
HAL Id: hal-01390779
https://centralesupelec.hal.science/hal-01390779

Submitted on 16 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Soft Shrinkage Thresholding Algorithm for Nonlinear
Microwave Imaging

Hidayet Zaimaga, Marc Lambert

To cite this version:
Hidayet Zaimaga, Marc Lambert. Soft Shrinkage Thresholding Algorithm for Nonlinear Mi-
crowave Imaging. Journal of Physics: Conference Series, 2016, 756 (1), pp.012011. �10.1088/1742-
6596/756/1/012011�. �hal-01390779�

https://centralesupelec.hal.science/hal-01390779
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Soft Shrinkage Thresholding Algorithm for
Nonlinear Microwave Imaging
To cite this article: Hidayet Zaimaga and Marc Lambert 2016 J. Phys.: Conf. Ser. 756 012011

 

View the article online for updates and enhancements.

Related content
Development of a thresholding algorithm
for calcium classification at multiple CT
energies
LY. Ng, M. Alssabbagh, A. A. Tajuddin et
al.

-

Sparsity regularization in inverse problems
Bangti Jin, Peter Maaß and Otmar
Scherzer

-

Note
Bumseok Namgung, Peng Kai Ong, Yun
Hui Wong et al.

-

Recent citations
Target Tracking via Particle Filter and
Convolutional Network
Hongxia Chu et al

-

This content was downloaded from IP address 195.221.160.3 on 16/07/2020 at 16:24

https://doi.org/10.1088/1742-6596/756/1/012011
http://iopscience.iop.org/article/10.1088/1742-6596/851/1/012010
http://iopscience.iop.org/article/10.1088/1742-6596/851/1/012010
http://iopscience.iop.org/article/10.1088/1742-6596/851/1/012010
http://iopscience.iop.org/article/10.1088/1361-6420/33/6/060301
http://iopscience.iop.org/article/10.1088/0967-3334/31/9/N01
http://dx.doi.org/10.1155/2018/5381962
http://dx.doi.org/10.1155/2018/5381962
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvWMbP1O4i9c27vB6BKjGY43bNM4urbWrUfb4pb3npEfnjg-QU-8YHFOhYg9dJ4U8NUR3PNhBZQikHPntUthl3BMJW9JxPQy5zDPulLtUkHVSTUGq2-_MxmYcb1JKFDfWtZm3f-h6IZj0qVVmlB2X0omWITDhpJDUvjCdQBFbAUyFl8N8ySk4ee95bKFwNkgTV1n7eufwO_gFlW_9tUCSeFJDyLkJKKMO8KASRrbff9bq2X302_&sig=Cg0ArKJSzIcIP0aTKJNF&adurl=http://iopscience.org/books


Soft Shrinkage Thresholding Algorithm for

Nonlinear Microwave Imaging

Hidayet Zaimaga1, Marc Lambert2
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Abstract. In this paper, we analyze a sparse nonlinear inverse scattering problem arising in
microwave imaging and numerically solved it for retrieving dielectric contrast from measured
fields. In sparsity reconstruction, contrast profiles are a priori assumed to be sparse with respect
to a certain base. We proposed an approach which is motivated by a Tikhonov functional
incorporating a sparsity promoting l1-penalty term. The proposed iterative algorithm of soft
shrinkage type enforces the sparsity constraint at each nonlinear iteration. The scheme produces
sharp and good reconstruction of dielectric profiles in sparse domains by adapting Barzilai and
Borwein (BB) step size selection criteria and positivity by maintaining its convergence during
the reconstruction.

1. Introduction
Development of efficient reconstruction methods and techniques that exploit sparseness
regularized formulations have been widely emerged for solving inverse electromagnetic scattering
problems in recent years. High demand of such methods in various applications such as
material characterization, subsurface prospecting, remote sensing, and non-destructive testing
and evaluation [1, 2] enforces the importance and the need of effective and accurate methods.
Inverse electromagnetic scattering problems reconstruct material properties such as permittivity
and conductivity in an unknown region from measured electromagnetic fields. However,
implementation of such stable, reliable, and efficient reconstruction algorithms is challenging
because of the nonlinearity of the scattering equations and ill-posedness of the problem [2–4].

Several approaches have been proposed in order to overcome these issues. Global optimization
tools, multi-step information retrieval techniques, and qualitative methods have been introduced
to alleviate the non-linearity or its effects. Moreover, first order approximations such as
diffraction tomography, Born and Rytov approximations have been proven in order to linearize
the problem [2, 3, 5]. On the other hand, innovative sparseness-regularized formulations have
recently emerged as an effective recipe to overcome the non-uniqueness and/or numerical
instability of the inversion process [6, 7]. The reason behind this is that many images have sparse
representations with respect to their expansion basis in the wavelet domain and this yields new
developing approaches that minimize the cost functions with zeroth/first norm penalty terms
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using highly effective iterative shrinkage thresholding algorithms. Such an increased interest is
proven by number of publications in wide domains [4, 6–10].

The aim of the present work is to develop a novel sparse reconstruction algorithm and
demonstrate its performance in microwave imaging. In the proposed work sparse reconstruction
algorithm of iterative soft shrinkage type is studied. Sparsity constraint is directly applied to
the problem of reconstructing the complex internal dielectric properties of an object based on
knowledge of the external scattered field which is generated by the interaction between the object
and a known incident field. The nonlinear optimization problem is solved by iterative algorithm
of soft shrinkage in order to enforce the sparsity constraint by a soft thresholding function. We
exploit an adaptive step size selection by BB rule and a priori constraint called as positivity in
order to have improved reconstructions. The proposed method provides necessary and sufficient
conditions to yield well-posedness and convergence [11–13].

2. Sparse Problem Statement and Discretization
Consider a 2D configuration with transverse magnetic polarization (TM) case where the object
under investigation illuminated by a given source numbered as i, i = 1, ..., Ns as in fig. 1.
Let Einc be an incident electric field which is generated by a source and polarized along the
z-axis with an implicit time factor exp(−iωt). The object is considered in an investigation
domain D and the different media are characterized by their propagation constant k(r) such that
k(r)2 = ω2ε0εr(r)µ0+iωµ0σ(r), where ω is the angular frequency, ε0 and µ0 are the permittivity
and the permeability of the air respectively, εr(r) and σ(r) are the relative permittivity and
conductivity of the medium as r ∈ D is an observation point. The dielectric properties of D are
described by the inhomogeneous contrast function, χ(r), which is defined for non-magnetic area
such as χ(r) =

(
k(r)2 − k2B

)
where kB is the propagation constant of the embedding medium.

A known incident field interacts with the scatterer yielding to a total field which is the
sum of the incident and scattered fields. Assuming no magnetic media and considering the
boundary and radiation conditions we can obtain two coupled contrast source integral equations
by applying Green‘s theorem to Helmholtz wave equations [1, 5] as following

Etot(r) = Einc(r) +

∫
D
G(r, r′)J(r′)dr′ ∀r ∈ D (1)

Escatt(r) =

∫
D
G(r, r′)J(r′)dr′ ∀r ∈ L (2)

where G(r, r′) =
i

4
H

(1)
0 (kB‖r− r′‖), H

(1)
0 is the 0-th order Hankel function of the first kind and

Escatt is the scattered field. We also defined the contrast source induced within the object by the
incident wave such as J(r′) = χ(r)Etot(r′), where Etot being the total field in the object. Solving
the equations (1) and (2) the unknown contrast function χ(r) can be determined. Following
this, the scattering equations are discretized with the point-matching Method of Moments as in
[5] by considering pixel basis functions

ψk(r) =

{
1 r ∈ Dk,

0 otherwise,
(3)

Dk being the k−th pixel and the unknown contrast defined as χ(r) =
∑N

k=1 χkψk(r), N being
the number of pixels.
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3. Nonlinear Optimization
Soft shrinkage is an approach which minimizes a nonlinear Tikhonov functional with sparsity
promoting penalty term. The algorithm is based on the iterated soft shrinkage approach
originated for linear operators in the work [6]. A generalization to nonlinear inverse problems
has been studied in [4, 14].

The algorithm performs a gradient descent step which involves the adjoint gradient of the
cost function with a step size κ, and then a shrinkage step. The latter enforces the sparsity of
the reconstruction by setting the small coefficients to zero. The solution of the inverse problem
can be obtained by minimizing the cost function which is of the form

F (χ) =
1

2

∥∥ξ(χ)− Escatt
∥∥2︸ ︷︷ ︸

K(χ)

+α‖χ‖l1 (4)

whereas ξ(χ) = G(r, r′)χ(r′)[I − G(r, r′)χ(r)]−1Einc. The l1 penalty can promote a-priori
knowledge of the sparse representation.

Iterative soft shrinkage has the form as (4) where ξ : X 7→ Y is counted to be a bounded and
nonlinear operator with respect to unknown contrast. The algorithm is started by choosing an
initial guess χ1, and continues the iteration as

χj+1 = Sα

(
χj − κξ′∗(χj)

[
ξ(χj)− Escatt

])
(5)

where ξ′(χ) is the gradient of nonlinear function ξ(χ), and ξ
′∗(χ) is the adjoint operator. Sα is

the soft shrinkage operator defined componentwise by [6]

(Sα(χ))i =

{
(|χi| − α)sign(χi), if |χi| > α

0, otherwise.
(6)

It truncates small values to zero and shrinks large values. The term ξ
′∗(χj)

[
ξ(χj) − Escatt

]
is

the gradient of the discrepancy 1
2

∥∥ξ(χ)− Escatt
∥∥2. The algorithm which has been computed, is

as following:

Algorithm 1 Steepest descent reconstruction algorithm with sparsity constraint

1: Initialize χ1 and α
2: for j = 1, · · · , J do
3: Solve the direct problem Escatt

(
χj
)

4: Compute the gradient K ′
(
χj
)

= ∇χK (χ)|χj

5: Determine the step size κj
6: Update inhomogeneity by χj+1 = χj − κjK ′

(
χj
)

7: Threshold χj+1 by Sα
(
χj+1

)
8: check stopping criterion

9: end for
10: output approximate the minimizer of (4).

3.1. Step Size Selection
Selecting the proper step size adaptively is important as it can increase the convergence speed.
Therefore, the step size κ can be determined in order to accelerate the algorithm. The iterative
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Figure 1: Measured configuration of actual permittivity profile and source-receiver locations on
(x(m), y(m)) axis.

soft shrinkage algorithm with a fixed step size favors the classical Landweber method. Thus, the
motivation for increasing the rate of convergence is the comparison with the classical Landweber
iteration whose slow convergence results from using a constant step size which is very small
[4, 10]. Hence, we select the step size in a way to increase the convergence speed where we only
consider the steepest descent operation χj − κK ′(χj) of the algorithm. The selection is done by
the two-point rule of Barzilai and Borwein which calculates the step size as [15]

κj =

〈
χj − χj−1,K ′

(
χj
)
−K ′

(
χj−1

)〉
〈K ′ (χj)−K ′ (χj−1) ,K ′ (χj)−K ′ (χj−1)〉

. (7)

3.2. Priori Constraints
Imposing a-priori constraints can sometimes improve the quality of solutions to the inverse
problems in a great portion [16]. Towards this end, non-negativity is important in applications
like imaging [6, 16]. We know that in order to have a physical solution the unknowns we are
dealing with should have constraints, the latter being εr(r) ≥ 1 and σ(r) ≥ 0. However, in the
general case (as embedded obstacle in half-space) those constraints do not impose non-negativity
to the real and imaginary parts of the contrast function. We can consider the constraint
by “Projection” where at each iteration the following projection εr(r) = max (εr(r), 1) and
σ(r) = max (σ(r), 0) is applied.

4. Numerical Results
In the following, the basis functions ψk have been chosen as pixel-based. In our example (see
fig. 1), we have five objects of physical characteristics described in Tab. 1. Investigation area D
is a l = 6 × λ-sided square. The discretization size is n × n = 80 × 80 for the forward problem
and n× n = 30× 30 for the inverse problem. The number of transmitters and receivers located
around the investigation area are 36 evenly distributed on a circle of radius r = 7 m. The
frequency of the transmitters is 200 MHz. The measured field samples are generated by adding
10 dB white Gaussian noise.

Let us defined the relative error norm as a comparison criteria expressed as

εerrr =
‖εrecr − εr‖2
‖εr‖2

, σerr =
‖σrec − σ‖2
‖σ‖2

, (8)

where εrecr and σerr are the reconstructed permittivity and conductivity respectively and εr and
σ the exact ones. The minimum of cost function being the one reached at the end of the process
for each α.

One of the key point of such an inversion is the choice of the regularization parameter α
in (6). Different tests have been performed in order to evaluate the sensitivity of the choice of
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Table 1: Description of the five obstacles, x, y being the coordinate of the center of the obstacle
(in m), Lx, Ly its lengths (in m) and εr and σ its relative permittivity and conductivity (the
latter in S m−1)

.

# x y Lx Ly εr σ

1 −1.5 −1.5 0.5 0.5 1.5 0.0022
2 −0.33 0.44 0.5 0.5 2.25 0
3 1.5 −1.5 0.5 0.33 2 0.004 45
4 0 1.5 0.5 0.33 2 0.022 25
5 1 1.33 0.5 0.5 1 0.022 25

regularization on the solution. In our case it can be observed that the higher the value we choose
for α the sharper the reconstructions are. However, the choice of α is not arbitrary as can be
seen in Fig.2. We can get good reconstruction by choosing α within the range of α = 1.5× 10−3

and α = 1× 10−2 for which εerrr and σerr are the smallest as shown fig. 2b and fig. 2c respectively
whereas those errors get bigger for larger α.

Moreover, addition of projection to the sparsity reconstruction method improve the quality of
the reconstruction even more. Fig. 2 shows us that we can choose the regularization parameter
in a wider range when we add projection to our algorithm.

As a complementary validation Figs. 3 and 4 present a comparison of the map of the
permittivity and conductivity respectively for various inversion parameters. The influence of the
α parameter without any projection constraint onto the permittivity can be shown by comparing
fig. 3b and fig. 3c whereas the influence of the projection constraint is presented fig. 3d. Clearer
image is obtained by addition of projection constraint with an appropriate α.
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Figure 2: Error on the cost function (as defined in eq. 4), εerrr , and σerr (as defined in eq. 8) as
a function of α. ·–with positivity via projection and × –without positivity

5. Conclusion
Soft iterative thresholding is used to solve the 2-D electromagnetic inverse scattering problem
based on l1 norm penalty term. Retrieval of arbitrary complex shaped targets from simulated
data shows that this approach is effective and gives us sharper reconstructions by adopting
wavelet basis function. Taking advantage of BB method for step size selection and adding
projection enhance the effectiveness of proposed method. Even if choosing the regularization
parameter is challenging, addition of projection can lead us to choose it in a wider range
possibilities.

Even though the results are promising and advantageous, investigations in experimental
settings need to be done to show the feasibility of the algorithm whereas this would be our next
step. The development of nonlinear inversion with sparsity regularization for higher permittivity
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Figure 3: Permittivity εr obtained by using sparsity and positivity with 10 dB noise data.
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Figure 4: Conductivity σ obtained by using sparsity and positivity with 10 dB noise data.

values will be studied. Smoothness constraint for the gradient and projection on gradient (as
mentioned in section 3.2) will be added to the proposed algorithm in order to analyze the
improvement in the reconstruction quality.
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