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"QIOXHQFH RI WKH GULYLQIRZ
IUHTXHQF\ UHVSRQVH RI 0(C
OQRQOLQHDU DFWXDWLEF

A. Brenes, J. Juillard, L. Bourgois and F. Vinci Dos Santos

Abstract? This paper deals with the influence of the shape of the driving waveform on the frequency responses of MEMS
resonators under nonlinear actuation. Our models show that, at large oscillation amplitudes, these responses areestdamily dep
on the shape of thactuation waveform, so that the nonlinear frequency response is not the system signature but the system
signature under a specific driving waveform. The case of a MEMS resonator electrostdtizalywith a sine pulsed or square
wave voltage is spdigally addressed. Our models and simulations, supported by experimental evidence, predict counterintuitive
phenomena resulting from the distortion of the actuation waveform by the displacdepentdent electrostatic nonlinearity. Our
study emphasizes ththnis issue should not be overlooked in order to perform quantitative MEMS characterization in the nonlinear
regime.

Index Termg Electrostatic actuation, nonlinear dynamics, efz@p frequency response, pulses

[. INTRODUCTION

In this paper, we analyzhe influence of the actuation waveform on the response of SDOF (Single Degree of
Freedom) nonlinear MEMS resonators. We illustrate our results on capacitive resonators subject to electrostati
nonlinearities and validate them experimentally on a MEMSceevi

The dynamics governing MEMS devices is highly nonlinear [1]: such forces as those induced by dijoeezed
damping, electrostatic actuation, Van der Waals interactions, mechanical hardening, etc. depend strongly on th
displacement of the MEMS structuredaare the source of very rich and complex behaviors. They give rise to
unexpected phenomena such as asymmetrical frequency responses, hysteresis or parametric resonances
antiresonances [2][3][4][5][6]. Understanding them is essential to the developfi@iEMS-based devices such as
sensors, clocks or switches which are extremely sensitive to nonlinearities. Oscillator phase noise performance i
known to depend on the nonlinear characteristics of the resonator placed in the oscillating loop [7][&mpde,ex
through the investigation of the relationship between the nonlinearloppnesponse of the resonator and MEMS
oscillator phase noise, optimal operation with phase noise minimization has been achieved for specific systems [9][10

The aforementioed phase noise studies consider a cubic nonlinear restoring force, even though the preponderan
nonlinear behavior is not necessarily polynomial, as in electrostataciated MEMS resonators [1][4][5].
Furthermore, such actuation nonlinearities indwae/eformdependent phenomena resulting in different large
displacement behavior of siweave [10], squarevave [11][12] or pulsednode [13][14][15] oscillators In order to
optimize the phasroise performance of a n@nusoidal MEMS oscillator, one shid then determine the nonlinear
openloop frequency response of the MEMS resonator actuated with the corresponding waveform.

Recently, several works have focused on the characterization of MEMS resonators through their nonlinear (large
displacement) fragency response [17][18][19][20]. For SDOF systems, some of these studies have even achieved
nonlinear characterization via leasjuares fitting procedures [19][20]. These characterization procedures must be
extended to nosinusoidal actuation cases.

A. Brenes is wWithTHALES Avionics SAS, 25 rue Jules Védrines, 26000 Valence, Fréaceail: alexis.brenes@centralesupelec.fr), with GeeBoup d
electrical engineeringParis, UMR CNRS 8507, CentraleSupélec, URiarisSud, Sorbonne Universités, UPMC Univ. Paris 06, 3,11 rue Jolige, Plateau de
Moulon F91192 GifsurYvette CEDEX and wittCentraleSupéleddvanced Analog Design Chair, 3 rdeliot-Curie, 91192 GisurYvette, France.

J. Juillard and L. Bourgois are with GeeRBsdup of electrical engineerin@aris, UMR CNRS 8507, CentraleSupélec, URiarisSud, Sorbonne Universités,
UPMC Univ. Paris 06, 3,11 rue JoliG@urie, Plateau d&oulon F91192 GifsurYvette CEDEX and-. Vinci Dos Santos is with CentraleSupélec Advanced
Analog Design Chair, 3 rue Joli@urie, 91192 GHsurYvette, France.

! The last two waveforms prove to be very simple to generate in an oscillating lodp4[12]jth other advantages over sinusoidal waveforms (for example,
pulsed oscillators do not require feedthrough compensation schemes [16]).



In this paper, we study the influence of the actuation waveform on the nonlinear frequency response of
electrostaticallyactuated MEMS resonators. We consider four actuation waveforms: a sine wave, positive pulses, a
succession of positive and negative pulaed a square wave. Our work is based on a theoretical analysis of the
nonlinear phenomena supported by experimental measurements. We show that, at large displacement oscillatic
amplitudes, the frequency response of the resonator is tdgplgndent on th actuation waveform, so that the
nonlinear frequency response is not the system signature but the system signature under a specific actuation wavefor

This paper is organized as follows: In Section Il, we present the mechanical model of a-plataltelpacitive
MEMS resonator. In Section Ill, the mathematical background required to determine its nonlinear frequency responst
is developed. In Section IV, we report the simulated frequency responses and analyze our results. The validity of ou
main assumpins is checked in Section V and our simulation results are validated through experimental measurement:
in Section VI. Finally, conclusions and perspectives are given in Section VII.

Il. MECHANICAL MODEL

In this section, we establish the model of a-sidked @ralletplate resonator actuated with &Z periodic voltage
whereV, is a constant bias voltage, avigd: the actuation voltage (see Fig. 1). We describe the behavior of resonators
in the absence of cubic hardening, which is valid for the device studied in Section VI. For other resonators, such a
perfectly clampegatlamped beams, a cubic nonlinear term shbeldonsidered to account for midline stretching. Its
impact is studied in the supplementary material.

Writingv(t) V,1 @) ,the electrical force applied on the resonator is:

2 20
F(t) B\é ‘} 2@ (le) ) (1)
2G° . 1 x(t) 3
where Hs the permittivity of the medium between the two electrodes (e.g. vac8ting) surface of the electrod€s,
the gap between the two electrodes atlok displacement normalized with respecGtolhe expression (1) is valid
as long as the lateral dimgons of the resonator are large with respect to the gap between the electrodes. This allows
us to neglect fringing fields (as in [21]). The motion of the resonator may then be described by:

2 2 20
d’x L B 2@ @°°

a2 dt 2G® ¢ 1 x()?2

(2)

wherem s the mass of the resonathkiijs stiffness and a linear damping coefficient. With the notations of Table I,
this leads to:

a0 x0T 2@ @°°

ey 3
d  Q dt S1xm? o1 ®)

. Electrodes

:

Fig. 1. Paralleplate model of a capacitive MEMS resonator actuated(fyVo+Vac(t). Theupper electrode is fixed and the lower electrode
is mobile.



TABLE I. Table of notations.

Actuation characteristics

Notation Meaning Formula / Order of magnitude
Vac(t) Actuation voltage Sinewave: [10mV,1V]
z Angular frequency 0¥/ac 4.2x10rad.s
Vb Bias voltage 40V
2
K Electromechanical transduction coefficient % 5u0 4
. . Vact(t)
Q) Normalized actuation voltage @ -
b
Ratio between the firdtarmonic amplitude 0¥ac
Vo @ >
andV,
Resonator characteristics
Notation Meaning Formula / Order of magnitude
X Displacement normalized with respect to the ga @
$ Firstharmonic amplitude of the displacement @
Z Natural angular frequency \/% | Z
M Phase betweegctuation and displacement >S$S
Q Quality factor @ | 10000
Ill. RESOLUTION

As mentioned in the introduction, we focus on K@IEDOF systems. One must keep in mind that our results may
not apply to complex structures exhibiting one or several modes of vibration with eigenfrequencies close-Yo a (sub
multiple of the frequency dhterest.

Since we operate our MEMS devices with a bias voltage much smaller than the staticvplitige, the static
component of the displacemexittan be neglected. Because of the larg@ac@or exhibited by MEMS resonators
[22][23], it is also saféo assume thatcan be described accurately by a single harmonic component, the-tridaer
harmonic content of the electrostatic force being filtered out [16]. Hence we may assume that, close to resonance, tt
steadystate normalized displacement of tkeonator is accurately described by:

X(t) AsinZz M (4)

where 04 7KH YDOLGLW\ RI WKLV DVVXPSWLRQ ZKLFK LV VRPHWLPHYV U|
in Section IV. It has also been validated experimentally in previauks [16][19].
Equation (4) may be analyzed with the method of harmonic balance, which yields two equations:

: 1 Kz 21 2a Q? .
SAMILE D 8 T hena e MO
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Equation (5) describes the frequency response of the resonator for a given actuation wayvefoha four
waveforms considered in this paper are plotted in Fig. 2. The first waveform (a) isveasmef amplitudé/s. The
second one (b) corresponds to pulsaable actuation, in which positive voltage pulses of amplijosnd duration
T, are repeadly applied at an angular frequendy 7KH WKLUG RQH F FRUUHVSMR@&EYV WE
actuation, where positive and negative pulses of ampliggdand widthT, are alternated at hadfperiod intervals.
The last one (d) is a square wave of d@tage Vsq. Note that (b) and (c) require:



2s
P ZO '
WR EH FRQVLGHRRIGHD D EF®/XOWHERQVY ,Q RUGHU WR FRPSDUH WKH UHYV
ensure that the amplitudé of the first harmonic of the actuation voltage is the same in the four cases by setting
Ver=V/2,VpT= S Z 8By Z andVs=Vs H4.

In the following equations, we writé=V1/Vp, and assum¥&o ' 1 which is verified in our setup (see Section VI).

T (6)

- - ~Mechanical oscillation

\ Sine-wave actuation

------ Pulsed-mode actuation

: ——Combined pulsed-mode actuation
A1 R Square-wave actuation

0 2 4 6 8 10
Time (normalized)

Fig. 2. Shape of actuation voltages with similar firatmonic poweWo: sinewave (lightgrey line), positive pulsechode (dark dotted line),
combined pulsednode (darkgrey line) and squareave (darkgrey dotted line).

Actuation (normalized)

)

W

< .
=

F———|

From (5) we obtain:
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whereFs andF. depend on the actuation wavefofigandF are related to the iphase and quadrature effects of the
electrostatic force on the beam. Table Il gives the expressions of these quantities for waveforms (a), (b) and (c). Th
expressions obtained with squavave actuation are large and are reportatiérsupplementary material for the sake
of readability.

The spectra of the four waveforms are very different: the spectrum of waveform (a) consists in a single peak
at Z while waveform (b) contains harmonics at all the integer multiples with the ame power as the fundamental.
The spectrum of waveform (c) contains only odd harmonics. The spectrum of (d) is a decaying spectrum made of od
harmonics. The electrostatic force is the result of the modulation of these waveforms by a displdeperatent
term, as can be seen in (1). The higheter harmonics of the actuation waveform are spectrally folded at
constructively or destructively, depending on their phase. This complex modulation phenomenon leads to differen
expressions fofs andF., asillustrated in Table II, and quite different frequency responses, as presented in Section IV.



TABLE Il
EXPRESSIONS FOR DIFARENT ACTUATION WAVEFORMS OF SAME FIRSTHARMONIC POWER

Sinewave Pulsedmode Combined pulsegnode
Vs VpTp Z Neplp Z
Vo Ve —
Vb Sh Sh,
c 2 1 1 A a 1 @ 1 A2coé M
s : 2
@ ANT2 < g 1 oA § Acosmy, 1 A?cod M
c 2 2 a 1 & 1 A’coé M
¢ Vi A2 11 A2 9 Acosm, 1 Acod M

SettingA=0in the expressions of Table Il yieléls= F.=1 for the four actuation waveforms, i.e. there is no impact
of the waveform on the frequency response at small oscillation amplitudes. One should start accounting for these effec

whenF; or F¢ deviate significantly from 1.
Unless otherwise noted, throughout this paper, the simulated results are obtai@eddd00 (typical value for

standard sensors) are5x10%,

IV. RESULTS ANDDISCUSSION

A. Qualitative analysis of the frequency responses
The amplitude and phase responebgined by solving (7) are represented in Fig. 3 for the four considered
waveforms. For small driving voltages, the amplitude responses are identical (as shown in a previous study [16]).
Significant differences are visible wherevie toscillation amplitude exceeds 25% of the gap distance: for a given
value ofV,, the maximum of the resonance curve is higher with puisadle actuation than with skweave actuation.
It is also higher with sinevave actuation than with combingdisedmode actuation. As mentioned Section |ll,
these differencesan be explained as resulting from the modulation of the actuation waveform by the displacement

dependent electrostatic nonlinearity.

Fig. 3. Frequency responsasa planecapacitance resonator actuated by (a)-siaee, (b) positive pulsethode, (¢) combined pulsadode
and (d) squargvave actuations for increasing values/e{from dark blue to brownV6=0.01,V0=0.02,V0=0.03,V0=0.04,V0=0.045 and
Vo=0.048). The frequencies are normalized with respe@.tdhe hashed areas correspond to instability regions (see Appendix C in the

supplementary material). The dadbtted grey line in (c) corresponds to the amplitude above which two separate regaadscare found

(see (14)).



In the combined pulsechode, the amplitude response exhibits a double resonance peak above a threshold amplitude
of 41% of the gap: this phenomenon is analyzed in subsecti&n IV

At large amplitudes, theesponses exhibit phase and amplitude jumps, which depend on the driving waveform. For
a given value oWy, we observe that the phase jump discontinuity is larger for combined ymdsbad actuation (c)
than for the other actuation shapes (a) and (b).

Findly, the instability regions (see supplementary material for their determination) also differ from one waveform
to the others. These instability regions correspond tedtweof the 4, 2- and (M2-spaces in which no steadtate
solution of equation (6) may exist and be stable for given valu@sasid K Consequently, they are the set of repelling
points of the slowtime dynamics of the system, or, in other words, the set of all the unstaithédsalthough their
exact shapes and positions depen® and K it seems that their lower boundary on the phase response (corresponding
to an upper bifurcation point on the amplitude response) is generally closer to quadratureviawvsiaed square
wave actuations than pulsetbde actuations.

B. 3HDN EURDGHQLQJ DQG 3GRXEOH UHVRQDQFH SKHQRPHQRQ

An interesting and unexpected outcome of this study is the shape of the frequency response obtained with combine
pulsedmode actuation (Fig.-8). Above a threshold value¥§ WKH IUHTXHQF\ UHVSRQVH H[KLEL
peak close to the stakilwW\ OLPLWY 7KH DSSHDUDQFH RI WKHVH WZR PD[LPD FDC(
is independent of the parameters of the system. To derive this critical amplitude, one must first notice that

yields a relationship between the amplitude and the phase which is independent on the actuation frequency:

(8)

where
We may use the implicit function theorem to find the value¥wbr which A is extremal, in particular:

(9)

This yields two cases:

or (10)
Setting in (8), this solution corresponds to:
(11)

which may be a local maximum or minimum of the frequency response. The first polynomial has four roots:

(12)
and
(13)
The second set of roots (13) is purely imaginary. The other set (12) is real only whenwhere
(14)
If A<A, the amplitude response exhibits a single extremum (a maximurAf( *= %=0), it exhibits three

coinciding extrema corresponding to a maximum of the frequency response. From ((14)ane find the value of
the actuation voltage required to reach this threshold amplitude:



(15)

Above this threshold (heré,=0.0408),* and *» correspond to the two maxima of the frequency response, while
the extremum corresponding - $2 becomes a minimum. Note that, sirfce- *», they correspond to values of the
phaseMand Mthat are symmetric with respectt&2.

7KH VDPH W RMEDHFH SKHQRPHQRQ RFFXUV IRU RWKHU UHVRQDWRL
results are qualitatively similar to the paraliéhte case, the main difference being the value of the threshold amplitude.

C. Interpretation as autoparametric atification

Previous works have addressed resonance amplification and/or inhibition in parametric amplifiers [25][26], where
the frequency response may sometimes exhibit several branches. As in autoparesegizicce, the phenomena we
observe are related to the interaction between upper harmonics of the actuation voltage andéve siisplacement
of the resonator.

However, the main reason why the responses observed with the two pulsed actuatiorocagesifter from the
sinewave case is because the actuation is localized within a shofinteneal. This can be seen by comparing the
frequency responses obtained with sgweage and singvave actuations. These responses are very similar, even
thoudh the spectral content of the square wave is much richer than that of a sine wave.

Some insight into the behavior of pulaetuated resonators can be gained by noticing that the second equation of
(7) can be recast as:

(16)
where& neglecting the electrostatic nonlinearity would yield:

(17)

We have represented in Fig. 4 the value of  for sinewave, singleand combined pulsedhode and square
wave actuations.

In the combined pulseshode case, so that F; may be seen as amplificationfactor compared to the linear
FDVH 7KHEBERXESKIHQRPHQRQ LQ )LJ FDQ WKHQ EH XQGHUVWRRG D\
amplification factor (increasing as the resonator moves away from quadrature) andifesicteristic othe linear
case.

In the case of pulseghode actuation, we find that if , and if . This explains the
distortion of the phase response, and also why the maximum ohgiituale response is not a4 22.

In both cases, one can also notice that when M- $2. This means that, if the resonator is used in an oscillator
loop forcing M- 32 (when possible), the oscillation amplitude varies linearly with amplitude of the actuation
voltage.

The sinewave case may be analyzed in the same light. Assuming in (7), the second equation becomes:

(18)

Then, is an amplification factor independent &and the frequency response looks like that of a classical

SVRIWHQHG™ 'XI1ILQJ UHYVR Qloow dpplicafidd it 2,3ine ZBDOYRIVBIBEW XDWLRQ LV PR
than combined pulseactuation, becae of its greater amplification factor. However, this comes with the cost of a
smaller resonant pulh amplitude [14]. The same conclusion holds for squearee actuation compared to combined
pulsedmode actuation.



Fig. 4. Amplification factor for théour actuation waveforms. The lightue surface corresponds to 1o¢Fc(A, M)=0.

D. Comparison with Tayle6eries expansions
In order to understand and analyze further the impact of the actuation nonlinearity, we compare the frequency
responses obtaineglith (2) to the frequency responses obtained with Tagkmies expansions of the electrostatic

force up to the third order:
(19)

The results are reported in Fig. 5.

Fig 5. Transient simulations of slow frequency downsweepssintplified models obtained fronfdorder (red curve),"®-order (black curve)
and ¥-order (magenta curve) Tayl@eries expansions of the electrostatic forcé/fe0.02 (dashed lines) and=0.048 (solid lines). The
brown curves correspond to thedel presented in the paper (no TS expansion). The brown and magenta dashed lines are almost superposed.

Fig. 5 illustrates that the modulation of the secordker term by a combingollsed voltage contributes to the rise
of multiple resonance peaks whas the thirdrder term tends to contribute to the wallbwn softening phenomenon.
From (19) and Fig. 5, one may understand that the presence of a cubic nonlinearity in the model (e.g. due to midlin
stretching) would mainly result in a distortion of @raplitude response to the right (see supplementary material).



V. VALIDITY OF THE ASSUMPTIONS

A. Approximation of the displacement of the resonator

To check the validity of our main assumption (4), we have performed transient simulations of (3) with MATLAB.
In these simulations, the actuation frequency is swept down clo&g &b a slow rate. During the sweep, we record
the displacement(t) and extact its static componery, the amplituded and A of its first and second harmonics.
The results obtained for combined pulsedde actuation witWe=0.048 are reported in Fig. 6. The duty cycle of the
pulsedmode voltage in this simulation i8-T, Z/2 $1.6%.

Fig. 6-a highlights a very good agreement between transigitne simulations defined by (3) and the stestdye
regime defined by (7). The presence of two resonance peaks is confirmed. On the whole frequency range, the stat
displacement and theecond harmonic of the displacement remain inferior to 1% of its first harmonic (with the only
exception of transient effects). Hence, despite the existence obilugh harmonics in the actuation voltage, the
displacement of the resonator can be cometias a pure singave.

Fig. 6. (a) Comparison between transient and stetatg regime simulations f9%=0.048. (b) Evolution of the ratio&/A (dark line) and
A2lA (grey line).

B. Influence of pulse width

The phenomena observed with pulsed waveforms are strongly related to the limitation of the actuation within a very
short timeinterval. In order to check the influence of this pulse width, we report the results of transient simulations
performed withT,=0.01s,Tp=0.1s,T,=0.5s,T,=1s andTy=2s, forV,=0.048 in Fig. 7. WithZ=1, the corresponding
duty cycles are 0.16%, 1.6%, 8%, 16% and 32%. With these parameters, the duty cycle has to be close to a few perce
(e.g. 2%) for the results to be insensitivie tWKH ZLGWK RI WKH SXOVHV )RU ODUJHU G
UHVRQDQFH SKHQRPHQRQ WHQGV WR GLVDSSHDU

Fig. 7. Effect of pulse width on the frequency response (traaggithe simulations).



VI. EXPERIMENTAL VALIDATION

In this section, we reposgxperimental results obtained with a RQhMEMS resonator in order to validate the
GLITHUHQFHY LQ WKH IUHTXHQF\ UHVSRQVHV SUHGLFWHG WKV RIQPWIER
associated to a phagenp in the case of combined petsmode actuation.

Since the resonator used in the experiments is an electrostaticialjted MEMS with capacitive detection, a large
parasitic capacitance is present between the input and the output of the MEMS resonant cell (i.e between actuation a
detection). Hence, the frequency responses obtained with sinusoidal actuation on such a system are highly distorte
[27]. They can hardly be compared either to the simulated ones or to the experimental responses obtained with tf
other waveforms (from whictthe influence of the parasitic capacitance can easily be suppressed [16]). This
experimental investigation is then limited to pulsedde and combined puls&dode actuations.

A. Experimental Setup

In this section, we compare experimental results obtainddpuisedmode and combined puls@dode actuation.
We operate on a P90 pressure sensor from THALES Avionics made of three etched adsbfudéuhsilicon wafers
(see Fig. 8) [28]. It consists of a resonant rectangular beam resting on a rectangularrdiapheagnd of the beam
is bonded to the diaphragm via a massive pyramidal stud, so that axial stress builds up in the beam as the diaphrac
bends. Nonlinear FEM simulations show that, thanks to its impereetiyped end, the resonator (i.e. the beam) is
not subject to cubic nonlinear restoring forces corresponding to midline stretching. During the manufacturing process
the beam is encapsulated in vacuum to achieve a high mechasfiezab€)(between 10000 and 20000). The resonance
frequency of the device close to 65kHz. The resonator cell is placed in an-tpmm configuration shown in Fig. 9,
whereC=100nF,R. N YC,=10pF andr, OY ,Q WKLV VHWXS WKH RXWSXW RI WKH |
the motion of the resonator, possibly distofdydhe onesided capacitive detection.

In this setup, a bias voltays=40V is applied to the resonator. It is actuated by a TGA12100 waveform generator
delivering pulses of width,=2us, corresponding to a duty cycle (as defined in Section V.B.) close to 13%. The pulse
amplitude in combined pulsadode actuation is set at half the amplitude of the corresponding putsbel signal.

We have checked that the first harmonic power i#.is equal for the two actuation waveforms. The actuation
amplitudes correspond ¥=3x10% Vo=5.7x10% Vo=1.6x10% Vo=5.7x10° andVo=1.1x1C".

We use subharmonic pulsetbde actuation instead of harmonic pulseade actuatiosince it helps overcome
practical limits [16]. Here, the angular frequengyf the input voltage pulse train is swept closezbs. From the
output signals recorded during the frequency sweep, the amplitude and phase Bsh#ienénic (corresponding to
the motion of the resonator) are extracted after perforthiaghonlinear signal processing explained in a previous
study[16].

Fig. 8. Sensor structure [28]: The sensing element consists of a resonant silicon beam asttive stud bonded to a silicon diaphragm. The
beam is actuated by the facing electrode.



Fig. 9. Electronic architecture. Thé lement is the resonator aGglan unknown parasitic capacitance.

B. Limitations about the use of short voltage pulses

:KHQ WKH SXOVHV DUH JHQHUDWHG DW D IUHTXHQF\ FORVH WR WKH
method [16]), efficient feedthrough removal requires that the pulses be extremely short compared to the natural perio
of the device.

ThisimLWDWLRQ LV OHVV VWULQJHQW ZLWK WKH 3VXEKDUPRQLF" PHWK
equal to a multiple of the natural period of the device. In this case, the measured signal may still be processed ar
cleaned from feedthroughven if the duration of the pulses is not so short.

In the experiments described in this paperlatively large duty cycle was required to provide enough power to
reach the predicted behaviors (the amplitude of the actuation voltage being limitedypypenator). Hence, the model
presented in (7), based on pulses of infinitesimal duration, cannot be quantitatively fitted to the experimental result:
without adapting it to take the finite duration of the pulses into account.

C. Experimental Results

The measrted frequency responses are reported in Fig. 10. As can be seen in Fig. 3, the difference between th
frequency responses obtained with the two actuation voltages would be hard to make by sweeping the frequency u
ORUHRYHU WKH 3GR XE O Honudda¢ibedDiQ FeldtionIK Eb® BriiytHb@ observed by sweeping the
frequency down. For these reasons, during each acquisition, the frequency has been swept down (slowly) and the jur
discontinuities (when existing) correspond solely to upper bifurcationgdistexpected, the frequency responses
become more different as the actuation voltage increases whereas low amplitude results are identical.

One can notice, as assumed in Section Il, the absence of mechanical hardening on the frequency responses due
the fact our resonator is not perfectly clamped at one end. As predicted, for a given actuation voltage, the pea
amplitude measured with combined pulsadde actuation is smaller than with pulsaedde actuation. The measured
phase responses also agree with the simulated ones. For example, the jump discontinuities on the phase responses
are always larger for combined pulsedde actuation than for pulsedbde actuation. At very large amplitudes
(Vo=1.1x10?°  WKH SUHVHQFH Rl WKH 3GRXEOH UHVR Q D-@é¢dd anlKudErespdisg R Q F
is confirmed.

To ensure that this observation of the amplitude response corresponds to the predicted behavior, one can look at t
phaseaesponse, which éibits two clear jump discoimuities instead of on€onsidering the displacemetatvoltage
gain of the sensor and its electronics, estimated in a previous study [19] (close to 1.2V), the maxima of the frequenc
response of Fig. 1B correspond to mechaal oscillation amplitudes close to 60% of the electrostatic@apit a
smaller actuation amplitud®¢=5.7x16®* WKH PD[LPDO PHFKDQLFDO RVFLOODWLRQ LV
UHVRQDQFH" 7KH UHPDLQLQJ GLIITHUHQFHYV ZLWK WKH PRGHO SUHVHC
resonator which is closer to the one of an imperfectly clarofemped beam (see Fig. 8) than to a paraliaie
MEMS. Taking the shape of the resonant mode into account may be performed and yields quantitatively different bu
gualitatively similar results.



Fig. 10. Experimental swegfown responses obtained for pulsedde actuation (crossed lines (a) and (c)) and combined puised
actuation (diamond lines (b) and (d)) for growing value¥oafrom blue to brown)Vo=3x104, Vo=5.7x10% Vo=1.6x10%, Vo=5.7x1C®,
Vo=1.1x102.

Finally, the frequency responses obtained with pafeede actuation do not exhibit this behavior, even at very
large oscillation amplitudes.

VIl. CONCLUSION

In this paper, we compared the frequency responses obtained with different actuation waveforms applied on a MEM!
resonator. We highlighted the dependence between the driving waveform and the nonlinear frequency response
MEMS resonators. Our conclusioage based on simulations and validated experimentally. The modulation of the
actuation waveforms by the nonlinear displacergemtendent force modifies the resonance of the system dramatically,
according to
the actuation scheme. This modulation can deseitonstructive or destructive, meaning that it can either increase or
decrease the motion of the resonator compared to the hypothetical linear actuation case. All these phenomena must
taken into account in order to perform nonlinear MEMS charactenizat very large amplitudes.

The presented method and results are essentially developed for MEMS under capacitive actuation. They have be:
illustrated on singlesided capacitive resonators but can readily be extended ekidbtk resonators or to other
displacementlependent actuation schemes. They can be adapted to other MEMS devices where the actuatiol
nonlinearity is strong, i.e. whose mechanical and electrical behaviors cannot be determined independently. Fo
instance, cantilever beams actuated bygedectric layers [29] may yield interesting results when actuated with non
sinusoidal waveforms. Magnetic MEMS actuated through the Lorentz[B8Fenay also exhibit counterintuitive
nonlinear behaviors.

Knowing the dependence of the odenp responsto the actuation waveform, this study will help to determine the
influence of the actuation scheme on the cldseg@ phase noise of MEMS oscillators. It may also have consequences
in nonlinear energy harvesting, where the actuation signal is not dedérhyirthe experimenter but by the application
LWVHOI HJ KDUYHVWLQJ LQ SDFHPDNHUV )LQDOO\ WKH DSSOLFD\
resonant switching devices [31] is the subject of ongoing work.
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