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Abstract

This paper addresses set invariance properties for linear time-delay systems. More precisely, the first goal of
the article is to review known necessary and/or sufficient conditions for the existence of invariant sets with
respect to dynamical systems described by linear discrete time-delay difference equations (dDDEs).
Secondly, we address the construction of invariant sets in the original state space (also called D-invariant
sets) by exploiting the forward mappings. The notion of D-invariance is appealing since it provides a region
of attraction, which is difficult to obtain for delay systems without taking into account the delayed states in
some appropriate extended state space model.
The present paper contains a sufficient condition for the existence of ellipsoidal D-contractive sets for dDDEs,

and a necessary and sufficient condition for the existence of D-invariant sets in relation to linear time-varying
dDDE stability. Another contribution is the clarification of the relationship between convexity (convex hull
operation) and D-invariance of linear dDDEs. In short, it is shown that the convex hull of the union of two
or more D-invariant sets is not necessarily D-invariant , while the convex hull of a non-convex D-invariant set
is D-invariant.

Keywords: Set invariance, Linear time-delay systems, Discrete time-delay difference equations.

1. Introductory remarks

Positive invariance is an essential concept in con-
trol theory, with applications to constrained dynam-
ical systems analysis, uncertainty handling as well as
related control design problems [1, 2, 3]. It serves as
a basic tool in many topics, such as model predictive
control [4, 5, 6], fault tolerant control [7] and refer-
ence governor design [8]. Furthermore, there exists a
close link between classical stability theory and pos-
itive invariant sets. It is worth mentioning that, in
Lyapunov theory, invariance is implicitly described
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by the sub-level sets of a Lyapunov function, which
are known to be contractive sets [9].

The response of a dynamical system to external ex-
citation is rarely instantaneous, and time-delay mod-
els are well suited for describing dynamics related to
propagation phenomena and/or communication flows
(see, for example, [10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23]). In closed loop, the dynamics can
be represented by delay differential equations (resp.
inclusions) or delay difference equations (resp. in-
clusions) according to the continuous/discrete frame-
work and the presence of disturbances or uncertain-
ties. In the present paper, we consider autonomous
dynamics where the delayed arguments are treated as
a state dependence and not as a perturbation signal.

From a mathematical point of view, delay differ-
ence equations form an important modeling class,
since most modern controllers are implemented via
computers or dedicated embedded systems. They
have been widely studied in the literature (see [24,
25, 26, 27]). Difference and differential equations
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with unbounded random delays have been addressed
in [28]. Delay difference inclusions DDIs represent
also a rich modeling class including networked control
systems and uncertain time-delay systems. The rela-
tionship between stability of DDIs and the existence
of Lyapunov-Krasovskii and Lyapunov-Razumikhin
functions has been studied in detail in [29]. Sta-
bilizing controller construction and stability anal-
ysis based on Lyapunov-Krasovskii and Lyapunov-
Razumikhin functions for DDIs have been proposed
therein.

Positive invariance for dynamical systems de-
scribed by dDDEs has been addressed in [30]. As
hinted before, two main approaches exist in the lit-
erature dealing with positive invariant sets for dis-
crete time-delay difference equations. The first ap-
proach, referred to as Krasovskii approach, relies on
the fact that the discrete-time dDDE allows a finite-
dimensional extended state space model (this repre-
senting a demarcation with respect to the continuous-
time counterpart). This extended state space, whose
dimension is finite but strongly related to the de-
lay value, leads to an invariant set characterization
with respect to an equivalent linear time-invariant
model. This concept is well understood and pop-
ular in the literature, but it suffers from an in-
creased numerical complexity when delays are rela-
tively large. Lyapunov-Krasovskii and spectral tech-
niques have been also used in [31] to analyze Lya-
punov and asymptotic stability.

The second approach, referred to as Razumikhin
approach, has been formulated in the ’90s and re-
investigated in the last decade, to obtain an invariant
set for the dDDE in the original state space, which
is independent of the delay value. This concept is
also denoted as D-invariance, and is often conserva-
tive as long as the existence conditions are restric-
tive. It is worth mentioning that a relaxation of the
Lyapunov-Razumikhin conditions has been proposed
by [32]. The proposed conditions, which can be ver-
ified by solving an LMI problem for linear dDDEs,
prove to be necessary and sufficient for asymptotic
stability of dDDEs. Furthermore, the obtained re-
laxed Lyapunov-Razumikhin functions are useful for
constructing invariant sets for dDDEs.

It has been recently recognized that D-invariance
can be seen as set factorization of an invariant set
in the extended state space [33]. It has been estab-
lished that the extended state space invariance corre-
sponds to a minimal factorization while D-invariance,

under the constraints imposed by the dimension of
the dDDE, represents the maximal regular ordered
factorization. This interesting result opens the way
for factorizations which are in between the two rep-
resentations, by exploiting non-minimal state space
equations. In [34], the authors have focused on
the maximal factorizations. They have proposed a
characterization of the link between the Razumikhin
and Krasovskii approaches, by using set factorization.
The proposed framework yields a fitting trade-off be-
tween the conceptual generality of the extended state
space approach and the computational convenience
of the D-invariance approach. It has been shown
that D-invariance represents a particular realization
of a broader family of invariant structures. The rela-
tionship between these families of invariant sets has
been established via set factorization and conjugacy.
In [35], two specific families of controlled (k, λ)-
contractive sets in the augmented state space frame-
work have been characterized and the link between
these controlled (k, λ)-contractive sets and those of
the time-delay system has been established in [36].

In [37], a new concept of set invariance with respect
to discrete-time linear systems subject to delays has
been introduced. A family of sets which represent a
sequence of cyclically invariant subsets of the state
space was defined and characterized. Basically, the
existing algebraic conditions for invariance analysis of
linear dynamics have been generalized and conditions
for the invariance of a given sequences of sets with re-
spect to linear discrete-time dynamics in the presence
of delay have been established. The notion of invari-
ant family of sets has been proposed in [38, 36] to
generalize the cyclic invariance concept.

This paper is an extended version of work pub-
lished in [39], where we addressed the existence of
positive invariant sets in the state space of the origi-
nal dDDE. More precisely, the case of two delays was
addressed in the conference paper, while the general
case is treated here. D-invariant sets can be seen as
invariant sets in both the current and the retarded
state space and further related to the stability analy-
sis based on Lyapunov-Razumikhin approach. Suffi-
cient conditions for the existence of a D-invariant set
have been first obtained in [40, 41]. Then, a necessary
and sufficient characterization for the existence of D-
invariant sets has been provided in [42, 43]. Particu-
larly, as far as the construction of D-invariant sets is
concerned, we can find a series of results in [44, 45],
which will be appropriately recalled in the present
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paper. Recently, [46] has proposed a computationally
efficient numerical routine which is necessary to guar-
antee the existence of D-invariant sets for the delay
difference equations with two delay parameters. This
condition covers, for the two delay case, the existing
necessary conditions in the literature and proves to
reduce considerably the gap with respect to sufficient
conditions. In the present work, we provide an in-
teresting example for which the condition in [46] is
verified but the existing algorithms fail to construct
a D-invariant set.
As discussed in [47], from the stability point of view
a pertinent analysis of D-invariance can be made
in relationship with delay-independent stability. In
short, it has been shown that the existence of a di-
agonal Lyapunov-Krasovskii functional is necessary
and sufficient for delay-independent stability. Polyhe-
dral Lyapunov functions have been used for stability
and positive invariance analysis of networked control
systems in the presence of bounded delays, constant,
unknown or time-varying. The problem of finding
stability margins has been proved to reduce to a lin-
ear programming problem [48].
To summarize, the main objectives of the present pa-
per are resumed as follows: i) an overview of neces-
sary and/or sufficient conditions for the existence of
D-invariant sets for dDDEs with an arbitrary delay
value; ii) a sufficient condition for the existence of
ellipsoidal D-invariant sets for dDDEs; iii) the proof
of the relationship between time-varying dDDE sta-
bility and the existence of D-invariant sets; iv) the
proof of two properties related to convexity and con-
vex operations over D-invariant sets. Notably, it is
established that a dDDE admits a D-invariant set if
and only if it is time-varying delay-independent sta-
ble.
This paper is structured as follows. Section 2 presents
some preliminary mathematical notions and defini-
tions. Basic properties of D-invariance concept are
addressed in Section 3. In the same section, we
present necessary and sufficient conditions for the ex-
istence of non trivial sets. The relationship between
D-invariance and stability of dDDEs concludes the
section. Algorithmic construction based on set iter-
ation using forward mappings, and some illustrative
examples are revisited in Section 4. The concepts of
cyclic invariance and the invariant families of sets as
well as the relationship with the set factorization are
presented in Section 5. Finally Section 6 draws some
concluding remarks.

2. Prerequisites

2.1. Notations

We denote by R, R+, Z and Z+ sets of real num-
bers, non-negative reals, integer numbers and non-
negative integers, respectively. For every interval Π
of R we define ZΠ := Z ∩ Π. For an arbitrary set
A ⊆ R

n, int(A) denotes the interior of A. B
n
r (0) de-

notes the ball of radius r in Euclidean norm, centered
in the origin of Rn. We denote by 1n the vector of
dimension ’n’ with all the entries equal to 1. We de-
note by D, ∂D, ext(D) the open unit disc, the unit
circle and the exterior of the closed unit disc respec-
tively. For the matrix pair (A,B), the set of gener-
alized eigenvalues and the Kronecker product are de-
noted by γ(A,B) and A⊗B, respectively. In ∈ R

n×n

and 0n×m ∈ R
n×m denote the identity and the null

matrix, respectively. X ⊕ Y denotes the Minkowski
sum of sets X and Y, it is defined by:

X ⊕ Y := {z| ∃(x, y) ∈ (X ,Y) such that z = x+ y} .

Definition 1. A set P ⊆ R
n is bounded if there ex-

ists r ∈ R+ such that P ⊂ B
n
r (0); closed if ∀x /∈

P, ∃ǫ ∈ R+ such that Bn
ǫ (x) ∩ P = ∅; compact if it is

bounded and closed.

Definition 2. A set P ⊆ R
n is a (proper) C-set if is

convex, compact and includes the origin in its strict
interior.

We denote by Com(Rn) and ComC(Rn) the space
of compact subsets and the space of C-subsets of Rn

containing the origin, respectively. The spectrum of
a matrix A ∈ R

n×n is the set of the eigenvalues of A,
denoted by λ(A), while the spectral radius is defined
as ρ(A) := max

ξ∈λ(A)
(|ξ|). The spectral norm will be

denoted by σ(A) and is defined as σ(A) :=
√

ρ(ATA).

2.2. System Dynamics

In the sequel, we will consider discrete time-delay
difference equations of the form:

x(k + 1) =
d
∑

i=0

Aix(k − i) (1)

where x(k) ∈ R
n is the state vector at the time k ∈

Z+, d ∈ Z+ is the maximal fixed time-delay, the ma-
trices Ai ∈ R

n×n, for i ∈ Z[0,d] and the initial condi-
tions are considered to be given by x(−i) = x−i ∈ R

n,
for i ∈ Z[0,d].
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Definition 3. The null solution of the dDDE:

x(k + 1) =
m
∑

i=0

Aix(k − di) (2)

is asymptotically stable if ∀ǫ > 0, ∃δ > 0 such
that whenever supj ||x(−j)|| ≤ δ, j = {1, · · · ,m},
||x(k)|| < ǫ, ∀k ∈ Z+ and x(k) → 0 when k → ∞.

Definition 4. The dDDE (2) is delay-independently
stable if its null solution is stable ∀d = [d0 · · · dm] ∈
(Z+)

m+1.

Definition 5. The dDDE with time-varying (posi-
tive) delay values:

x(k + 1) =
m
∑

i=0

Aix(k − di(k)) (3)

is delay-independently stable if its null solution is sta-
ble ∀d(k) = [d0(k) · · · dm(k)] ∈ (Z+)

m+1.

It is clear that an extended state space rep-
resentation can be constructed for any given de-
lay realization. For instance, by setting ξ(k) =
[

x(k)T · · ·x(k − d)T
]T

, equation (1) can be rewritten
as:

ξ(k + 1) = Aξξ(k) =











A0 . . . Ad−1 Ad

I . . . 0 0
...

. . .
...

...
0 . . . I 0











ξ(k),

(4)
This class is relevant for modeling several propaga-
tion and transmission phenomena. One example is
represented by networked control systems (see [49])
where the feedback mechanism is affected by commu-
nication delays. These delays are known to degrade
the performances and eventually affect stability [50].
We report next, without proof, some well-known re-
sults related to asymptotic stability of systems (1)
and (4) (see e.g [51]).

Lemma 1. The following statements hold:

• System (1) is asymptotically stable if and only if

det

(

zI −
d
∑

i=0

Aiz
−i

)

6= 0, ∀z ∈ ext(D) ∪ ∂D.

(5)

• System (4) is asymptotically stable if and only if:

ρ(Aξ) < 1. (6)

Theorem 2. The following statements are equiva-
lent:

• The delay difference equation (1) is asymptoti-
cally stable.

• The system (4) is asymptotically stable.

3. D-INVARIANCE PROPERTIES

Let us first consider the generic (nonlinear)
discrete-time dynamical system:

x(k + 1) = f(x(k)) (7)

where x(k) ∈ R
n is the state vector at time k ∈ Z+

and the function f : Rn → R
n is continuous.

Definition 6. The set P ⊂ R
n is said positively

invariant for the system (7) if for all x(k) ∈ P,
x(k + 1) ∈ P for k ∈ Z+. Alternatively, the set
P ⊂ R

n is positively invariant for (7) if f(P) ⊆ P.

Definition 7. Given a scalar ǫ ∈ R(0,1), a set P ⊂
R
n containing the origin is called ǫ-contractive with

respect to system (7) if for any x(k) ∈ P, x(k + 1) ∈
ǫP for k ∈ Z+.

One can notice from Definitions 6 and 7 that posi-
tive invariance is a limit case of ǫ-contractivness (it
would amount to choosing ǫ = 1 in Definition 7).
In the sequel, we will come back to these notions
and detail analogies and particularities of time-delay
systems. The D-invariance concept, recalled below,
will be widely used throughout this paper for the set-
characterization of dDDEs. The notations by [44, 45]
will be mainly used in this endeavor.

Definition 8. A set P ⊆ R
n is called D-invariant

for the system (1) with initial conditions x−i ∈ P for
all i ∈ Z[0,d] if the state trajectory satisfies x(k) ∈
P, ∀k ∈ Z+.

Lemma 3. [52] The following statements are equiv-
alent:

1. P ⊆ R
n is D-invariant for system (1).

2.
d
⊕

i=0
AiP ⊂ P
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Several properties fix a set of basic relations between
D-invariant sets.

Proposition 1. The following properties hold:

1. If P ⊂ R
n is D-invariant then αP is D-invariant

for any α ∈ R+.

2. Let P1,P2 ⊂ R
n be two D-invariant sets for (1).

Then P1 ∩ P2 is a D-invariant set for the same
dynamical system.

3. Let P1,P2 ⊂ R
n be two D-invariant sets for (1).

The Minkowski sum P1⊕P2 is a D-invariant set
for the same dynamical system.

4. If the set P ⊂ R
n is D-invariant for the system:

x(k + 1) =

d
∑

i=0

Aix(k − i) (8)

then P is D-invariant for

x(k + 1) =
d
∑

i=0

Aix(k − τi) (9)

for any τi ∈ Z+.

5. If the compact set containing the origin P is D-
invariant, then its convex hull Conv(P) is D-
invariant.

6. If P1,P2 ⊂ R
n are two D-invariant sets for

(1), their union P1
⋃P2 is not necessarily D-

invariant.

7. The convex hull of the union of D-invariant sets
is not necessarily D-invariant.

Proof. Properties (1), (2) and (4) were proved in
[52]. The proof of properties (3) and (6) is straight-
forward. For the proof of property (5), one can ex-
ploit the relationship: A1Conv(P) ⊕ A2Conv(P) =
Conv(A1P) ⊕ Conv(A2P) = Conv(A1P ⊕ A2P).
The first equality is a direct application of the con-
vex hull definition and Minkowski sum properties.
For the second equality, let P1,P2 ⊂ R

n, and let
x ∈ Conv(P1 ⊕ P2), then x =

∑

λi(xi + yi) with
xi ∈ P1 and yi ∈ P2, λi ≥ 0 and

∑

λi = 1,
then x =

∑

λixi +
∑

λiyi ∈ Conv(P1) ⊕ Conv(P2).
Suppose now that x ∈ Conv(P1) ⊕ Conv(P2) then
x =

∑

λixi +
∑

βjyj ,with
∑

λi =
∑

βj = 1, and
λi, βj ≥ 0, xi ∈ P1, yj ∈ P2. since

∑

λi

∑

βj =
∑

i,j λiβj = 1 we can write x =
∑

i,j λiβj(xi + yj),
then x ∈ Conv(P1 ⊕ P2). Note that

A1P⊕A2P ⊂ P =⇒ Conv(A1P⊕A2P) ⊂ Conv(P)

to conclude that:

A1Conv(P)⊕A2Conv(P) ⊂ Conv(P)

In order to check the property (7), consider the sys-
tem:

x(k+1) =

[

0.2 0.01
0 0.7

]

x(k)+

[

0.6 0
0.005 0.25

]

x(k−1),

(10)
then the set

P1 =

{

x ∈ R
2|
[

−0.1
−1

]

≤ x ≤
[

0.1
1

]}

is D-invariant as well as

P2 =

{

x ∈ R
2|
[

−1
−0.1

]

≤ x ≤
[

1
0.1

]}

However, the set obtained as convex hull of the
union P1

⋃P2, denoted P = Conv(P1,P2), is not
D-invariant. �

Remark 1. Property (7) of Proposition 1 raises a
warning on the convex hull operation applied to the
union of two or more D-invariant sets, which is not
a closed operation over the class of D-invariant sets.
However, property (5) of Proposition 1 points out
that for one D-invariant operand, the convex hull
operation preserves D-invariance. It becomes clear
that under the (unfortunately uncheckable) assump-
tion that a D-invariant set exists, an efficient (convex-
ity based) construction will be able to characterize it.

Remark 2. The property (4) of Proposition 1 holds
also for the limit case τi = ∞. As a consequence,
if P ⊆ R

n is a D-invariant set containing the origin,
then P is positively invariant with respect to the time
invariant linear dynamics:

x(k + 1) = A0x(k),
...

x(k + 1) = Adx(k).

(11)

Equivalently, A0P ⊆ P, · · · , AdP ⊆ P. The same
result holds for a dDDE represented by a partial sum
of (1). Note that the second property of Proposition
1 can be generalized. The intersection of a finite or
infinite family of D-invariant sets is D-invariant.
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The goal of the next subsections is to collect neces-
sary and/or sufficient conditions for the existence of
a D-invariant set for dDDEs. The existence of a non-
degenerate and bounded D-invariant set1 is related
to the stability of the discrete-time dynamical system
(1) affected by delay. It is obvious that asymptotic
stability is only a necessary condition for the exis-
tence of a D-contractive set and stricter conditions
have to be imposed for guaranteeing this existence.
In the following we enumerate a series of necessary
and/or sufficient conditions available in the literature,
to the best of our knowledge; whenever possible, we
will link the conditions to classical numerical routines
for the eigenvalue problems.

3.1. Necessary conditions for D-invariance

3.1.1. Basic algebraic conditions

Proposition 2. [44] Considering the system (1), the
existence of a D-invariant C-set P implies that:

1. The spectral radii of the matrices Ai are sub-
unitary:

ρ(Ai) ≤ 1, ∀i ∈ Z[0,d].

2. The spectral radius of the matrix

(

d
∑

i=0
Ai

)

is

sub-unitary:

ρ

(

d
∑

i=0

Ai

)

≤ 1.

3. The spectral radius of the extended state-space
matrix is sub-unitary:

ρ (Aξ) ≤ 1.

Proposition 2 in conjunction with property (4) of
Proposition 1 gives a measure of the complexity of es-
tablishing necessary and sufficient conditions. Prac-
tically, the difficulty is related to the need of testing
the spectral radius of the extended state-space matrix
for all possible delay realizations.

3.1.2. Alternative algebraic conditions

Alternative necessary conditions were proposed in
[53] in terms of asymptotic stability of dDDEs, for
the existence of a D-contractive set. The main idea

1It is easy to observe that sets like {0} or Rn are D-invariant
but they do not satisfy the non-degenerate or boundedness con-
ditions.

is to cover the possible sign combinations for the tu-
ple Ai, i ∈ Z[0,d]: a straightforward task for any value
of the delay parameter. In order to simplify the no-
tation, let us introduce the set S = {−1, 0, 1} and
∆ = [δ(0), · · · , δ(d)].

Proposition 3. [53] System (1) admits a D-
contractive set only if:

ρ

(

d
∑

i=0

δ(i)Ai

)

≤ 1, ∀∆ ∈ S
d+1. (12)

If a given dDDE does not satisfy the above condi-
tion, then it does not admit a D-contractive set. [53]
shows that the condition derived in Proposition 3 is
not sufficient for the existence of a D-contractive set,
numerical examples being available in this sense.

3.1.3. Specific algebraic conditions for 2 delay
dDDEs

For dDDEs with two delay parameters, in order
to decrease the conservativeness of the time-domain
methods, [46] has used the frequency-domain frame-
work. The D-invariance concept was studied, along
with its relation to robust asymptotic stability, con-
sidered as a strong stability of dDDEs. This notion
defines stability with respect to all delay realizations.
Due to the incompleteness of the discrete time, the
characterization of robust asymptotic stability is not
simple. Thus using a more general class of differ-
ence equation (precisely the ones that are specified in
the continuous-time domain) proved to be useful. In
the sequel the concept of strong stability is denoted
by delay-independent stability2 and it represents the
continuous-time counterpart to robust asymptotic sta-
bility.
Recently, [46] has provided a computationally effi-
cient numerical condition which is necessary to guar-
antee the existence of Lyapunov-Razumikhin contrac-
tive sets. This test is sufficient for the robust asymp-
totic stability with respect to the delay parameter and
can be employed in the D-invariance context. The
main result can be summarized in the next theorem.

Theorem 4. [46] Assume that ρ(A0 + A1) ≤ 1 and
that d0 ∈ R+ and d1 ∈ R+. Then, the system

x(k) =
1
∑

i=0

Aix(k − di) (13)

2also known as stability in the delays.
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admits a D-contractive set only if γ(U, V ) ∩ ∂D = ∅,
where

U =

(

0n2×n2 In2

−B0 −B1

)

, V =

(

In2 0n2×n2

0n2×n2 B2

)

(14)

B0 = A0 ⊗AT
1 , B1 = A0 ⊗AT

0 +A1 ⊗AT
1 − In2 ,

B2 = A1 ⊗AT
0 .

(15)

As stated in [46], the condition of Theorem 4 cov-
ers the existing necessary conditions for the two delay
parameters case. However, we report here an interest-
ing example which points out the possible limitations
of this condition.

Example 1. [39] Consider system (1) with d = 1
and:

A0 =

(

0.5 0.5
0 0

)

; A1 =

(

0 0.5
−0.5 0.5

)

(16)

For this numerical example, one can compute:

ρ(A0 +A1) = 0.8660 < 1

and

γ(U, V ) = 1.7442± 1.9433i, 0.2558± 0.2850i, 0, 0, inf, inf.

The necessary condition by [46] is fulfilled. However,
up to the existing constructive routines (see next sec-
tion) there is no numerical construction able to de-
termine a D-invariant set for this system. �

3.2. Sufficient conditions for D-invariance

The converse problem of establishing sufficient con-
ditions for the existence of D-invariant sets has been
stated in [52] with two tests that we recall here for
completeness.

Proposition 4. [52] The existence of a D-invariant
C-set P is guaranteed for the system (1), if one of the
following spectral norm based conditions holds:

1. The sum of the spectral norms of Ai, for i ∈
Z[0,d], is subunitary:

d
∑

i=0

σ(Ai) < 1.

2. In the case of nonsingular matrix Ai for i ∈ Z[0,d]

(1 + σ(A−1
0 A1) + · · ·+ σ(A−1

0 Ad))σ(A0) ≤ 1

...

(1 + σ(A−1
d A0) + · · ·+ σ(A−1

d Ad−1))σ(Ad) ≤ 1.

Remark 3. The sufficient condition (1) can be gen-
eralized by replacing the sum of the spectral norms
by the sum of any other induced matrix norms.

Proposition 4 concentrates on the spectral norms
of the matrices appearing in the dDDE (1). A differ-
ent approach for establishing sufficient conditions is
to exploit the structural properties of specific classes
of candidate D-invariant sets. We propose next a
contribution in this sense with a sufficient condition
for the existence of ellipsoidal D-contractive sets for
a dDDE. As it is often the case in this framework,
the tests are based on LMIs.

Theorem 5. Considering the dynamical system (1),
the existence of an ellipsoidal D-invariant set is guar-
anteed if the following d + 1 LMIs hold for some
P = P T ≻ 0:











AT
0 PA0 − P AT

0 PA1 · · · AT
0 PAd

AT
1 PA0 AT

1 PA1 · · · AT
1 PAd

...
...

...
...

AT
d PA0 AT

d PA1 · · · AT
d PAd











≺ 0 (18a)











AT
0 PA0 AT

0 PA1 · · · AT
0 PAd

AT
1 PA0 AT

1 PA1 − P · · · AT
1 PAd

...
...

...
...

AT
d PA0 AT

d PA1 · · · AT
d PAd











≺ 0 (18b)

...










AT
0 PA0 AT

0 PA1 · · · AT
0 PAd

AT
1 PA0 AT

1 PA1 · · · AT
1 PAd

...
...

...
...

AT
d PA0 AT

d PA1 · · · AT
d PAd − P











≺ 0 (18c)

Proof. In order to ensure that the set

Ψ =
{

x ∈ R
n, xTPx ≤ 1

}

is D-invariant for the system described by the
dDDE (1), one has to show that xk+1 ∈ Ψ,
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∀xk, xk−1, · · · , xk−d ∈ Ψ, which is equivalent to the
simultaneous verification of the d+ 1 inequalities:

xTk+1Pxk+1 − xTk Pxk < 0

xTk+1Pxk+1 − xTk−1Pxk−1 < 0

...

xTk+1Pxk+1 − xTk−dPxk−d < 0

Exploiting the dDDE relationship one has:
xTk+1Pxk+1 − xTk Pxk = (A0xk + A1xk−1 + · · · +
Adxk−d)

TP (A0xk +A1xk−1+ · · ·+Adxk−d)−xTk Pxk
= xTk (A

T
0 PA0 − P )xk + xTkA

T
0 P (A1xk−1 + · · · +

Adxk−d) + (A1xk−1 + · · · + Adxk−d)
TP (A0xk +

A1xk−1 + · · ·+Adxk−d) < 0.
and in the equivalent matrix formulation:











xk

xk−1

...
xk−d











T 









AT

0 PA0 − P AT

0 PA1 · · · AT

0 PAd

AT

1 PA0 AT

1 PA1 · · · AT

1 PAd

...
...

...
...

AT

d PA0 AT

d PA1 · · · AT

d PAd





















xk

xk−1

...
xk−d











≺ 0

(20)
Analogously for the second inequality:











xk

xk−1

...
xk−d











T 









AT

0 PA0 AT

0 PA1 · · · AT

0 PAd

AT

1 PA0 AT

1 PA1 − P · · · AT

1 PAd

...
...

...
...

AT

d PA0 AT

d PA1 · · · AT

d PAd





















xk

xk−1

...
xk−d











≺ 0

(21)

up to the d+1 inequality. We can conclude that the
existence of a positive definite matrix P = P T is a
sufficient condition for the existence of an ellipsoidal
D-invariant set, and the proof is complete. �

Example 2. For illustration let us consider system
(1) with only one delay parameter d = 1 and:

A0 =

(

0.35 0.13
0.51 −0.01

)

, A1 =

(

0.51 −0.01
0.03 0.51

)

. (22)

The condition for the existence of a D-contractive
set proposed in Theorem 5 is fulfilled and the D-
contractive set exists as shown in Figure 1. Dashed
black lines in Figure 1 represent the state trajecto-
ries starting from some points on the boundary of
the ellipsoidal D-contractive set with respect to the
dDDE (1) with d = 1, A0, A1 given in (22). It
is interesting to note that the sufficient condition
‖A0‖p + ‖A1‖p ≤ 1 by [42, 44] does not hold for this
numerical example.

Figure 1: D-contractive set for the dDDE (1) with d = 1,
A0, A1 given in (22).

3.3. Necessary and sufficient algebraic conditions for
Polyhedral D-invariant sets

The problem of finding convex D-invariant sets can
benefit whenever particular structural properties are
enforced. It is the case of polyhedral sets, for which
necessary and sufficient conditions exist as resumed
by the following theorem.

Theorem 6. [54] Let a delay difference equation be
described by (1). There exists P a polyhedral D-
contractive set containing the origin:

P = {x ∈ R
n| Fx ≤ 1} (23)

with F ∈ R
r×n, described by its minimal half space

representation, if and only if there exist d + 1 real
matrices Hi ∈ R

r×r, for i = {0, · · · , d}, with non-
negative elements and a positive ǫ < 1, such that:

FAi = HiF (24a)

(

d
∑

i=0

Hi

)

1r ≤ ǫ1r (24b)

Clearly, if the requirement on ǫ being strictly smaller
than 1 is relaxed to non-strict inequality, then (24)
represents a necessary and sufficient condition for the
existence of a D-invariant set.

3.4. Relationship between D-invariance and dDDE
stability

In this subsection we aim at complementing the
overview of the necessary and sufficient conditions
with a theoretical result that establishes a link be-
tween the stability in presence of time-varying delay
and the existence of D-invariant sets.
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Theorem 7. The dDDE (2) admits a proper D-
invariant set if and only if the time-varying dDDE
(3) is delay-independent stable.

Proof. We prove next the case of dDDE with only
two delay parameters, x(k + 1) = A0x(k − d0) +
A1x(k−d1), the case of finite number of delays (2) be-
ing a direct generalization. The proof of the ”only if”
implication builds on the fact that the existence of a
D-invariant set P is equivalent with the set inclusion:

A0P ⊕A1P ⊂ P (25)

Thus for initial conditions x(k) ∈ P for k ∈ Z(−∞,0]

one has x(1) ∈ P independent of the delay realiza-
tion d0(0), d1(0) ∈ N. By induction, given a posi-
tive index i ∈ N, if x(k) ∈ P for k ∈ Z(−∞,i] then
x(i + 1) ∈ P independent of the delay realization
d0(i), d1(i) ∈ N which implies that the trajectories are
bounded x(k) ∈ P, ∀k ∈ N+. Stability for any initial
condition follows from property (1) of Proposition 1.
By homogeneity, D-invariance is preserved by scal-
ing and as such, there always exists a D-invariant set
which contains a given initial condition of the dDDE.
For the ”if” part of the proof, consider the initial

conditions for the system (3) to be contained in a
compact set P containing the origin in its interior.
Formally, the initial conditions and the time-varying
delay realization can be described by the functions:

x−

P
: Z(−∞,0] → P

d0 : N+ → Z(−∞,0] (26)

d1 : N+ → Z(−∞,0] (27)

Having as an objective the construction of the reach-
able set from P, let us denote the state at time instant
k ∈ Z by x(k,x−

P
,d0,d1) as the solution of (3) with

respect to the initial conditions x−

P
and time-varying

delay realizations d0(·),d1(·). With this notation,
the reachable set from P via (3) is defined as:

R(P) =
{

x ∈ R
n| ∃k ∈ N+,x

−

P
(·),d0(·),d1(·) s.t.

x = x(k,x−

P
,d0,d1)

}

(28)

Coming back to the proof, the objective is to show
that Pr = P ∪R(P) is a proper D-invariant set. The
fact that the origin is contained in the interior of Pr is
inherited from the properties of P. The boundedness
of the setR(P) is ensured by the stability assumption
and will be inherited by Pr. What remains to be
proved is the invariance of Pr. Three possibilities
should be discussed:

• x(k − d0(k)) ∈ P and x(k − d1(k)) ∈ P: in
this case the state x(k + 1) is part of the one
step reachable set and subsequently x(k + 1) ∈
R(P) ⊂ Pr.

• x(k − d0(k)) ∈ P and x(k − d1(k)) ∈ R(P)
(with delay indices which can be interchanged):
this case corresponds to a reachable state x(k −
d1(k)) ∈ R(P) combined with a large (pseudo-
infinite) delay d0(k). By consequence the state
realizations x(k + 1) will represent a subset of
the reachable set and R(P) ⊂ Pr.

• x(k − d0(k)) ∈ R(P) and x(k − d1(k)) ∈ R(P)
(with delay indices which can be interchanged):
again, via reachability x(k + 1) ∈ R(P) ⊂ Pr

with the particular case d0(k) = d1(k) which de-
serves a special treatment. Indeed, for the re-
striction d0(k) = d1(k), the state dynamics (3)
reduces to x(k+1) = (A0+A1)x(k−d1(k)). But
this realization is only a particular case of the
general time-varying delay realization d0(k) 6=
d1(k) for which x(k−d0(k)) = x(k−d1(k)) which
is covered by the reachable set construction and
the proof is complete. �

Remark 4. The sets containing the forward trajec-
tories, as those used in the argument of the proof, are
non-convex and lead to computationally demanding
constructions, from a practical point of view. In the
next section we describe the corresponding algorithm
and subsequently reinforce the convexity by exploit-
ing property (5) of Proposition 1.

4. Construction of D-invariant sets based on

set iterations

We address now the construction procedures for
the case x(k + 1) = A0x(k) + Adx(k − d) supposing
that it admits a D-invariant set. The general form (1)
follows similarly. We use the fact that existence of D-
invariant sets is exactly equivalent, by Lemma (3), to
the verification of A0P ⊕ AdP ⊆ P. To simplify the
explanation, we first define the forward mapping :

Φ : Com(Rn) → Com(Rn)
Φ(P) = A0P ⊕AdP

(29)

and the mapping based on the union:

Ψ : Com(Rn) → Com(Rn)
Ψ(P) =

⋃

(P,Φ(P)).
(30)
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Note that even if P is convex, Ψ(P) is not necessarily
convex.

Remark 5. We enumerate here some useful proper-
ties of the mappings defined in (29-30):

1. If a given set P (convex or not) is D-invariant
for (1), then Φ(P) ⊆ P.

2. k-iterates over the family of sets is set-wise non
decreasing (Ψk−1(P) ⊆ Ψk(P), ∀k ≥ 1) with
Ψk(P) = Ψ(Ψk−1(P)) for k > 0 and Ψ0(P) = P.

3. If P is D-invariant for (1) then Φk(P) is set-wise
non increasing (Φk(P) ⊆ Φk−1(P), ∀k ≥ 1) .

4.1. Basic set-iterates procedure for the construction
of D-invariant sets

We describe in this part the basic steps of an it-
erative construction of D-invariant sets. Under the
assumption that such an invariant set exists for the
system (1), we can always scale it using property (1)
of Proposition (1) such that it encompasses the initial
set Q. Using the theoretical properties shown above,
an algorithmic routine based on non-convex sets map-
ping is proposed for the computation of D-invariant
sets with respect to (1). This algorithm considers as
an input argument an arbitrary bounded set Q con-
taining the origin ([55, 56]).

Algorithm 1: Basic (non-convex) set-iterates
procedure.

Data: A bounded set Q ∈ R
n containing the

origin; the matrices A0, Ad ∈ R
n×n

describing the system (1)
Result: R a D-invariant set
R0 = Q;
R1 = Φ(Q) = A0Q⊕AdQ;
i = 1;
while Ri 6⊂ Ri−1 do

Ri+1 = Ψ(Ri) =
⋃

(Ri, A0Ri ⊕AdRi);
i = i+ 1;

end

Return R = Ri

(Alternatively, R = Conv(Ri) can represent the
output if a unique convex set is needed.)

Convergence and finite determinedness

analysis: First, it can be proved that Algorithm 1
constructs a non-decreasing sequence that converges
to a D-invariant set. Indeed, the algorithm is based
on the set mapping Ri+1 = Ψ(Ri) which satisfies
Ri+1 ⊃ Ri. Thus the sequence Ri is non-decreasing
in the sense of set inclusion. On the other hand,

since the D-invariance is scalable (using property (1)
of Proposition (1)), the hypothesis of existence of a
D-invariant set P containing Q ensures Q ⊂ Ri ⊂ P.
Since any set Ri provided by the algorithm is a sub-
set of P, hence Ψ(Ri) is also a subset of P. In
conclusion, the algorithm provides a sequence of sets
Ri which is non-decreasing by inclusion and limited
from above by P. Hence the sequence admits a limit
which is D-invariant (by the structure of the algo-
rithm) and proper (because limited from above by P
which is a fixed point with respect to the mapping
Ψ(·)). Secondly, the finite determinedness can be for-
mally proved. Given the (delay-independent) asymp-
totic stability of system (1) with matrices A0 and Ad,
there exists a finite number of time steps tmax such
that the trajectories initiated in Q end up in P. The
algorithm is collecting the trajectories initiated in Q,
which is a subset of P, and thus tmax represents an
upper bound for the number of iterations. This com-
pletes the convergence analysis of the algorithm.

Note that the iterations and the limit set are non-
convex and this is related to the union operation per-
formed by the mapping in Ψ(·).

Example 3. [39] Let us consider the following dy-
namical system:

x(k+1) =

[

0.1 0
0.4 0.1

]

x(k)+

[

0.1 −0.2
0.4 0.5

]

x(k−d),

(31)
Consider the initialization set Q as the ∞-norm unit
ball in R

2. A non-convex D-invariant set is obtained
iteratively by applying Algorithm 1 with 4 iterations.

Figure 2: Graphical illustration of the non convex D-invariant
set for the Example 3. The D-invariant set–green (left); the set
A0P ⊕AdP–red (right).

Figure 2 presents this invariant set (the left one),
and the image (the right one) of this set by the for-
ward mapping Φ(·). Figure 3 presents the Convex
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hull of the obtained non-convex D-invariant set and
shows that it is D-invariant as theoretically proved in
property (5) of Proposition 1.

Figure 3: Graphical illustration of the convex D-invariant set
for the Example 3.

4.2. Convex set-iterates procedure for the construc-
tion of D-invariant sets

We describe briefly in this part the main steps of
an iterative construction ofD-invariant sets while ma-
nipulating only convex sets. This algorithmic routine
was proposed by [44], but we recall it here in light of
Theorem 7 and Algorithm 1. Let us define the two
mappings :

Ω : ComC(Rn) → ComC(Rn)
Ω(P) = A0P ⊕AdP

(32)

Ξ : ComC(Rn) → ComC(Rn)
Ξ(P) = Conv(P,Ω(P)).

(33)

Given a convex set P ∈ ComC(Rn), the sequence
Ξk(P), k > 0 converges toward a convex D-invariant
set [44]. The main objective of this procedure re-
mains the same as the previous one: enlarge the set
as much as possible with the Convex hull operation,
while keeping it included in a D-invariant superset.

Algorithm 2: Convex set-iterates converging to
a D-invariant set.
Data: A convex set Q ∈ R

n containing the
origin in the interior; the matrices
A0, Ad ∈ R

n×n

Result: R Convex D-invariant set
R0 = Q;
R1 = Φ(Q) = A0Q⊕AdQ;
i = 1;
while Ri 6⊂ Ri−1 do

Ri+1 = Ξ(Ri) = Conv(Ri, A0Ri ⊕AdRi);
i = i+ 1;

end

Return R = Ri

This algorithm, unlike the previous one, manipu-
lates convex sets with all their computational advan-
tages. At each iteration, the convex hull of the union
of the present set and the forward mapping of the
same set Ri are obtained.

4.3. Complexity and speed of convergence

In this section, we point to the possible extension
of Algorithms 1-2 in order to improve the conver-
gence speed. Instead of performing one forward map-
ping in each iteration before checking D-invariance,
N forward mappings are performed in each iteration.
This seems to be efficient in the sense that we can
reduce the complexity and the number of iterations.

Algorithm 3: Auxiliary set-iterates procedure.

Data: A bounded convex set containing the
origin Q ∈ R

n; the matrices
A0, Ad ∈ R

n×n; N the number of forward
mappings in one iteration

Result: R Convex D-invariant set
R0 = Q;
R1 = Ω(Q) = A0Q⊕AdQ;
Aux1 = R0;
i = 1;
while Ri 6⊂ Ri−1 do

for m = 1 : N do
Auxm+1 = Φ(Auxm)

end

Aux = [Aux1, Aux2, . . . , AuxN+1];
Ri = Conv(Aux);
Ri+1 = Ω(Ri);
i = i+ 1;
Aux1 = Ri;

end

Return R = Ri
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Example 4. [39] Let us consider the following dy-
namical system :

x(k+1) =

[

0.2 0.1
0 0.6

]

x(k) +

[

0.5 0
0.1 0.3

]

x(k− d).

(34)
Let

Q =















x ∈ R
2|
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√
2

−
√
2

√
2√

2
√
2

−
√
2 −

√
2
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0.5
1
0.5
1























be the initialization set. By applying Algorithm
3 with N = 2 and Algorithm 2, two different D-
invariant sets are obtained for the dynamical system
(34) in 2 ∗ (N = 2) and 18 iterations, respectively.
Figure 4 presents these sets. Dashed black lines rep-
resent the state trajectories starting from the vertices
of these sets with respect to the dynamics (34).

Figure 4: Graphical illustration of D-invariant sets obtained by
Algorithm 2 (left) and Algorithm 3 (right), for the Example 4.

It becomes clear that, under the assumption that a
D-invariant set exists, an efficient construction ex-
ists. We can also use the algorithmic construction
(Algorithm 2) as an induced tool to check if a D-
invariant set can/cannot be obtained, whenever the
dDDE satisfies the necessary conditions for the exis-
tence of such invariant sets. To illustrate this idea,
Example 1, which raises a doubt about the sufficiency
of the matrix-pencil based conditions [46], will be dis-
cussed in the sequel. By computing the set itera-
tions up to strict inclusion into the initial one, con-
vergence/divergence can be inferred. If the initial set
Q for Algorithm 2 is the ∞-norm unit ball in R

2 and
the dDDE is given by the matrices in Example 1, then
after 4 iterations one obtains the sequence in Figure

5. The set iteration can be stopped as long as Q is
a strict subset of P4. This represents a proof by con-
struction that forward set iterations diverge and the
system does not admit a D-invariant set.

Figure 5: Sequence of the forward mappings Conv(P, A0P ⊕
AdP), for the Example 1.

A pictorial overview of the relation between differ-
ent kinds of stability and existence of D-invariant sets
is given in Figure 6. Solid black lines represent im-
plications that have been proved herein. Solid yellow
lines represent previous results and dashed lines with
question marks represent open problems. Dashed
lines with a cross between two statements show that
the first property does not necessarily imply the sec-
ond.

Existence

D-

contractive

set

Delay-

independent

stability

Robust

asymptotic

stability

T-V delay

independent

stability

Existence

D-invariant

set

× ×

? ×

Figure 6: Schematic overview of the presented results.

5. Extensions of D-invariance

As mentioned in the introduction, two main ap-
proaches exist in the literature dealing with positive
invariant sets for discrete time-delay difference equa-
tions; an invariant set for the dDDE can be computed
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either in an extended state space, or in the original
state space (in this latter case, it is called D-invariant
set). The concept of cyclic invariance [37] can be ex-
ploited to compute, instead of a rigid set in (Rn)d+1

or Rn as in the two aforementioned approaches, a tu-
ple of invariant sets; thus offering a certain degree of
flexibility.

Definition 9. A (d+1)-tuple of sets {Ω0, . . . ,Ωd} is
called cyclic D-invariant with respect to (1) if:

A0Ω0 ⊕A1Ω1 ⊕ · · · ⊕AdΩd ⊆ Ωd;
A0Ωd ⊕A1Ω0 ⊕ · · · ⊕AdΩd−1 ⊆ Ωd−1;

...
A0Ω1 ⊕A1Ω2 ⊕ · · · ⊕AdΩ0 ⊆ Ω0.

(35)

A generalization of the cyclic invariance notion to in-
variant family of sets was proposed by [38, 36].

Definition 10. A family of (d + 1)-tuples of sets
F ⊂ (Rn)d+1 is an invariant family with respect to
(1) if for any tuple {Ω0,Ω1, . . . ,Ωd} ∈ F there exists
a set Ω∗ ⊂ R

n such that {Ω∗,Ω0 . . . ,Ωd−1} ∈ F and
A0Ω0 ⊕A1Ω1 ⊕ · · · ⊕AdΩd ⊆ Ω∗.

The link between the two main representations for
discrete time-delay difference equations and their in-
variant sets has received recently a unifying charac-
terization via set factorization [33]. The reader is
referred to this work for geometrical details on the
Cartesian product of sets in relationship with posi-
tive invariance for time-delay systems.

6. Conclusion

This paper discusses positive invariance for discrete
time-delay systems. Necessary and/or sufficient con-
ditions for the existence of D-invariant sets have been
gathered and discussed. The relationship between D-
invariance and stability has been studied for discrete
delay difference equations (dDDEs). The construc-
tion of D-invariant sets via set iterations has been
shown to benefit from set convexification, despite the
fact that set forward mappings based on the original
dDDE lead to a non-convex D-invariant set.
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[46] N. Stanković, S. Olaru, S. I. Niculescu, Further remarks
on asymptotic stability and set invariance for linear delay
difference equations, Automatica 50 (8) (2014) 2191–2195.

[47] A. Y. Aleksandrov, O. Mason, Diagonal Lyapunov–
Krasovskii functionals for discrete-time positive systems
with delay, Systems & Control Letters 63 (2014) 63–67.

[48] G. Bitsoris, N. Athanasopoulos, L. Dritsas, Stability, pos-
itive invariance and design of constrained regulators for
networked control systems, International Journal of Con-
trol 85 (10) (2012) 1401–1413.

[49] W. Heemels, N. Van de Wouw, R. Gielen, M. Donkers,
L. Hetel, S. Olaru, M. Lazar, J. Daafouz, S. Niculescu,
Comparison of overapproximation methods for stability

14



analysis of networked control systems, in: Proceedings of
the 13th ACM International Conference on Hybrid sys-
tems: computation and control, 2010, pp. 181–190.

[50] A. Halanay, V. Rasvan, Stability and stable oscillations in
discrete time systems, Vol. 2, CRC Press, 2000.

[51] K. Aström, B. Wittenmark, Computer-controlled systems:
theory and design., Prentice Hall, 1997.

[52] W. Lombardi, Constrained control for time-delay sys-
tems., Ph.D. thesis, Supélec (2011).
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