Intelligent Sensor Based Bayesian Neural Network for Combined Parameters and States Estimation of a Brushed DC Motor

Abstract : The objective of this paper is to develop an Artificial Neural Network (ANN) model to estimate simultaneously, parameters and state of a brushed DC machine. The proposed ANN estimator is novel in the sense that his estimates simultaneously temperature, speed and rotor resistance based only on the measurement of the voltage and current inputs. Many types of ANN estimators have been designed by a lot of researchers during the last two decades. Each type is designed for a specific application. The thermal behavior of the motor is very slow, which leads to large amounts of data sets. The standard ANN use often Multi-Layer Perceptron (MLP) with Levenberg-Marquardt Backpropagation (LMBP), among the limits of LMBP in the case of large number of data, so the use of MLP based on LMBP is no longer valid in our case. As solution, we propose the use of Cascade-Forward Neural Network (CFNN) based Bayesian Regulation backpropagation (BRBP)
Type de document :
Article dans une revue
International Journal of Advanced Computer Science and Applications - IJACSA, 2016, 7 (7), 〈http://thesai.org〉. 〈10.14569/IJACSA.2016.070731〉
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal-centralesupelec.archives-ouvertes.fr/hal-01407695
Contributeur : Hacene Mellah <>
Soumis le : vendredi 2 décembre 2016 - 15:20:01
Dernière modification le : mercredi 12 septembre 2018 - 09:56:04
Document(s) archivé(s) le : mardi 21 mars 2017 - 00:18:46

Fichier

Paper_31-Intelligent_Sensor_Ba...
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Hacene Mellah, Kamel Eddine Hemsas, Rachid Taleb. Intelligent Sensor Based Bayesian Neural Network for Combined Parameters and States Estimation of a Brushed DC Motor . International Journal of Advanced Computer Science and Applications - IJACSA, 2016, 7 (7), 〈http://thesai.org〉. 〈10.14569/IJACSA.2016.070731〉. 〈hal-01407695〉

Partager

Métriques

Consultations de la notice

131

Téléchargements de fichiers

181