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Abstract

Stationary renewal point processes are defined by the probability distribution of
the distances between successive points (lifetimes) that are independent and iden-
tically distributed random variables. For some applications it is also interesting to
define the properties of a renewal process by using the renewal density. There are
well-known expressions of this density in terms of the probability density of the
lifetimes. It is more difficult to solve the inverse problem consisting in the determi-
nation of the density of the lifetimes in terms of the renewal density. Theoretical
expressions between their Laplace transforms are available but the inversion of these
transforms is often very difficult to obtain in closed form. We show that this is pos-
sible for renewal processes presenting a dead-time property characterized by the fact
that the renewal density is zero in an interval including the origin. We present the
principle of a recursive method allowing the solution of this problem and we apply
this method to the case some processes with input dead time. Computer simulations
on Poisson and Erlang(2) processes show quite good agreement between theoretical
calculations and experimental measurements on simulated data.
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1 Introduction

Renewal point processes are among the most important statistical models of

point processes (PP) mainly because of the simplicity of their definition. In-

deed in the stationary case they are defined by the fact that the intervals be-

tween successive points (lifetimes) are independent and identically distributed

(IID) random variables (RV). For simplicity we assume that these RVs are con-

tinuous and then defined by their common probability density function (PDF)

p(x). This PDF then entirely describes the statistical properties of a renewal

PP. For various applications, both in theoretical and practical problems, it is

convenient to introduce the so-called renewal density (RD). Suppose that the

renewal PP begins at a time x = 0. The probability p(x)dx is the probability

that the first point of the PP after the origin of time appears in the interval

[x, x+dx]. On the other hand the renewal density h(x) is such that h(x)dx is

the probability of finding a point in this interval, regardless of whether it is,

or not, the first point appearing after the origin.

Since the renewal process is completely defined by p(x), it is clear that the

renewal density h(x) can be expressed in terms of p(x) (see p. 53 of Cox and

Isham, 1980). The result is

h(x) =
∞∑

m=1

pm(x), (1)

where p1(x) = p(x) and pm(x) is the m-fold convolution of p(x). It is in

fact the PDF of the RV Ym = X1 + X2 + ... + Xm, where the Xis are the

distances between successive points after the origin. The RV Ym describes the

time interval between the origin and the mth point of the PP posterior to this

origin.

In various applications it is easier to measure the RD h(x) than the PDF

p(x). This is especially the case in statistical physics when PPs are analyzed

by the means of coincidence systems in which we measure the probability of

finding points in two distinct small intervals regardless of the number or points

appearing between these intervals. (Saleh, 1978, Saleh and Teich, 1991, Snyder

and Miller, 1991, Picinbono and Bendjaballah, 2010). This leads immediately

to the inverse problem consisting in deducing p(x) from h(x). For this purpose

the form of (1) suggests using the Laplace transforms of the two members

of this equation. Let F (s) be the one-sided Laplace transform of p(x) or
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∫∞
0 p(x) exp(−sx)dx, sometimes called the generating function of the RV X.

It results from the convolution properties that the Laplace transform of pm(x)

is simply Fm(s), and noting that |F ()s| ≤ 1, the Laplace transform H(s) of

h(x) becomes

H(s) =
∞∑

m=1

Fm(s) =
F (s)

1− F (s)
. (2)

This expression can be inverted, which yields

F (s) =
H(s)

1 +H(s)
. (3)

This equation seems to solve the inverse problem. But it remains a purely

algebraic step consisting in the inversion of this Laplace transform in order to

obtain the PDF p(x). This step sometimes leads to inextricable calculations

and does not produce usable analytical results. Nevertheless it is convenient

to note that F (s) itself can yield various interesting characteristics of the RV

X. This is especially the case of its moments that can be deduced from a

limited expansion of the generating function in the neighborhood of the origin.

In various experiments the interest is limited to the measurements of the mean

and of the variance. These quantities are easily deduced from F (s), and the

Laplace inverse of this function is useless.

The purpose of this paper is to overcome this difficulty of Laplace inversion

and to show that in some circumstances an algorithmic recursive procedure can

be introduced making it possible to obtain explicitly the PDF p(x) from the

renewal density h(x). This is especially the case of renewal processes with dead-

time effect (DT). After introducing the principles of this method we analyze its

performance by using some examples of renewal PPs simulated by computer.

The experimental results indicate quite good agreement with those deduced

from calculations.

2 Principles of the inversion procedure

in the presence of dead-time

A renewal PP is said to exhibit a dead-time effect if there exists a positive

value D such that the PDF p(x) satisfies p(x) = 0 when x < D and also

such that, for any interval Iϵ = [D,D + ϵ[, the integral
∫
Iϵ
p(x)dx is positive.

Physically this means that the first point of the process posterior to the origin
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is necessarily posterior to D. It is clear that the same property is valid for

h(x). Indeed if there exists in interval ∆x subset of [0, D] and such that the

integral
∫
∆x h(x)dx is positive, then the probability of finding a point of the

PP in ∆x is not zero. But this is in contradiction with the DT property, or the

fact that the first point of the process posterior to the origin is posterior to D.

Conversely it results from (1) that since h(x) is a series of non-negative terms

pn(x), the assumption that h(x) = 0 implies that all these terms are equal to

zero, and in particular p(x) = 0.

There are various mechanisms that can generate PPs with DT effect. They

are presented in (Cox and Isham, 1980, Picinbono, 2007, Picinbono, 2009) and

here we only summarize the basic principles. There are two main kinds of DT

effects. In order to explain their structure, let us call P the input PP assumed

here to be a renewal process with points ti. Some of these points can be erased

by the DT effect and the non-erased points, called θi, constitute a new PP P ′

called output PP deduced from P by the DT effect.

The first kind of such an effect, called Type-1 or also output DT, is char-

acterized by the fact that only the points θi contribute to erase some points of

P . More precisely to each point θi of P ′ is associated an interval [θi, θi + D]

such that all the points tj of P belonging to this interval are erased. As an

important obvious consequence, when the density µ of P satisfies µ >> 1/D,

the output PP P ′ becomes a almost periodic sequence of points with a lifetime

almost constant and equal to D.

In the Type-2 DT effect, each point ti of P generates an erasing interval

[ti, ti+D] such that all the points tj of P belonging to this interval are erased.

The DT effect is then due to the input points, which introduces also the term of

input DT. In the asymptotic case µ >> 1/D the situation becomes completely

different from that described above for the output DT. Indeed it is then obvious

that almost all the points of P are erased in such a way that P ′ contains almost

no point. This is why this kind of DT effect is also sometimes called extended,

paralyzable or cumulative DT.

These distinctions are however without impact in our following discussion.

Indeed the only property of the DT used in our analysis is that the renewal

density is zero for x < D, and this property appears in the two previous

examples of DT effects.

4



Let us now show that this DT property implies that the PDF pm(x) is zero

for x < mD. Let us begin with p2(x) which is the convolution [p1 ⋆ p1](x)

defined by

p2(x) =
∫

p1(s)u(s−D)p1(x− s)u(x− s−D)ds, (4)

where u(x) is the unit step function equal to 1 for x > 0 and to zero otherwise.

These two functions u(.) in (4) characterize the DT property.

The product of the two unit functions is 1 if, and only if, D < s < x−D,

which implies that x > 2D. The convolution is then zero if x < 2D. The

same method is valid for the convolution between pm(x) and p1(x) yielding the

PDF pm+1(x). In the integral defining the convolution appears the product

u(s −mD)u(x − s −D) which yields the condition mD < s < x −D, which

implies that the convolution is zero if x < (m+ 1)D. Applying this recursion

from n = 1 yields pm(x) = 0 if x < mD.

This leads us to decompose the renewal density h(x) and all the functions

pm(x) of (1) in the following form

h(x) =
∞∑
n=1

hn(x) ; pm(x) =
∞∑
n=1

amn(x), (5)

in which the functions hn(x) and amn(x) are zero outside the intervals [nD, (n+

1)D]. The DT property on the PDFs pm(x) indicated above implies that these

functions satisfy amn(x) = 0 if n < m, which means that the table of these

functions is upper triangular, as seen in Table 1.

Table 1. Table of functions hn(x) and amn(x).

h h1 h2 h3 h4 h5 . . .
p1 a11 a12 a13 a14 a15 . . .
p2 a22 a23 a24 a25 . . .
p3 a33 a34 a35 . . .
p4 a44 a45 . . .
p5 a55 . . .

We shall now show that it is possible to calculate recursively all the elements

of this table uniquely from those hi of the first line. Since p1(x) = p(x), this

yields a solution to the problem stated above which is the calculation of p(x)

from h(x). This calculation uses a recursive procedure.
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It results immediately from the triangular structure presented in Table 1

and from (1) that a11(x) = h1(x). Let us now calculate a12. The procedure is

first to deduce a22 from the convolution p1 ⋆ p1, and then to apply (1) again,

which yields a12(s) = h2(s) − a22(s). In order to calculate a22 we use various

properties of convolutions of time-limited functions presented in Appendix 1.

It results from (5) that the PDF p2(x) can be expressed as

p2(x) =
∞∑

m=2

a2m(x) =
∞∑

m=1

∞∑
n=1

[a1m ⋆ a1n](x). (6)

The term a22 is a function limited to the interval [2D, 3D]. On the other hand

it is shown in (19) of Appendix 1 that the term [a1m ⋆ a1n](x) is limited to

the interval [MD, (M + 2)D] with M = m + n. This implies that the only

contribution to a22 of the last term of (6) is obtained for m = n = 1, which

yields a22 = [a11 ⋆ a11]A(x), where the index A means that the convolution is

calculated with (21). Once it is calculated, the use of (1) yields

a12(x) = h2(x)− a22(x). (7)

This shows that the second column of Table 1 can be deduced from the first

two elements of the first line.

Let us show that this property is general. Suppose that all the columns of

Table 1 are known till the column k − 1. By using the previous results and

those presented in Appendix 1 we shall see that the elements aik of the column

k for i > 1 can be deduced from the elements amn already known. On the

other hand the element a1k is obtained from (1) by a relation similar to (7)

a1k(x) = hk(x)− [a2k(x) + a3k(x) + ...+ akk(x)]. (8)

It remains to calculate the terms aik of this equation. For this we use the fact

indicated above that pi = p1 ⋆pi−1. Applying (5) to p1 and pi−1 yields a sum of

convolutions a1m ⋆ a(i−1)n that can be calculated with the procedure presented

in Appendix 1. The first task is to determine the pairs m,n such that the

convolution a1m ⋆ a(i−1)n can introduce a non-zero contribution in the interval

kD, (k + 1)D which is the only set of points where the functions aik are not

equal to zero. It is shown in Appendix 1 that these pairs must satisfy either

m+ n = i, in which case the convolution is given by (21), or m+ n = i+1, in

which case the convolution is given by (22). The complete calculation can be
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rather tedious, but introduces no technical difficulties. It solves however the

problem stated at the beginning, which is the calculation of the PDF p1(x)

from the renewal density h(x). We shall now evaluate on some particular

examples the performance of this recursive procedure of calculation.

3 Computer experiments

The most important renewal PP for physical applications is the Poisson pro-

cess. This comes from the fact that it is the only PP with no memory at

all at any scale. This property is introduced in various models of theoreti-

cal physics, in such a way that there are numerous examples of experimental

measurements in order to verify the Poisson character of a PP. This especially

appears in nuclear physics and also in statistical optics.

Various experiments have been introduced to verify whether or not a PP

coming from a physical phenomenon is a Poisson process. Among them note

especially coincidence or correlation and counting experiments. An overview

of such experiments in statistical optics can be found in (Saleh, 1978). When

a physical PP does not strictly verify the Poisson structure it is important to

detect whether this result comes from a physical fundamental reason or is due

to an artifact of the experimental setup such, for example, a DT effect.

Quantum theory of light detection predicts, for example, that the time in-

stants of photons absorption observed at the output of a photodetector are not

in general described by a Poisson process and this can be observed by counting

or coincidence experiments (Saleh, 1978, Saleh and Teich, 1981, Picinbono and

Bendjaballah, 2010). On the other hand number of PPs observed in particle

emission in nuclear physics must theoretically constitute Poisson processes.

This is why many papers are devoted to the analysis of DT effects in Poisson

processes in order to explain the differences that can appear between theoret-

ical prediction and experimental measurements. As a consequence the theo-

retical description of DT effects on Poisson processes is relatively well known

and we shall briefly present the most significant results.

Let P be a stationary Poisson process of density µ. Consider first the

input, or Type-2 DT, introduced above. It is shown that the corresponding

output PP P ′ is a renewal PP (see p. 102 of Cox and Isham, 1980). Since

the condition for a point ti to be not erased is that there are no points of P
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in the interval [ti −D, ti], it results from the properties of the Poisson process

that the density of P ′ is λ = µ exp(−µD). Similarly the renewal density is

h(x) = u(x − D)λ. The fact that λ tends to 0 when D → ∞ illustrates the

term “paralyzable” introduced above.

The one-sided Laplace transform of this renewal density is (λ/s) exp(−sD),

and applying (3) yields the generating function

F (s) =
λ exp(−sD)

s+ λ exp(−sD)
. (9)

It is possible to deduce from this function the moments of the lifetimes of

P ′. In particular an expansion of F (s) in terms of sk limited to s2 can yield

the expected value and the variance of the lifetime and the results of this

calculation were presented in (Feller, 1948). The inversion problem was solved

several years later (Müller, 1971, Müller, 1973) by using a specific method

adapted to the structure of (9). The result remains rather complicated. We

have verified that the inversion algorithm presented in the previous section

yields the same results.

The case of the output (or Type-1) DT of a Poisson process is quite dif-

ferent. Her also, according to (Cox and Isham, 1980, p. 102), the output

PP P ′ is a renewal process and it results from the properties of Poisson

processes that the PDF of the lifetime of P ′ is a displaced exponential or

p(x) = u(x − D) exp[−µ(x − D)]. On the other hand the renewal density is

given by a more complicated expression which can be obtained without diffi-

culties.

In order to illustrate the performance of our inversion algorithm it is then

appropriate to work with a renewal PP which is not a Poisson process and

we have chosen an Erlang 2 PP. It is a renewal PP defined by a PDF of the

lifetime given by

p(x) = u(x)4µ2x exp(−2µx), (10)

where µ is an arbitrary positive parameter. Its mean value and variance are

equal to 1/µ and 1/2µ2 respectively. Consider now the case where this process

P is perturbed by an input DT of duration D. This generates a new renewal

process P ′ and it is easily found (see Appendix 2) that its renewal density h(x)
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is

h(x) = u(x−D)[λ− λ′ exp[−4µ(x−D)], (11)

where

λ = µ(1 + 2µD) exp(−2µD) , λ′ = µ(1− 2µD) exp(−2µD). (12)

The density λ of a renewal PP is the limit of h(x) when x → ∞ (Cox and

Isham, 1980, p. 51) and it is equal to the inverse of the mean value mX of

the distance between successive points. The previous equations imply that the

density of P ′ is λ and then mX = 1/λ given by (12).

It is interesting to note in (12) that λ′ = 0 for D = 1/(2µ). In this case

(11) shows that h(x) = u(x−D)λ with λ = 2µ/e. This is the renewal density

of a Poisson PP of density 2µ modified by an input DT with the same value

D = 1/(2µ). The inversion problem studied here was solved in this case in

(Müller, 1973). Furthermore we note that this value of D introduces two

different forms of h(x) because λ′ is positive if D < 1/(2µ) and negative if

D > 1/(2µ). This will clearly appear in the results of computer experiments.

It is now interesting to verify these preliminary results by computer exper-

iments. The starting point for that is to generate a sequence of lifetimes of

points ti considered as a trajectory of a particular Erlang 2 PP. The princi-

ple guiding the realization of these simulated data is presented in (Picinbono,

2007). By noting that (10) is the PDF of a sum of two IID positive exponential

RVs, we deduce that generating the lifetimes of an Erlang 2 PP is identical to

generating two independent sequences of independent exponential RVs. This

is an easy task by using a procedure similar to those described in (Devroye,

1986, Ogata, 1981). We then obtain a sequence of N outcomes of IID random

variables equal to the distances between successive points of an Erlang 2 pro-

cess. By a computer procedure we simulate the input DT effect transforming

these N outcomes into n other ones corresponding to the distances between

successive points after DT effect. It is clear that, as indicated above, number

of points are erased by this effect which implies that n < N , and this reduction

can be very important. Since the statistical analysis leading to results of this

table are realized with these n samples, the statistical errors due to the finite

number of samples analyzed increases with D.

In our experiments N = 107 in order to obtain a convenient statistical

precision of the measurements. In Table 2 we present results of measurements
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of the mean and variance of the lifetimes with and without DT effect on sim-

ulated Erlang 2 PP. In this table m and V are the sample mean and variance

of the simulated Erlang 2 PP defined by (10) with µ = 1 and N = 107, mT

and VT their corresponding theoretical values, D is the value of the DT, n the

number of samples with DT analyzed, mE is the experimental sample mean

value of the lifetime after input DT and mX and λ are the theoretical values

given by (12). We note that the number n can be reduced by approximately

10 when D increases from 0.25 to 2.

Table 2. Theoretical and experimental values of mean and variance

of the lifetimes for Erlang 2 process with input DT.

m mT V VT D n mE mX λ
0.999 1 0.4998 0.5 0.25 9.096 106 1.0993 1.0991 0.9096
0.998 1 0.4997 0.5 0.5 7.359 106 1.3591 1.3591 0.7358
0.998 1 0.4997 0.5 0.75 4.462 106 1.7930 1.7927 0.5578
0.999 1 0.4999 0.5 1 4.060 106 2.4626 2.4630 0.4060
0.999 1 0.4999 0.5 2 0.916 106 10.9155 10.9196 0.0916

For µ = 1 used in all our experiments the theoretical values of m and V

are 1 and 0.5 respectively, which appears with an excellent precision in the five

experiments. The diminution of the number n with D is simply a consequence

of the DT effect which appears also on the decreasing of the density λ. This

illustrates the term of “paralyzable DT” sometimes used for the input DT.

Finally the values of the sample means of the lifetimes correspond with a quite

good precision to their theoretical values.

The n values of the lifetimes are now used for the calculation of the renewal

density and the results appear in Fig. 1 where h(x) is represented in terms of

x for three values of the DT D. The points correspond to the experimental

measurements of the density and the continuous curve represents the theo-

retical value of this density given by (11) and (12). We observe an excellent

agreement between experiment and theory.

Furthermore it appears clearly the difference of structures according to

the threshold D = 0.5. For this precise value of D we find the structure of

the renewal density of a Poisson process. Other experiments with D < 0.5

exhibit forms of the density very similar to the one obtained for D = 0.25.

Similarly the densities obtained for D > 0.5 are similar to the one obtained
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withD = 0.75. The main difference are that the maximum of h(x) obtained for

x = D decreases exponentially with D and the precision of the measurements

is also decreasing because the number of points erased by DT effect increases

with D. This is clearly shown in Table 2 by the decreasing of the values of n

when D increases.

We can now use the same data for the solution of the inversion problem by

using the recursive algorithm previously introduced. Let us first describe how

the inversion problem can be stated in terms of Laplace transform inversion.

The Laplace transform of h(x) given by (11) and (12) can be expressed in

the form

H(s) =
As+B

s(s+ 4µ)
exp(−Ds), (13)

where

A = λ−λ′ = 4µ2D exp(−2µD) ; B = 4µλ = 4µ2(1+2µD) exp(−2µD). (14)

Note that for 2µD = 1 the function H(s) is, as expected, proportional to

exp(−Ds)/s, which appears when the input PP is Poisson. By applying (3)

we obtain

F (s) =
(As+B)e−Ds

s(s+ 4µ) + (As+B)e−Ds
. (15)

It especially satisfies F (0) = 1, a condition necessary for any generating func-

tion. This expression is significantly more complicated than (9) obtained for

a Poisson process and the method introduced by (Müller, 1971) cannot be di-

rectly applied. This leads to the use of the inversion algorithm introduced in

Section 2.

The data already used for the results appearing in Table 2 are now analyzed

by using normalized histograms in order to obtain values of the PDF of the

lifetimes after DT. In all the experiments reported in Fig. 2 the values of

the parameters are those used in Table 2, and especially µ = 1. In these

figures we present in a continuous line the curves obtained by using the method

introduced previously and summarized in Appendix 1. The points correspond

to experimental measurements of the PDF of the lifetime deduced from a

normalized histogram of the data. The results correspond to the values D =

0.25, 0.5 and 0.75 of the DT. These values are chosen in order to illustrate

the threshold effect corresponding to D = 0.5 and discussed above and also

to be sufficiently small to preserve a good statically precision. We note that
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the curve corresponding to D = 0.5 is quite similar to the one published in

(Müller, 19731 and 1973) corresponding to a Poisson process.

All these curves show that the experimental measurements are located with

a quite good precision on the curves resulting of the application of the recursive

algorithm presented in Section 2. This justifies the interest of the method of

the PDF calculation introduced and discussed above.

Appendix 1

Convolutions of time-limited functions

Let rm(x;D) be the rectangular function equal to 1 formD ≤ x < (m+1)D

and zero otherwise. A function fm(x) is said to be time-limited in [mD, (m+

1)D[ if it satisfies fm(x)rm(x;D) = fm(x). Let us calculate the convolution

cmn(x) = [fm ⋆ gn](x) between two time-limited functions fm and gn. It is

defined by

cmn(x) =
∫

fm(x− s)rm(x− s;D)gn(s)rn(s;D)ds. (16)

Since the convolution is commutative, we can assume that m ≤ n. Because

of the functions r(.;D) in (16), obtaining a non-zero integral requires that the

integration variable s satisfies the two following equations

x− (m+ 1)D < s < x−mD (17)

nD < s < (n+ 1)D. (18)

If these equations are not both satisfied, the convolution is zero. This appears

if the two intervals [x− (m+1)D, x−mD] and [nD, (n+1)D] do not overlap.

This situation depends on the value of the variable x. Note first that if x ≤ 0

there is no overlapping between these intervals. Indeed this assumption implies

that s must be negative, according to (17) while (18) requires that s > 0.

When x is increasing the overlapping appears as soon as x − mD > nD, or

x > MD, where M = m + n. On the other hand the overlapping disappears

if x − (m + 1)D > (n + 1)D. This implies that the convolution cmn(x) given

by (16) can take nonzero values only if

MD < x < (M + 2)D , M = m+ n. (19)
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In this interval the integral appearing in (16) takes two distinct forms. For

MD ≤ x ≤ (M + 1)D, the integration variable s must belong to the interval

IA = [nd, x − mD]. On the other hand, if (M + 1)D ≤ x ≤ (M + 2)D this

variable s must belong to the interval [x− (m + 1)D, (n + 1)D]. This can be

summarized by the relation

cmn(x) = JA(x)rM(x;D) + JB(x)rM+1(x;D), (20)

with

JA(x) =
∫ x−mD

nD
fm(x− s)rm(x− s;D)gn(s)rn(s;D)ds, (21)

JB(x) =
∫ (n+1)D

x−(m+1)D
fm(x− s)rm(x− s;D)gn(s)rn(s;D)ds. (22)

Note that, according to the reasoning presented above, JA[(m+n)D] = JB([(m+

n+ 2)D] = 0.

Appendix 2

Erlang (2) renewal point processes

Erlang PPs appear in the study of congestion problems in processing sys-

tems of telephone calls. A good overview of the properties of the Erlang dis-

tribution appears in http : //en.wikipedia.org/wiki/Erlangdistribution.

The basic properties of an Erlang (2) RV defined by the PDF p(x) of (10) is

that it is a sum of two IID positive exponential RVs with the PDF f(x) =

u(x)2µ exp(−2µx). It is indeed easy to verify that the convolution [f ⋆ f ](x)

is p(x). As a consequence an Erlang (2) PP P is obtained by erasing regu-

larly one point over two in a Poisson process PP of density 2µ. This yields

obviously a renewal PP of density µ defined by the PDF p(x) appearing in

(10).

Let us now calculate its renewal density h(x). For this we start of the

property indicated in the introduction: suppose that there is a point of P
at the origin O. Then h(x)dx, x > 0, is the probability of finding a point

of P in the interval [x, x + dx], regardless of whether it is, or not, the first

point of P appearing after the origin. Since the number of points of a Poisson

process in non-overlapping intervals are independent RVs, it is appropriate to

deduce the properties of P from those of PP . Note first that the fact that

there is a point of P at the origin O means that there a point of PP at this

13



origin and that this point is not erased. Then the first point of PP after the

origin is erased. Consider the three non-overlapping intervals I1 = [0, x−D],

I2 = [x−D, x], and I3 = [x, x+ dx]. The event appearing in the definition of

h(x) of P occurs if there is no points of P in I2 and at least one point of P
in I3, regardless the number of points in I1. This can be decomposed into two

events of PP according to the fact that the number N of points of PP in I1

is even or odd. If N is even the first point of PP posterior to x−D is erased,

and then in order to obtain a non-erased point of PP in I3 it is necessary that

I2 contains only one point of PP . On the other hand if N is odd the first point

of PP posterior to x − D is not erased and becomes a point of P . Since I2

must no contain point of P , the same property must be valid for PP . Noting

that since PP is Poisson of density 2µ the probabilities that N is even or odd

are (1/2)[1 + exp{−4µ(x −D)}] and (1/2)[1 − exp{−4µ(x −D)}] we deduce

immediately (11) and (12).
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Figures captions

Fig. 1. Renewal density h(x) of Erlang 2 PP after input DT for D = 0.25, 0.5, 0.75.
Points: experiment, continuous curve: theory.

Fig. 2. PDF of the lifetime of the points of an Erlang 2 PP after input DT and various
values of D. Points: experiment, continuous curve: theory.
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