F. Blanchini, Set invariance in control, Automatica, vol.35, issue.11, pp.1747-1767, 1999.
DOI : 10.1016/S0005-1098(99)00113-2

C. Moussaoui, R. Abbou, and J. Loiseau, On bounds of Input-Output systems. Reachability set determination and polyhedral constraints verification, 19th IFAC World Congress, Cape Town, pp.11012-11017, 2014.
DOI : 10.3182/20140824-6-ZA-1003.00969

A. Hmamed, A. Benzaouia, M. Ait-rami, and F. Tadeo, Positive stabilization of discrete-time systems with unknown delay and bounded controls, European Control Conference (ECC), pp.5616-5622, 2007.

D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, vol.36, issue.6, pp.789-814, 2000.
DOI : 10.1016/S0005-1098(99)00214-9

T. L. Santos and A. H. Gonzalez, Stable MPC with reduced representation for linear systems with multiple input delays, 2015 American Control Conference (ACC), pp.238-243, 2015.
DOI : 10.1109/ACC.2015.7170742

M. Reble and F. Allgöwer, General design parameters of model predictive control for nonlinear time-delay systems, 49th IEEE Conference on Decision and Control (CDC), pp.176-181, 2010.
DOI : 10.1109/CDC.2010.5718067

S. Olaru, J. A. De-dona, M. M. Seron, and F. Stoican, Positive invariant sets for fault tolerant multisensor control schemes, International Journal of Control, vol.40, issue.12, pp.2622-2640, 2010.
DOI : 10.1016/j.automatica.2004.01.014

URL : https://hal.archives-ouvertes.fr/hal-00293927

F. Stoican, S. Olaru, M. M. Seron, and J. A. De-dona, Reference governor design for tracking problems with fault detection guarantees, Journal of Process Control, vol.22, issue.5, pp.829-836, 2012.
DOI : 10.1016/j.jprocont.2012.02.004

URL : https://hal.archives-ouvertes.fr/hal-00751228

F. Blanchini and S. Miani, Set-theoretic methods in control, 2008.
DOI : 10.1007/978-3-319-17933-9

W. Michiels and S. Niculescu, Stability and Stabilization of Time-Delay Systems (Advances in Design & Control, 2007.

L. Hetel, J. Daafouz, S. Tarbouriech, and C. Prieur, Stabilization of linear impulsive systems through a nearly-periodic reset, Nonlinear Analysis: Hybrid Systems, vol.7, issue.1, pp.4-15, 2013.
DOI : 10.1016/j.nahs.2012.06.001

URL : https://hal.archives-ouvertes.fr/hal-00734728

S. Tarbouriech, Local stabilization of continuous-time delay systems with bounded inputs, pp.302-317, 1998.
DOI : 10.1007/BFb0027492

J. Hennet, A feedback stabilization technique for delay differential systems

A. Hmamed, A. Benzaouia, and H. Bensalah, Regulator problem for linear continuous-time delay systems with nonsymmetrical constrained control, IEEE Transactions on Automatic Control, vol.40, issue.9, pp.1615-1619, 1995.
DOI : 10.1109/9.412630

S. , D. Cairano, U. V. Kalabi´ckalabi´c, and I. V. Kolmanovsky, Reference governor for network control systems subject to variable time-delay, Automatica, vol.62, pp.77-86, 2015.

J. C. Gu and V. L. Kharitonov, Stability of timedelay systems, 2003.

J. E. Normey-rico, Control of dead-time processes, 2007.

J. L. Avila-alonso, C. Bonnet, H. Ozbay, J. Clairambault, S. Niculescu et al., A coupled model for healthy and cancer cells dynamics in acute myeloid leukemia, Proceedings of the 19th IFAC World Congress, pp.7529-7534, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00940245

S. Miani and A. Morassutti, Switching controllers for networked control systems with packet dropouts and delays in the sensor channel, Proc. First IFAC Workshop on Estimation and Control of Networked Systems, pp.334-339, 2009.
DOI : 10.3182/20090924-3-IT-4005.00057

I. Boussaada, H. Mounier, S. Niculescu, and A. Cela, Analysis of drilling vibrations: A time-delay system approach, 2012 20th Mediterranean Conference on Control & Automation (MED), pp.2012-610
DOI : 10.1109/MED.2012.6265705

URL : https://hal.archives-ouvertes.fr/hal-00832013

A. Seuret, H. Ozbay, C. Bonnet, and H. Mounier, Lowcomplexity Controllers for Time-delay Systems, 2014.

G. Samanta, Dynamic behaviour for a nonautonomous heroin epidemic model with time delay, Journal of Applied Mathematics and Computing, vol.33, issue.5, pp.161-178, 2011.
DOI : 10.1007/s12190-009-0349-z

S. Tarbouriech and J. M. , Silva Jr, Synthesis of controllers for continuous-time delay systems with saturating controls via lmis, IEEE Transactions on Automatic Control, issue.1, pp.45-105, 2000.

S. Elaydi, An Introduction to Difference Equations, 2004.
DOI : 10.1007/978-1-4757-3110-1

M. Fisher and B. Goh, Stability results for delayed-recruitment models in population dynamics, Journal of Mathematical Biology, vol.11, issue.1, pp.147-156, 1984.
DOI : 10.1007/BF00275937

S. Tang and L. Chen, Density-dependent birth rate, birth pulses and their population dynamic consequences, Journal of Mathematical Biology, vol.44, issue.2, pp.185-199, 2002.
DOI : 10.1007/s002850100121

K. Cooke and A. Ivanov, On the discretization of a delay differential equation, Journal of Difference Equations and Applications, vol.6, issue.1, pp.105-119, 2000.
DOI : 10.1109/JRPROC.1961.287920

H. Crauel, T. Doan, and S. Siegmund, Difference equations with random delay, Journal of Difference Equations and Applications, vol.19, issue.7, pp.627-647, 2009.
DOI : 10.1109/TIT.2002.1003827

R. H. Gielen, M. Lazar, and I. V. Kolmanovsky, Lyapunov Methods for Time-Invariant Delay Difference Inclusions, SIAM Journal on Control and Optimization, vol.50, issue.1, pp.110-132, 2012.
DOI : 10.1137/100807065

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Seifert, Positively invariant closed sets for systems of delay differential equations, Journal of Differential Equations, vol.22, issue.2, pp.292-304, 1976.
DOI : 10.1016/0022-0396(76)90029-2

S. Damak, A. Ferhi, V. Andrieu, M. D. Loreto, and W. Lombardi, A bridge between Lyapunov-Krasovskii and spectral approaches for stability of difference equations, IFAC Proceedings Volumes, vol.46, issue.3, pp.30-35, 2013.
DOI : 10.3182/20130204-3-FR-4031.00166

URL : https://hal.archives-ouvertes.fr/hal-00957324

R. H. Gielen, M. Lazar, and S. V. Rakovi´crakovi´c, Necessary and Sufficient Razumikhin-Type Conditions for Stability of Delay Difference Equations, IEEE Transactions on Automatic Control, vol.58, issue.10, pp.2637-2642, 2013.
DOI : 10.1109/TAC.2013.2255951

S. Olaru, N. Stankovi´cstankovi´c, G. Bitsoris, and S. Niculescu, Low complexity invariant sets for time-delay systems: A set factorization approach, in: Low-Complexity Controllers for Time-Delay Systems, pp.127-139, 2014.

M. T. Laraba, S. Olaru, S. Niculescu, and G. Bitsoris, Invariant sets for discrete time-delay systems: Set factorization and state representation, 2015 19th International Conference on System Theory, Control and Computing (ICSTCC), pp.7-12, 2015.
DOI : 10.1109/ICSTCC.2015.7321261

URL : https://hal.archives-ouvertes.fr/hal-01260106

N. Athanasopoulos and M. Lazar, On controlled-invariance and stabilization of time-delay systems, 2014 European Control Conference (ECC), pp.778-783, 2014.
DOI : 10.1109/ECC.2014.6862474

S. Rakovi´crakovi´c and R. Gielen, Positively Invariant Families of Sets for Interconnected and Time-Delay Discrete-Time Systems, SIAM Journal on Control and Optimization, vol.52, issue.4, pp.2261-2283, 2014.
DOI : 10.1137/120897420

W. Lombardi, S. Olaru, G. Bitsoris, and S. Niculescu, Cyclic invariance for discrete time-delay systems, Automatica, vol.48, issue.10, pp.2730-2733, 2012.
DOI : 10.1016/j.automatica.2012.06.097

URL : https://hal.archives-ouvertes.fr/hal-00750926

S. V. Rakovi´crakovi´c, R. H. Gielen, and M. Lazar, Construction of invariant families of sets for linear systems with delay, Proceedings of the IEEE American Control Conference, pp.6246-6251, 2012.

M. T. Laraba, S. Olaru, S. Niculescu, F. Blanchini, S. Miani et al., Set invariance for delay difference equations, in: 12th IFAC Workshop on Time Delay Systems, pp.215-220

M. Dambrine, J. P. Richard, and P. Borne, Feedback control of time-delay systems with bounded control and state, Mathematical Problems in Engineering, vol.1, issue.1, pp.77-87, 1995.
DOI : 10.1155/S1024123X95000081

A. Goubet-bartholomeus, M. Dambrine, and J. P. Richard, Bounded domains and constrained control of linear timedelay systems, Journal europeen des systemes automatises, vol.31, issue.6, pp.1001-1014, 1997.

J. C. Hennet and S. Tarbouriech, Stability conditions of constrained delay systems via positive invariance, International Journal of Robust and Nonlinear Control, vol.8, issue.3, pp.265-278, 1998.
DOI : 10.1002/(SICI)1099-1239(199803)8:3<265::AID-RNC311>3.0.CO;2-8

M. Vassilaki and G. Bitsoris, Constrained feedback control of discrete-time systems described by arma models, Proceedings of the 1999 European Control Conference

W. Lombardi, S. Olaru, M. Lazar, and S. I. Niculescu, On positive invariance for delay difference equations, Proceedings of the 2011 American Control Conference, pp.3674-3679, 2011.
DOI : 10.1109/ACC.2011.5991538

URL : https://hal.archives-ouvertes.fr/hal-00592322

W. Lombardi, A. Luca, S. Olaru, and S. Niculescu, On the Polyhedral Set-Invariance Conditions for Time-Delay Systems, Proceedings of the 18th IFAC World Congress, pp.308-313, 2011.
DOI : 10.3182/20110828-6-IT-1002.02803

URL : https://hal.archives-ouvertes.fr/hal-00592331

N. Stankovi´cstankovi´c, S. Olaru, and S. I. Niculescu, Further remarks on asymptotic stability and set invariance for linear delay-difference equations, Automatica, vol.50, issue.8, pp.2191-2195, 2014.
DOI : 10.1016/j.automatica.2014.05.019

A. Y. Aleksandrov and O. Mason, Diagonal Lyapunov???Krasovskii functionals for discrete-time positive systems with delay, Systems & Control Letters, vol.63, pp.63-67, 2014.
DOI : 10.1016/j.sysconle.2013.10.012

G. Bitsoris, N. Athanasopoulos, and L. , Stability, positive invariance and design of constrained regulators for networked control systems, International Journal of Control, vol.1, issue.10, pp.1401-1413, 2012.
DOI : 10.1016/j.automatica.2004.12.011

W. Heemels, N. Van-de-wouw, R. Gielen, M. Donkers, L. Hetel et al., Comparison of overapproximation methods for stability analysis of networked control systems, Proceedings of the 13th ACM international conference on Hybrid systems: computation and control, HSCC '10, pp.181-190, 2010.
DOI : 10.1145/1755952.1755979

URL : https://hal.archives-ouvertes.fr/hal-00520181

A. Halanay and V. Rasvan, Stability and stable oscillations in discrete time systems, 2000.

K. Aström and B. Wittenmark, Computer-controlled systems: theory and design, 1997.

W. Lombardi, Constrained control for time-delay systems, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00631507

R. H. Gielen, M. Lazar, and S. Olaru, Set-Induced Stability Results for Delay Difference Equations, Time Delay Systems: Methods, Applications, and New Trends, Springer series Lecture Notes in Control and Information Sciences, pp.73-84, 2012.
DOI : 10.1007/978-3-642-25221-1_6

URL : https://hal.archives-ouvertes.fr/hal-00750901

J. Hennet and S. Tarbouriech, Stability and stabilization of delay differential systems, Automatica, vol.33, issue.3, pp.347-35410, 1997.
DOI : 10.1016/S0005-1098(96)00185-9

R. Schneider, Convex bodies: the Brunn?Minkowski theory, 2013.
DOI : 10.1017/CBO9780511526282

-. Mohammed, A. Laraba-was-born-in-mila, and . On, He received his M.Sc. degree in Control and Signals Processing from Paris-Sud University , France in 2014. Thereafter, he started working towards a Ph.D. degree in the Laboratory of Signals and Systems at CentraleSupélec. He is working as an Early Stage Researcher (ESR) in Marie Curie Initial Training Network on Embedded Model Predictive Control and Optimization (ITN-TEMPO) His research interests include analysis and control synthesis for dynamical systems under constraints, setvalued systems analysis and synthesis, time-delay systems, 1990.