Quantum Observables for Binary, Multi-Valued and Fuzzy Logic: Eigenlogic
Zeno Toffano, François Dubois

To cite this version:
Zeno Toffano, François Dubois. Quantum Observables for Binary, Multi-Valued and Fuzzy Logic: Eigenlogic. 7th Colloquium IQFA-2016, CNRS GDR-3322 on Q. Engineering, Foundations & Applications Ingénierie Quantique, des aspects Fondamentaux aux Applications – IQFA, Nov 2016, Paris, France. hal-01399528

HAL Id: hal-01399528
https://hal-centralesupelec.archives-ouvertes.fr/hal-01399528
Submitted on 19 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Quantum Observables for Binary, Multi-Valued and Fuzzy Logic : Eigenlogic

Zeno Toffano1,2, François Dubois3,4*

1Telecom Dept., CentraleSupélec, Gif-sur-Yvette, France
2Laboratoire des Signaux et Systèmes, UMR8506-CNRS, Université Paris-Saclay, France
3LMSSC, Conservatoire National des Arts et Métiers, Paris, France
4Department of Mathematics, University Paris-Sud, Orsay, France

We propose a linear algebraic method, named Eigenlogic [1], for two-, many-valued and fuzzy logic using observables in Hilbert space. All logical connectives are represented by observables where the truth values correspond to eigenvalues and the atomic input propositional cases, i.e. the “models” of a propositional system, to the respective eigenvectors. In this way propositional logic can be formalized by using combinations of tensored elementary quantum observables. The outcome of a “measurement” of a logical observable will give the truth value of the associated logical proposition, and becomes “interpretable” when applied to vectors of its eigenspace, leading to an original insight into the quantum measurement postulate. Recently the concept of “quantum predicate” has been proposed in [2] leading to similar concepts.

We develop logical observables for binary logic and extend them to many-valued logic. For binary logic and truth values \{0, 1\} logical observables are commuting projector operators [1]. For truth values \{+1, −1\} the logical observables are isometries formally equivalent to the ones of a composite quantum spin $\frac{1}{2}$ system, these observables are reversible quantum logic gates.

The analogy of many-valued logic with quantum angular momentum is then established using a general algebraic method, based on classical interpolation framework suggested by the finite-element method. Logical observables for three-valued logic are formulated using the orbital angular momentum observable L_z with $\ell = 1$. The representative 3-valued 2-argument logical observables for the ternary threshold logical connectives Min and Max are then explicitly obtained [3].

Also in this approach fuzzy logic arises naturally when considering vectors outside the eigensystem. The fuzzy membership function [4] is obtained by the quantum mean value (Born rule) of the logical projector observable and turns out to be a probability measure. Fuzziness arises because of the quantum superposition of atomic propositional cases, the truth of a proposition being in this case a probabilistic value ranging from completely false to completely true.

This method could be employed for developing algorithms in high-dimensional vector spaces for example in modern semantic theories, such as distributional semantics or in connectionist models of cognition [5]. For practical implementation, due to the exponential growth of the vector space dimension, adapted logical reduction methods must then be used. LSA (Latent Semantic Analysis) algorithms are often used in quantum-like approaches, this was done in [6] using the HAL (Hyper-space Analogue to Language) algorithm.

Our approach is also of interest for quantum computation because several of the observables in Eigenlogic are well-known quantum gates (for example CONTROL-Z) and other ones can be derived by unitary transformations. Ternary-logic quantum gates using qu-trits lead to less complex circuits, our formulation of multi-valued logical observables could help the development of new multi-valued quantum gate architectures.

\begin{itemize}
\end{itemize}

* zeno.toffano@centralesupelec.fr ; francois.dubois@cnam.fr
Eigenlogic [1]

We propose a linear algebraic model for two- and many-valued logic using families of observables in Hilbert space, the eigenvalues give the truth values of logical propositions where the input propositional cases (models for the logical proposition) are represented by the respective eigenvectors.

quantum logical observables \rightarrow logical connectives

eigenvectors of the observables \rightarrow models of the propositional system

eigenvalues of the observables \rightarrow truth values

The outcome of a measurement on a logical observable will give the truth values of the associated logical proposition.

In classical logic, predicates are used to describe properties of individuals or systems. A natural idea is that a quantum predicate [2] should be a physical observable.

Logical connectives

Truth Tables

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A & B</th>
<th>A \lor B</th>
<th>\neg A</th>
<th>A \equiv B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

The 16 Binary Logical Connectives

Isomorphic Binary Logical Observables

There is a linear bijection (isomorphism) from the projector F to a reversible observable G (isometry) using the Householder transform:

\[G = I - 2F \]

both observables commute and have the same system of eigenvectors.

The eigenvalues that correspond to the truth values, respectively "false" and "true", are now +1 and −1. The seed observable is Pauli-Z:

\[Z = I - 2I = (1, 0) (0, -1) = \sigma_z \]

The classical connectives U and V are expressed as a function of the seed observable Z:

\[U = Z \sigma_1, \quad V = I \sigma_2 \]

For the isomeric observables negation is obtained by multiplying by −1.

The exclusive disjunction (XOR) : \[G_{XOR} = Z \otimes Z \]

The logical connective (AND) :

\[G_{AND} = 1 / 2 \left(I + Z \otimes I + I \otimes Z - Z \otimes Z \right) = C^2 \]

which is the quantum Control-Z gate

Tri-Valued Logical Observables : Min and Max

In tri-valued logic, popular connectives are Min and Max, defined by their tables:

<table>
<thead>
<tr>
<th>Min</th>
<th>U</th>
<th>V</th>
<th>F</th>
<th>N</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

The corresponding logical observables are given function of the dictators:

\[\min_{n}(U, V) = \frac{1}{2} (U + V + U^2 + V^2 - U V - V U + U^2 V^2) \]

\[\max_{n}(U, V) = \frac{1}{2} (U + V + U^2 + V^2 - U V - V U + U^2 V^2) \]

The total number of logical connectives for a system of m values and n arguments is the combinatorial number \(m^n \). For a two-argument system taking 3 values the total number of connectives will be 19683.

Fuzzy Logic Interpretation

Fuzzy logic deals with propositions that can lie between "completely true" and "completely false".

When the quantum state is not an eigenstate of the logical system one can always express a state vector as a superposition, for example:

\[|\psi\rangle = \cos(\alpha) |0\rangle + e^{i\theta} \sin(\alpha) |1\rangle \]

which when more than one coefficient is non-zero we are in the case of a fuzzy proposition, that can be interpreted as a quantum superposition of propositional models. Mean values are fuzzy membership functions \(\mu \) [3].

Using the Born rule for the state:

\[\langle \psi | \phi \rangle = \alpha \cos(\alpha) + e^{i\theta} \sin(\alpha) \]

For a compound quantum state:

\[|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \]

We can give the "measure" of the conjuction, A \& B, and the disjunction, A \lor B, using the seed projector observable:

\[\mu(a \& b) = \langle \psi | \phi \rangle \otimes |\psi_2\rangle \]

Discussion and Potential Applications

• Several observables in Eigenlogic are well-known quantum gates, e.g. \(C^2 \) (Control-Z) corresponds here to the conjunction logical observable \(G_{AND} \).

• Operational correspondence between control logic (Deutsch’s paradigm) and propositional logic. A goal could be to express the diagonal forms of observables in Eigenlogic as products of known quantum gates.

• Questions of how could Eigenlogic be used for quantum computing?: measurements give truth values, but how to reinject them in a circuit?

• Temray-logic quantum gates using qu-trits lead to less complex circuits (e.g. Adder). Our formulation of multi-valued logical observables could help the development of new multi-valued quantum gate architectures.

• The fuzzy membership function is obtained by the quantum mean value (Born rule) of the logical projector observable.

• This method could be employed for developing algorithms in high-dimensional vector spaces for example in modern semantic theories, such as distributional semantics or in connectionist models of cognition [4].

