THE NUMERICAL VALIDATION

IN SEC. IV-B. D IMENSIONSD AND w ARE EXPRESSED IN MM.

Configuration Γo ǫe fc fo |Γo|/fc
(GHz) (GHz) (ps)

cut, D = 0, w = 10 0.15 2.18 20.3 3.09 7.4
cut, D = 0.5, w = 10 0.041 2.51 18.9 2.99 2.2
water droplet,w = 5 -0.032 3.35 32.6 5.19 0.98

slab,D = 0.6 , w = 5 -0.42 3.07 34.1 3.80 12.3

the metallic slab could cut through the remaining layer of
insulating coating, resulting into a short circuit.

The characteristic data of four faults were computed and
are shown Table III: they go from very light modifications in
the propagation along the line to relatively severe ones, asfor
the case of the metallic slab withD = 0.6 mm.

The echo responses of these four faults where computed
for three bandwidths of a Gaussian test signal. From the peak
intensity of the echoes we applied (19) in order to estimate
the fault severity, as done in sec. IV-A. The results shown in
Table IV support the validity of the proposed approach, with
a good agreement between estimates from the echoes and the
expected values obtained from numerical simulations, shown
in Table III. The only disagreement appears, as was already
the case for a coaxial line, for severe faults, here the case of
the metallic slab: having neglected the term1/(1 − Γ2

o) in
the passage from (18) to (19), the severity assessed from the
echoes is overestimated by about 21 %. The disagreement is
therefore explained by this missing term.
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Fig. 10. Two-wire line with cylindrical conductors of radius ri = 0.5 mm,
a dielectric coating of thickness 1 mm (ro = 1.5 mm) and relative dielectric
constantǫd = 3.5 (polyvinyl chloride, PVC). The distance between the
conductors axis isd = 2 mm. The pictures illustrate the three faults
considered: (a) a partial cut in the line; (b) the presence ofa water droplet of
radiusrw = 2 mm over the two conductors and c) a metallic slab partially
inserted into the line.
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TABLE IV
RESULTS FOR ATDR IDENTIFICATION OF FAULTS IN A TWO-WIRE LINE,
AS IN FIG. 10,WITH : (A) CUT, WITH D = 0, w = 10 MM ; (B) CUT, WITH

D = 0.5, w = 10 MM ; (C) WATER DROPLET, WITH w = 5 MM ; (D)
METALLIC SLAB , 5 MM THICK , INSERTED INTO THE COATING AT

D = 0.6 MM FROM THE CENTER OF THE CONDUCTORS. ESTIMATES
DERIVED FROM THE ECHOES RESULTING FROMGAUSSIAN TEST SIGNALS

WITH THREE VALUES OF BANDWIDTHSBo , FOR : (1) Γo/fc ; (2) Γo ,
UNDER THE ASSUMPTION OF A PRIORI KNOWLEDGE OF THE FAULT
EXTENSIONw AND THE PROPAGATION SPEED WITHIN THE FAULTY

SECTION; (3) Γo , UNDER THE ASSUMPTION OF A PRIORI KNOWLEDGE OF

THE FAULT EXTENSIONw, ASSUMING THE PROPAGATION SPEED IN THE

FAULTY SECTION TO BE EQUAL TO THAT OF THE NOMINAL TRANSMISSION
LINE .

Case Bo maxt |b(t)| |Γo|/f
(1)
c Γ

(2)
o Γ

(3)
o

(GHz) (ps)

(a)
0.1 5.70 10−3 7.482 0.152 0.130
0.3 1.73 10−2 7.564 0.154 0.132
1 5.61 10−2 7.364 0.149 0.128

(b)
0.1 1.75 10−3 2.289 0.045 0.040
0.3 5.04 10−3 2.206 0.044 0.038
1 1.61 10−2 2.118 0.042 0.037

(c)
0.1 0.75 10−3 0.98 -0.032 -0.034
0.3 2.22 10−3 0.97 -0.032 -0.039
1 7.28 10−3 0.95 -0.031 -0.033

(d)
0.1 1.31 10−2 17.2 -0.56 -0.60
0.3 3.89 10−2 16.9 -0.554 -0.590
1 1.24 10−1 16.3 -0.530 -0.565

V. CONCLUSIONS

This paper has shown how the shape of the echo responses
generated by a fault depend on its severity, yielding a mix of
proportional and derivative contributions. Simple criteria for
the identification of the fault response have been presented,
by introducing the concept of a critical frequency of a fault,
defined by means of a Padé approximant.

Practical implications of these results are that usual TDR
techniques valid in the case of single-step discontinuities (hard
faults) should be revised in order to account for the derivative
nature of general faults. Potential systematic errors in the
estimation of the fault position and intensity were highlighted
in this respect, together with formulas allowing an accurate
assessment of the severity of a fault, based on its characteristic
frequency.

A major result is that severe faults a short step away
from hard faults (e.g., almost severed lines) can respond
with very weak echoes, if tested at frequencies well below
their critical frequency. General conditions allowing a proper
detection were then presented. The use of test signals with
high-frequency content seems to be necessary, in order to
ascertain whether an echo is generated by a severe fault or
not, since echoes get stronger as the frequency increases.
The demonstration that one needs an estimate of the fault
extentw represents a major issue for TDR fault detection in
transmission lines.

While our analysis was based on the case of baseband Gaus-
sian test signals, it can be extended to any other test signalin a
straightforward manner. Furthermore, the case of correlation-
based TDR techniques can also be considered, without any
major difference in the validation and interpretation of the

present analysis, by operating at the output of the receiving
correlator.

REFERENCES

[1] L. Griffiths, R. Parakh, C. Furse, and B. Baker, “The invisible fray:
A critical analysis of the use of reflectometry for fray location,” IEEE
Sensors Journal, vol. 6, no. 3, pp. 697–706, June 2006.

[2] B. M. Oliver, “Time domain reflectometry,”Hewlett-Packard Journal,
vol. 15, no. 6, pp. 1–7, 1964.

[3] C. Furse and R. Haupt, “Down to the wire,”IEEE Spectrum, vol. 38,
no. 2, pp. 34–39, 2001.

[4] C. Furse, Y. C. Chung, C. Lo, and P. Pendayala, “A criticalcomparison
of reflectometry methods for location of wiring faults,”Smart Structures
and Systems, vol. 2, no. 1, pp. 25–46, 2006.

[5] G. D. Cormack, “Time-domain reflectometer measurement of random
discontinuity effects on cable magnitude response,”IEEE Transactions
on Instrumentation and Measurement, vol. 21, no. 2, pp. 128 –135, May
1972.

[6] D. Ricker, Echo signal processing. Springer Netherlands, 2003, vol.
725.

[7] C. Buccella, M. Feliziani, and G. Manzi, “Detection and localization
of defects in shielded cables by time-domain measurements with UWB
pulse injection and clean algorithm postprocessing,”IEEE Transactions
on Electromagnetic Compatibility, vol. 46, no. 4, pp. 597 – 605,
November 2004.

[8] Y.-J. Shin, E. Powers, T.-S. Choe, C.-Y. Hong, E.-S. Song, J.-G. Yook,
and J. B. Park, “Application of time-frequency domain reflectometry
for detection and localization of a fault on a coaxial cable,” IEEE
Transactions on Instrumentation and Measurement, vol. 54, no. 6, pp.
2493 – 2500, December 2005.

[9] M. Kafal, A. Cozza, and L. Pichon, “Locating multiple soft faults in wire
networks using an alternative dort implementation,”IEEE Transactions
on Instrumentation and Measurement, vol. 65, no. 2, pp. 399–406, Feb
2016.

[10] ——, “Locating faults with high resolution using single-frequency tr-
music processing,”IEEE Transactions on Instrumentation and Measure-
ment, in press.

[11] K. Kurokawa, “Power waves and the scattering matrix,”IEEE Transac-
tions on Microwave Theory and Techniques, vol. 13, no. 2, pp. 194 –
202, march 1965.

[12] R. Collin, Foundations for microwave engineering. John Wiley & Sons,
2007.

[13] G. Baker Jr., “Essentials of Padé approximants,”New York, 1975.
[14] C. Glader, G. Högnäs, P. Mäkilä, and H. Toivonen, “Approximation of

delay systems - a case study,”International Journal of Control, vol. 53,
no. 2, pp. 369–390, 1991.

Andrea Cozza (S’02 - M’05 - SM’12) received the
Laurea degree (summa cum laude) in electronic en-
gineering from Politecnico di Torino, Turin, Italy, in
2001, and the Ph.D. degree in electronic engineering
jointly from Politecnico di Torino and the University
of Lille, France, in 2005.

In 2007, he joined the Département de Recherche
en Électromagnétisme, SUPELEC, Gif sur Yvette,
France, where since 2013 he is full professor. He is
a reviewer for several scientific journals, including
those of IET and IEEE. His current research interests

include reverberation chambers, statistical electromagnetics, wave propagation
through complex media and applications of time reversal to electromagnetics.

Dr. Cozza was awarded the 2012 Prix Coron-Thévenet from the Académie
des Sciences, France.



11

Lionel Pichon was born in Romorantin, France,
in 1961. He received the Dip. Eng. degree from
Ecole Supérieure dŠIngénieurs en Electronique et
Electrotechnique, Noisy Le Grand, France, in 1984.

In 1985, he joined the Laboratoire de Génie
Electrique de Paris, Gif sur Yvette, France, where he
received the Ph.D. degree in electrical engineering
in 1989. He got a position at the Centre National de
la Recherche Scientifique (CNRS), Paris, France, in
1989. He is currently Directeur de Recherche at the
CNRS. His research interests include computational

electromagnetics for wave propagation, scattering, electromagnetic compati-
bility, and nondestructive testing.


