P. M. Kroonenberg, Applied multiway data analysis, 2008.
DOI : 10.1002/9780470238004

P. Comon, Tensors : A brief introduction, IEEE Signal Processing Magazine, vol.31, issue.3, pp.44-53, 2014.
DOI : 10.1109/MSP.2014.2298533

URL : https://hal.archives-ouvertes.fr/hal-00923279

N. D. Sidiropoulos, Low-rank decomposition of multi-way arrays: a signal processing perspective, Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal, pp.52-58, 2004.
DOI : 10.1109/SAM.2004.1502907

A. Cichocki, D. Mandic, L. De-lathauwer, G. Zhou, Q. Zhao et al., Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis, IEEE Signal Processing Magazine, vol.32, issue.2, pp.145-163, 2015.
DOI : 10.1109/MSP.2013.2297439

L. and D. Lathauwer, A survey of tensor methods, 2009 IEEE International Symposium on Circuits and Systems, pp.2773-2776, 2009.
DOI : 10.1109/ISCAS.2009.5118377

T. G. Kolda and B. W. Bader, Tensor Decompositions and Applications, SIAM Review, vol.51, issue.3, pp.455-500, 2009.
DOI : 10.1137/07070111X

N. Sidiropoulos, E. E. Papalexakis, and C. Faloutsos, Parallel Randomly Compressed Cubes : A scalable distributed architecture for big tensor decomposition, IEEE Signal Processing Magazine, vol.31, issue.5, pp.57-70, 2014.
DOI : 10.1109/MSP.2014.2329196

A. Cichocki, Era of big data processing: A new approach via tensor networks and tensor decompositions, arXiv preprint, 2014.

L. Kuang, F. Hao, L. T. Yang, M. Lin, C. Luo et al., A Tensor-Based Approach for Big Data Representation and Dimensionality Reduction, IEEE Transactions on Emerging Topics in Computing, vol.2, issue.3, pp.280-291, 2014.
DOI : 10.1109/TETC.2014.2330516

R. Badeau and R. Boyer, Fast Multilinear Singular Value Decomposition for Structured Tensors, SIAM Journal on Matrix Analysis and Applications, vol.30, issue.3, pp.1008-1021, 2008.
DOI : 10.1137/060655936

M. Boizard, R. Boyer, G. Favier, and P. Larzabal, Fast multilinear Singular Value Decomposition for higher-order Hankel tensors, 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), 2014.
DOI : 10.1109/SAM.2014.6882436

S. Ragnarsson, Structured tensor computations: Blocking, symmetries and kronecker factorizations, 2012.

W. Ding, L. Qi, and Y. Wei, Fast Hankel tensor-vector product and its application to exponential data fitting, Numerical Linear Algebra with Applications, 2015.
DOI : 10.1002/nla.1970

L. Qi, Q. Wang, and Y. Chen, Three dimensional strongly symmetric circulant tensors, Linear Algebra and its Applications, vol.482, pp.207-220, 2015.
DOI : 10.1016/j.laa.2015.05.024

R. Boyer, R. Badeau, and G. Favier, Fast orthogonal decomposition of Volterra cubic kernels using oblique unfolding, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
DOI : 10.1109/ICASSP.2011.5947249

URL : https://hal.archives-ouvertes.fr/hal-00576019

J. H. De-morais-goulart, M. Boizard, R. Boyer, G. Favier, and P. Comon, Tensor CP Decomposition with Structured Factor Matrices: Algorithms and Performance Available: https, IEEE Journal of Selected Topics in Signal Processing, 2016.

M. Haardt, F. Roemer, and G. D. Galdo, Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems, IEEE Transactions on Signal Processing, vol.56, issue.7, pp.3198-3213, 2008.
DOI : 10.1109/TSP.2008.917929

D. Nion and N. D. Sidiropoulos, Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar, IEEE Transactions on Signal Processing, vol.58, issue.11, pp.5693-5705, 2010.
DOI : 10.1109/TSP.2010.2058802

R. Boyer, Deterministic asymptotic Cram??r???Rao bound for the multidimensional harmonic model, Signal Processing, vol.88, issue.12, pp.2869-2877, 2008.
DOI : 10.1016/j.sigpro.2008.06.011

D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, vol.52, issue.4, pp.1289-1306, 2006.
DOI : 10.1109/TIT.2006.871582

URL : https://hal.archives-ouvertes.fr/inria-00369486

R. Baraniuk, Compressive Sensing [Lecture Notes], IEEE Signal Processing Magazine, vol.24, issue.4, pp.118-121, 2007.
DOI : 10.1109/MSP.2007.4286571

E. J. Candes and T. Tao, Decoding by Linear Programming, IEEE Transactions on Information Theory, vol.51, issue.12, pp.4203-4215, 2005.
DOI : 10.1109/TIT.2005.858979

M. Unser, Sampling-50 years after Shannon, Proceedings of the IEEE, vol.88, issue.4, pp.569-587, 2000.
DOI : 10.1109/5.843002

E. J. Candes and M. B. Wakin, An Introduction To Compressive Sampling, IEEE Signal Processing Magazine, vol.25, issue.2, pp.21-30, 2008.
DOI : 10.1109/MSP.2007.914731

M. Akçakaya and V. Tarokh, Shannon-Theoretic Limits on Noisy Compressive Sampling, IEEE Transactions on Information Theory, vol.56, issue.1, pp.492-504, 2010.
DOI : 10.1109/TIT.2009.2034796

Y. Wang, G. Leus, and A. Pandharipande, Direction estimation using compressive sampling array processing, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp.626-629, 2009.
DOI : 10.1109/SSP.2009.5278497

W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, Compressive wireless sensing, Proceedings of the 5th International Conference on Information Processing in Sensor Networks, pp.134-142, 2006.

V. Stankovic, L. Stankovic, and S. Cheng, Compressive video sampling, 16th European Signal Processing Conference, pp.1-5, 2008.

Y. Yu, A. P. Petropulu, and H. V. Poor, MIMO Radar Using Compressive Sampling, IEEE Journal of Selected Topics in Signal Processing, vol.4, issue.1, pp.146-163, 2010.
DOI : 10.1109/JSTSP.2009.2038973

S. Friedland, Q. Li, and D. Schonfeld, Compressive Sensing of Sparse Tensors, IEEE Transactions on Image Processing, vol.23, issue.10, pp.4438-4447, 2014.
DOI : 10.1109/TIP.2014.2348796

N. D. Sidiropoulos and A. Kyrillidis, Multi-Way Compressed Sensing for Sparse Low-Rank Tensors, IEEE Signal Processing Letters, vol.19, issue.11, pp.757-760, 2012.
DOI : 10.1109/LSP.2012.2210872

C. F. Caiafa and A. Cichocki, Multidimensional compressed sensing and their applications, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.34, issue.7, pp.355-380, 2013.
DOI : 10.1002/widm.1108

L. Lim and P. Comon, Multiarray signal processing: Tensor decomposition meets compressed sensing, Comptes Rendus M??canique, vol.338, issue.6, pp.311-320, 2010.
DOI : 10.1016/j.crme.2010.06.005

URL : https://hal.archives-ouvertes.fr/hal-00512271

Y. C. Eldar, P. Kuppinger, and H. Bölcskei, Block-Sparse Signals: Uncertainty Relations and Efficient Recovery, IEEE Transactions on Signal Processing, vol.58, issue.6, pp.3042-3054, 2010.
DOI : 10.1109/TSP.2010.2044837

M. Stojnic, F. Parvaresh, and B. Hassibi, On the Reconstruction of Block-Sparse Signals With an Optimal Number of Measurements, IEEE Transactions on Signal Processing, vol.57, issue.8, pp.3075-3085, 2009.
DOI : 10.1109/TSP.2009.2020754

S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-delgado, Sparse solutions to linear inverse problems with multiple measurement vectors, IEEE Transactions on Signal Processing, vol.53, issue.7, pp.2477-2488, 2005.
DOI : 10.1109/TSP.2005.849172

J. Chen and X. Huo, Theoretical Results on Sparse Representations of Multiple-Measurement Vectors, IEEE Transactions on Signal Processing, vol.54, issue.12, pp.4634-4643, 2006.
DOI : 10.1109/TSP.2006.881263

J. M. Kim, O. K. Lee, and J. C. Ye, Compressive MUSIC: Revisiting the Link Between Compressive Sensing and Array Signal Processing, IEEE Transactions on Information Theory, vol.58, issue.1, pp.278-301, 2012.
DOI : 10.1109/TIT.2011.2171529

A. Hormati and M. Vetterli, Compressive Sampling of Multiple Sparse Signals Having Common Support Using Finite Rate of Innovation Principles, IEEE Signal Processing Letters, vol.18, issue.5, pp.331-334, 2011.
DOI : 10.1109/LSP.2011.2131649

S. M. Kay, Fundamentals of statistical signal processing: estimation theory, 1993.

P. Stoica and R. L. Moses, Spectral analysis of signals, NJ, 2005.

R. Niazadeh, M. Babaie-zadeh, and C. Jutten, On the Achievability of Cram??r???Rao Bound in Noisy Compressed Sensing, IEEE Transactions on Signal Processing, vol.60, issue.1, pp.518-526, 2012.
DOI : 10.1109/TSP.2011.2171953

B. Babadi, N. Kalouptsidis, and V. Tarokh, Asymptotic Achievability of the CramÉr–Rao Bound for Noisy Compressive Sampling, IEEE Transactions on Signal Processing, vol.57, issue.3, pp.1233-1236, 2009.
DOI : 10.1109/TSP.2008.2010379

Z. Ben-haim and Y. Eldar, The Cramér-Rao Bound for Estimating a Sparse Parameter Vector, IEEE Transactions on Signal Processing, vol.58, issue.6, pp.3384-3389, 2010.
DOI : 10.1109/TSP.2010.2045423

R. Prasad and C. R. Murthy, Cramér-Rao-Type Bounds for Sparse Bayesian Learning, IEEE Transactions on Signal Processing, vol.61, issue.3, pp.622-632, 2013.
DOI : 10.1109/TSP.2012.2226165

R. Boyer, P. Larzabal, and B. Fleury, Oracle performance estimation of Bernoulli-distributed sparse vectors, 2016 IEEE Statistical Signal Processing Workshop (SSP), 2016.
DOI : 10.1109/SSP.2016.7551780

URL : https://hal.archives-ouvertes.fr/hal-01313460

S. Bernhardt, R. Boyer, S. Marcos, and P. Larzabal, Compressed Sensing with Basis Mismatch: Performance Bounds and Sparse-Based Estimator, IEEE Transactions on Signal Processing, vol.64, issue.13, pp.3483-3494, 2016.
DOI : 10.1109/TSP.2016.2544742

URL : https://hal.archives-ouvertes.fr/hal-01313459

S. Sahnoun and P. Comon, Joint Source Estimation and Localization, IEEE Transactions on Signal Processing, vol.63, issue.10, pp.2485-2495, 2015.
DOI : 10.1109/TSP.2015.2404311

URL : https://hal.archives-ouvertes.fr/hal-01005352

X. Liu and N. D. Sidiropoulos, Cramér-Rao lower bounds for lowrank decomposition of multidimensional arrays, IEEE Transactions on Signal Processing, vol.49, issue.9, pp.2074-2086, 2001.

Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp.40-44, 1993.
DOI : 10.1109/ACSSC.1993.342465

J. Tropp and A. C. Gilbert, Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit, IEEE Transactions on Information Theory, vol.53, issue.12, pp.4655-4666, 2007.
DOI : 10.1109/TIT.2007.909108

D. Needell and J. A. Tropp, CoSaMP, Communications of the ACM, vol.53, issue.12, pp.301-321, 2009.
DOI : 10.1145/1859204.1859229

S. Chen, D. Donoho, and M. Saunders, Atomic Decomposition by Basis Pursuit, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.33-61, 1998.
DOI : 10.1137/S1064827596304010

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B, pp.267-288, 1996.

T. Blumensath and M. E. Davies, Iterative hard thresholding for compressed sensing, Applied and Computational Harmonic Analysis, vol.27, issue.3, pp.265-274, 2009.
DOI : 10.1016/j.acha.2009.04.002

M. Vetterli, P. Marziliano, and T. Blu, Sampling signals with finite rate of innovation, IEEE Transactions on Signal Processing, vol.50, issue.6, pp.1417-1428, 2002.
DOI : 10.1109/TSP.2002.1003065

R. Tur, Y. C. Eldar, and Z. Friedman, Innovation Rate Sampling of Pulse Streams With Application to Ultrasound Imaging, IEEE Transactions on Signal Processing, vol.59, issue.4, pp.1827-1842, 2011.
DOI : 10.1109/TSP.2011.2105480

P. Shukla and P. L. Dragotti, Sampling Schemes for Multidimensional Signals With Finite Rate of Innovation, IEEE Transactions on Signal Processing, vol.55, issue.7, pp.3670-3686, 2007.
DOI : 10.1109/TSP.2007.894259

K. Lee, Y. Bresler, and M. Junge, Subspace Methods for Joint Sparse Recovery, IEEE Transactions on Information Theory, vol.58, issue.6, pp.3613-3641, 2012.
DOI : 10.1109/TIT.2012.2189196

D. Malioutov, M. , and A. S. Willsky, A sparse signal reconstruction perspective for source localization with sensor arrays, IEEE Transactions on Signal Processing, vol.53, issue.8, pp.3010-3022, 2005.
DOI : 10.1109/TSP.2005.850882

S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing, 2013.
DOI : 10.1007/978-0-8176-4948-7

E. J. Candes, Y. C. Eldar, D. Needell, and P. Randall, Compressed sensing with coherent and redundant dictionaries, Applied and Computational Harmonic Analysis, vol.31, issue.1, pp.59-73, 2011.
DOI : 10.1016/j.acha.2010.10.002

M. A. Davenport, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, A simple proof that random matrices are democratic, arXiv preprint, 2009.

T. Kailath, A. H. Sayed, and B. Hassibi, Linear estimation, NJ, vol.1, 2000.

L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, vol.64, issue.3, pp.279-311, 1966.
DOI : 10.1007/BF02289464

F. Roemer, G. D. Galdo, and M. Haardt, Tensor-based algorithms for learning multidimensional separable dictionaries, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.3963-3967, 2014.
DOI : 10.1109/ICASSP.2014.6854345

C. Lu and W. Liang, Fast compressive sensing of highdimensional signals with tree-structure sparsity pattern, 2014 IEEE China Summit & International Conference on Signal and Information Processing, pp.738-742, 2014.

R. Rubinstein, M. Zibulevsky, and M. Elad, Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation, IEEE Transactions on Signal Processing, vol.58, issue.3, pp.1553-1564, 2010.
DOI : 10.1109/TSP.2009.2036477

M. Protter, I. Yavneh, and M. Elad, Closed-Form MMSE Estimation for Signal Denoising Under Sparse Representation Modeling Over a Unitary Dictionary, IEEE Transactions on Signal Processing, vol.58, issue.7, pp.3471-3484, 2010.
DOI : 10.1109/TSP.2010.2046596

URL : https://hal.archives-ouvertes.fr/inria-00577220

S. Som and L. C. Potter, Sparsity pattern recovery in Bernoulli- Gaussian signal model, 2010.

D. Baron, S. Sarvotham, and R. G. Baraniuk, Bayesian Compressive Sensing Via Belief Propagation, IEEE Transactions on Signal Processing, vol.58, issue.1, pp.269-280, 2010.
DOI : 10.1109/TSP.2009.2027773

M. Smith and R. Kohn, Nonparametric regression using Bayesian variable selection, Journal of Econometrics, vol.75, issue.2, pp.317-343, 1996.
DOI : 10.1016/0304-4076(95)01763-1

P. Schniter, L. C. Potter, and J. Ziniel, Fast bayesian matching pursuit, 2008 Information Theory and Applications Workshop, pp.326-333, 2008.
DOI : 10.1109/ITA.2008.4601068

N. Dobigeon and J. Tourneret, Bayesian Orthogonal Component Analysis for Sparse Representation, IEEE Transactions on Signal Processing, vol.58, issue.5, pp.2675-2685, 2010.
DOI : 10.1109/TSP.2010.2041594

URL : https://hal.archives-ouvertes.fr/hal-00548753

D. Malioutov, A sparse signal reconstruction perspective for source localization with sensor arrays, IEEE Transactions on Signal Processing, vol.53, issue.8, 2003.
DOI : 10.1109/TSP.2005.850882

N. Wagner, Y. C. Eldar, and Z. Friedman, Compressed Beamforming in Ultrasound Imaging, IEEE Transactions on Signal Processing, vol.60, issue.9, pp.4643-4657, 2012.
DOI : 10.1109/TSP.2012.2200891

J. Li and P. Stoica, Robust adaptive beamforming, 2006.
DOI : 10.1002/0471733482

S. M. Kay, Fundamentals of statistical signal processing: Detection theory, 1998.

S. Sinanovi´csinanovi´c and D. H. Johnson, Toward a theory of information processing, Signal Processing, vol.87, issue.6, pp.1326-1344, 2007.
DOI : 10.1016/j.sigpro.2006.11.005

T. M. Cover and J. A. Thomas, Elements of information theory, 1991.

P. Kumar and A. Johnson, On a symmetric divergence measure and information inequalities, Journal of Inequalities in pure and applied Mathematics, vol.6, issue.3, 2005.

J. Wang, S. Kwon, and B. Shim, Generalized Orthogonal Matching Pursuit, IEEE Transactions on Signal Processing, vol.60, issue.12, pp.6202-6216, 2012.
DOI : 10.1109/TSP.2012.2218810

G. H. Golub and C. F. Van-loan, Matrix computations, 2012.

S. Bernhardt, R. Boyer, S. Marcos, Y. Eldar, and P. Larzabal, Cramer- Rao Bound for Finite Streams of an Arbitrary Number of Pulses, EUSIPCO'14, p.p. nc, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01005005

S. Bernhardt, R. Boyer, S. Marcos, Y. C. Eldar, and P. Larzabal, Sampling FRI signals with the SOS kernel: Bounds and optimal kernel, 2015 23rd European Signal Processing Conference (EUSIPCO), pp.2172-2176, 2015.
DOI : 10.1109/EUSIPCO.2015.7362769

URL : https://hal.archives-ouvertes.fr/hal-01159937

E. L. Lehmann and G. Casella, Theory of point estimation, 1998.

A. Dasgupta, The trimmed mean, " in Asymptotic Theory of Statistics and Probability, ser. Springer Texts in Statistics, pp.271-278, 2008.

J. G. Proakis, M. Salehi, N. Zhou, and X. Li, Communication systems engineering, 1994.

A. Lozano, A. M. Tulino, and S. Verdú, Multiple-antenna capacity in the low-power regime, IEEE Transactions on Information Theory, vol.49, issue.10, pp.2527-2544, 2003.
DOI : 10.1109/TIT.2003.817429

R. Couillet and M. Debbah, Random matrix methods for wireless communications, 2011.
DOI : 10.1017/CBO9780511994746

URL : https://hal.archives-ouvertes.fr/hal-00658725

P. Diaconis and S. Zabell, Closed Form Summation for Classical Distributions: Variations on a Theme of De Moivre, Statistical Science, vol.6, issue.3, pp.284-302, 1991.
DOI : 10.1214/ss/1177011699

M. Tiku, A Note on the Negative Moments of a Truncated Poisson Variate, Journal of the American Statistical Association, vol.24, issue.308, pp.1220-1224, 1964.
DOI : 10.1214/aoms/1177731170

S. Eguchi and J. Copas, Interpreting Kullback???Leibler divergence with the Neyman???Pearson lemma, Journal of Multivariate Analysis, vol.97, issue.9, pp.2034-2040, 2006.
DOI : 10.1016/j.jmva.2006.03.007