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Abstract

In this paper, we focus on the robustness and fragility problem for piecewise affine (PWA) control laws for discrete-time linear system
dynamics in the presence of parametric uncertainty of the state space model. A generic geometrical approach will be used to obtain
robustness/fragility margins with respect to the positive invariance properties. For PWA control laws defined over a bounded region in the
state space, it is shown that these margins can be described in terms of polyhedral sets in parameter space. The methodology is further
extended to the fragility problem with respect to the partition defining the controller. Finally, several computational aspects are presented
to transform the theoretical formulations to explicit representations (vertex/halfspace representation of polytopes) of these sets.
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1 Introduction

When analyzing a control law, both practitioner and theo-
retician take into account the capacity to cope with distur-
bances and model uncertainties. This characteristic is clas-
sically denoted in control theory as robustness. The pres-
ence of additive disturbances in the control system struc-
ture is due to measurement noises and external perturbation
sources. Otherwise, the uncertainty stems from model re-
duction, linearization of nonlinear elements, imperfect math-
ematical model or partial information on the parameters.
These elements are unavoidable in the control design by the
essence of their causes and the practical need of complex-
ity reduction in model-based design, and consequently the
robustness consideration of the closed-loop is necessary.

The present study concentrates on the robustness problem in
the presence of model uncertainty for PWA feedback con-
trol laws. This class of controllers is known to lead in closed
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loop to a hybrid system formulation [13]. Another motiva-
tion for the study of the PWA controllers and their robust-
ness is the recent interest in the optimization-based design
via parametric convex programming [3,28,25,22,20] or the
approximate explicit solutions in Model Predictive Control
(MPC) [16,19]. Recall that explicit MPC aims to minimize
a cost function subject to a set of constraints wherein the
sequence of control variables over the prediction horizon
stands for the decision variables and the current state repre-
sents the parameter.

There are various types of uncertainties in the robust control
literature according to [9,18,30]. In this paper, our interest
is in parametric uncertainties, understood as variations of
coefficients of a model with a pre-imposed structure. This is
mainly due to the fact that the unstructured uncertainty will
generally lead to an augmented state space and the extension
of a predefined controller leads to nonuniqueness and related
well-posedness problems which are beyond the scope of the
current study of PWA dynamics over a given state space
partition.

At the same time, from the practical point of view, the im-
plementation of control laws in general leads to numerical
round-offs. This may affect closed-loop stability. The maxi-
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mal admissible set of numerical errors, for which the imple-
mented control law still guarantees the stability, is denoted
as the fragility margin. This problem has already been in-
vestigated in literature [10,17], but these studies neither pro-
vide a constructive procedure to compute such a margin, nor
cover our interests in the class of PWA control laws. As far
as it concerns the fragility margin of PWA control laws, we
will refer to the possible inaccuracy in the coefficients of
the PWA controllers without assuming any uncertainty on
the state space partition. Perturbations in the region descrip-
tion will lead to overlapping regions or topological changes
in the partition with implications on non-uniqueness of the
trajectories. All these aspects are addressed for the first time
in the literature to our best knowledge.

Based on the preliminary results in [23,21], this paper pro-
vides a theoretical framework and mathematical computa-
tion for the explicit robustness/fragility margin of a nomi-
nal discrete-time linear system, controlled by a given PWA
control law. The methodology is centered around the ro-
bust positive invariance properties which have been studied
since the late ’80s [6,29,7,8]. Note that the robust positive
invariance is associated with robust stability by the fact that
the closed-loop is designed to keep the trajectory inside of
a subset of the state space, namely a positively invariant
set. Guaranteeing robust asymptotic stability is beyond the
scope of the present paper. Based on the same constructive
principle, the problem of finding the biggest set of errors in
the description of the regions of the given state space poly-
hedral partition is also tackled in this study.

Notation and basic definitions

Throughout the paper, R,R+,Z,N and N+ denote the field
of real numbers, the set of nonnegative real numbers, the
set of integers, the set of non-negative integers, the set
of positive integer numbers, respectively. For two column
vectors: x ∈ Rn x = [x1 x2, . . . xn]

T
, y ∈ Rn y =

[y1 y2, . . . yn]
T and two n×m matrices A ∈ Rn×m A =

[aij ] , B ∈ Rn×m B = [bij ], then the partial order relation
x ≤ y and A ≤ B are equivalent to xi ≤ yi, ∀i = 1, . . . , n
and aij ≤ bij , ∀i = 1, . . . , n and ∀j = 1, . . . ,m respec-
tively.

A vector with its elements equal to one (zero) is denoted
by 1 (0) or by 1n (0n) in the case when the dimension n
must be explicitly stated. Similarly, I denotes an identity
matrix of appropriate dimension, with a subscript when the
dimension of this matrix needs to be specified i.e. In means
that I ∈ Rn×n.

For a matrix A with m rows and n columns, then vec(A)
represents the vector composed by the columns of the matrix

A as follows: vec(A) :=
[
A(·, 1)T . . . A(·, n)T

]T
, where

A(·, i) denotes the ith column of matrix A.

Given two matrices A ∈ Rm×n, B ∈ Rp×q , their Kronecker

tensor product is denoted asA⊗B ∈ Rmp×nq and is defined
as:

A⊗B :=


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 .
For an arbitrary set S ⊆ Rn, int(S) denotes the interior of
S. By dim(S), we denote the dimension of its affine hull.
V(S) describes the set of vertices whenever S is a polytope
(bounded polyhedral set). If S ⊂ Rn is composed by a finite
number of vectors S = {s1, s2, . . . , sm}, then [S] denotes
a matrix for which the columns are the elements of S in
an arbitrary order: [S] =

[
s1 s2 . . . sm

]
. Moreover, by

conv(S), we denote the convex hull of the points in S.Given
a map f : Rm → Rn, a set S ⊂ Rm,

f(S) = {y ∈ Rn | ∃x ∈ S such that y = f(x)}

denotes the image of the set S via the mapping f . For a
linear map f(x) = Ax with A ∈ Rn×m, the image of a set
S ⊂ Rm is briefly rewritten as f(S) = AS. The Minkowski
sum of two sets P1 and P2 is denoted as P1 ⊕ P2 and is
defined by the relation:

P1⊕P2 := {y | ∃x1 ∈ P1, x2 ∈ P2 such that y = x1 + x2} .

The unit simplex in RL is defined as

SL =
{
x ∈ RL+ | 1Tx = 1

}
. (1)

Finally, for an N ∈ N+, IN denotes the set of integers:
IN := {i ∈ N+ | i ≤ N} .

2 Preliminaries

In this section, some basic notions related to the piecewise
affine control functions and the discrete dynamics will be
introduced to facilitate the problem formulation and the pre-
sentation of the main results of the paper.

Definition 2.1 A set of N ∈ N+ full-dimensional polyhe-
dra Xi ⊂ Rn, i.e. PN (X ) = {X1,X2, . . . ,XN} is called a
polyhedral partition of a polyhedron X ⊆ Rn if:

(1)
⋃
i∈IN Xi = X .

(2) int(Xi)
⋂

int(Xj) = ∅ with i 6= j, (i, j) ∈ I2N ,

Also, (Xi,Xj) are called neighbours if (i, j) ∈ I2N , i 6= j
and dim(Xi ∩ Xj) = n − 1. If X is a polytope, we call
PN (X ) a polytopic partition.

Definition 2.2 A function fpwa : X → Rm defined over
a polyhedral partition PN (X ) of the polyhedron X by the
relation fpwa(x) = Aix + ai for x ∈ Xi, i ∈ IN , with
Ai ∈ Rm×n, ai ∈ Rm, is said to be a piecewise affine
function over PN (X ).
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In the present paper, we consider discrete linear time–
invariant (LTI) systems described by state equations:

xk+1 = Axk +Buk, (2)

where x ∈ Rn represents the state vector, u ∈ Rm denotes
the control input, A ∈ Rn×n and B ∈ Rn×m.

If the control action is synthesized in terms of a piece-
wise affine state feedback defined over a polyhedral parti-
tion PN (X ) of a polyhedral set X ⊂ Rn then it will be
described by

u(xk) = fpwa(xk) = Gixk+gi for xk ∈ Xi, i ∈ IN , (3)

with Gi ∈ Rm×n and gi ∈ Rm. With this control law, the
resulting closed-loop system (2)-(3) is a piecewise affine
system described by the state equation:

xk+1 = (A+BGi)xk +Bgi for xk ∈ Xi. (4)

Definition 2.3 A set X ⊂ Rn is positively invariant with
respect to the system xk+1 = f(xk) if x ∈ X implies
f(x) ∈ X .

In the context of robustness analysis for the closed loop
PWA dynamics, the introduction of discrete time-varying
uncertainty on [A B] in the dynamical model (2) is of use.
We assume that the matrix [A B] belongs to a polytopic set
Ω:

Ω = conv {[A1 B1] , . . . , [AL BL]} (5)

where conv denotes the convex hull. Thus, if [A B] ∈ Ω,
then there exists non negative scalarsα1, . . . , αL,

∑L
i=1 αi =

1 satisfying the relation [A B] =
∑L
i=1 αi [Ai Bi] . It is

clear that a polytope can be described by the convex hull of
its vertices, given as vectors in an Euclidean space. There-
fore, for the convex hull of matrices, one can exploit the
isomorphism between Rm×n and Rmn. With a slight abuse
of notation, we call Ω a parametric uncertainty polytope,
for ease of presentation. Also, a subset of Ω is called poly-
tope if its associated set of coefficients α = [α1 . . . αL]

T is
a polytope.

The development of the results in this paper is based on a
set of hypotheses and working assumptions. Part of them
will represent instrumental conditions for the establishment
of constructive procedures for our results:
Assumption: Given a nominal LTI system (2) and a piece-
wise affine state feedback function u(x) (3), defined over
a polyhedral partition PN (X ) of the set X ⊂ Rn, it is as-
sumed that

(1) The set X is a polytope.
(2) The set X is positively invariant with respect to the

PWA dynamics generated by the nominal model (2) in
closed loop with the PWA controller (3).

(3) The control function fpwa : X → Rm is continuous.

(4) 0 ∈ int(X ) 1 .

There are several control design methodologies based on
a PWA formulation. We mention here only MPC or the
interpolation-based control [20] which are based on a poly-
hedral partition of the state space inherited from optimal
solution to a linear/quadratic parametric programming prob-
lem. In the most general case, the partition is not convex as
for example in the case when the state/input constraints are
not convex. In this context, assumption 1 implies that we
restrict our attention to bounded convex domains and par-
ticularly to polytopes. Assumption 2 implies that with the
given PWA control law u(x), the trajectories of the nominal
linear system (2) are confined in X .

From assumption 1, and the polytopic partition characteristic
of X , it follows that its components Xi, ∀i ∈ IN are also
polytopes. Therefore, these sets can be defined either via the
vertex or via the halfspace representation. The problem of
obtaining the vertices of a given polytope from its halfspace
representation, is called vertex enumeration. Many studies
have been dedicated to this problem. A prominent solution is
reported in [2] with a computation time in O(ndv), where n
denotes the number of halfspaces, d denotes the dimension
of this polytope, v is its number of vertices. The halfspace
representation of the polytopes of interest can be defined as
follows for every i ∈ IN :

X = {x : Fx ≤ h} , with F ∈ Rr×n, h ∈ Rr

Xi = {x : Fix ≤ hi} , with Fi ∈ Rri×n, hi ∈ Rri .
(6)

The vertex representation of polytopic sets X and Xi with
corresponding sets of vertices V(X ) = {v1, v2, . . . , vq}, and
V(Xi) = {wi1, wi2, . . . , wiqi} are defined as:

X = conv {v1, v2, . . . , vq} ,
Xi = conv {wi1, wi2, . . . , wiqi} .

(7)

For ease of presentation, define the following sets of vertices:

Wi = V(Xi), W =
⋃
i∈IN

V(Xi). (8)

With respect to an arbitrary order, the following matrices
can be defined such that their columns are the elements of
their associated sets:

V = [V(X )] ∈ Rn×q, U = [fpwa(W)] ∈ Rm×p,
Vi = [Wi] ∈ Rn×qi , Ui = [fpwa(Wi)] ∈ Rm×qi ,
W = [W] ∈ Rn×p.

(9)

1 In the context of control design, the origin is usually supposed
to be asymptotically stable and the set X is understood as basin
of attraction. However, our results presented next still hold true
without this assumption.
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3 Explicit robustness margin for PWA control laws

The present study aims to find the set of model uncertainties,
while closed-loop stability is ensured by the given PWA
control law.

3.1 Problem formulation and structure of the solution

Given a continuous PWA state feedback control law (3) and
[A(k)B(k)] belongs to a polytopic uncertainty set Ω defined
by (5), the robustness problem aims to find the set of coef-
ficients, denoted by Ωαrob ⊆ SL, associated with Ωrob ⊆ Ω
such that the polytope X is positively invariant with respect
to the closed loop system:

xk+1 = (A(k) +B(k)Gi)xk +Bgi for x ∈ Xi, (10)

∀ [A(k) B(k)] ∈ Ωrob. The set Ωrob can be alternatively
called the robustness margin.

The set Ωrob can be characterized based on the local structure
of the dynamics. The next result shows a strong property
that can be obtained despite the global nonlinearity (PWA
formulation) of the dynamics.

Theorem 3.1 The set Ωrob for the PWA dynamics robust-
ness problem is convex.

PROOF. Let [A(k1) B(k1)] and [A(k2) B(k2)] ∈ Ωrob.
The invariance property of the set X with respect to (10)
implies the following set inclusions:

(A(k1) +B(k1)Gi)Xi ⊕B(k1)gi ⊆ X ,∀i ∈ IN ,
(A(k2) +B(k2)Gi)Xi ⊕B(k2)gi ⊆ X ,∀i ∈ IN .

respectively. Since, by Assumption 1, the set X is convex,
one has:

(1− µ) ((A(k2) +B(k2)Gi)Xi ⊕B(k2)gi)⊕
µ ((A(k1) +B(k1)Gi)Xi ⊕B(k1)gi) ⊆ X ,

(11)

∀i ∈ IN and 0 ≤ µ ≤ 1. Inclusion (11) proves
µ [A(k1) B(k1)] + (1 − µ) [A(k2) B(k2)] ∈ Ωrob and
consequently the convexity of the set Ωrob. 2

As a consequence of the convexity of both Ωrob and Ω, the
robustness margin can be expressed as an equivalent set:

Ωαrob =
{
α ∈ RL+ | ∀i ∈ IN , 1Tα = 1,

L∑
j=1

αj(Aj +BjGi)Xi ⊕ αjBjgi ⊆ X
}
.

The isomorphic relationship between Ωrob and Ωαrob follows
directly from the one-to-one correspondence between the

elements of these sets. Consequently, the constructive pro-
cedures for the characterization of robustness margins will
be expressed in terms of Ωαrob ⊂ RL. If L < n(m+n), this
expression is more effective than the one via the elements
of [A B]. However, the paper still handles the latter case.

3.2 Construction based on the vertex representation

With respect to definitions (7)−(9), the first result can be
stated as follows:

Theorem 3.2 Consider the system (10) subject to a para-
metric uncertainty (5). For a given piecewise affine control
law (3) satisfying Assumptions 1-3, the robustness margin is
obtained as the projection

Ωαrob = Proj RLR (12)

where R represents the polyhedral set:

R =
{

(α,Γ) ∈ SL × Rq×p+ |1TΓ = 1T ,

L∑
j=1

αj(AjW +BjU) = V Γ
}
,

(13)

with W,U defined in (9), SL defined in (1), p =
Card(W), q = Card(V(X )) and Γ represents any matrix
with the non-negative elements, satisfying (13).

PROOF. If Ωrob describes the robustness margin, then for
all [A B] ∈ Ωrob and ∀x ∈ Xi, ∀i ∈ IN :

(A+BGi)x+Bgi ∈ X . (14)

First of all, we remark that the calculation of the robustness
margin corresponds to the search for the subset of polytopic
uncertainty Ωrob ⊆ Ω and equivalently to the description of
the set Ωαrob. Clearly, (14) can be written by:

L∑
j=1

αj(Aj +BjGi)x+ αjBjgi ∈ X , ∀x ∈ Xi (15)

with αj as the elements of a vector α ∈ SL. On the other
hand, by expressing the state x ∈ Xi as a convex combi-
nation of the vertices x =

∑qi
l=1 βlwil for βl ∈ R+ and∑qi

l=1 βl = 1, it follows that (15) is equivalent to:

L∑
j=1

αj(Aj +BjGi)wil + αjBjgi ∈ X , ∀i ∈ IN , ∀l ∈ Iqi .

Further, the inclusion can be explicitly described by the ex-
istence of yil ∈ X such that:

L∑
j=1

αj(Aj +BjGi)wil + αjBjgi = yil. (16)
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yil can be expressed as: yil = [V(X )]γil for γil ∈ Sq. By
replacing this inclusion in (16) with notation (9), we obtain:

L∑
j=1

αj(Aj +BjGi)wil + αjBjgi = V γil. (17)

Equation (17) holds ∀i ∈ IN and ∀l ∈ Iqi which means
that it will hold for all the columns of the matrix W as
defined in (9). Exploiting the PWA mapping of the columns
of W as in (9), equation (17) leads to the matrix formulation
of the inclusion:

∑L
j=1 αjAjW + αjBjU = V Γ, with an

important restriction that each column of Γ is restricted to
the simplex Sq , which can be expressed as: 1TΓ = 1T , Γ ∈
Rq×p+ .

These elements prove thatR in (12) represents a parameter-
ized set of robustness margin over all the model uncertain-
ties guaranteeing the positive invariance of the closed loop.
In order to complete the proof, the set R is projected on the
space of the parameters α in (12). 2

3.3 Construction based on the half-space representation

This subsection presents another result related to the robust-
ness margin through the halfspace description of a polytope.
The notation of interest are already defined by (6). The main
result towards the explicit robustness margin description, is
summarized by the next theorem.

Theorem 3.3 Consider the system (10) affected by a para-
metric uncertainty polytope (5). For a given piecewise affine
control law (3), the robustness margin is obtained as the
projection

Ωαrob = Proj RLP (18)

where P represents the polytope:

P =

{
(α,Γ1...ΓN ) ∈ SL × Rr×r1+ × . . .× Rr×rN+ |

L∑
j=1

αjF (Aj +BjGi) = ΓiFi,

Γihi ≤ h− F
L∑
j=1

αjBjgi, ∀i ∈ IN
}
,

(19)

where Γi, i ∈ IN represent suitable matrices with the non-
negative elements, satisfying the above constraints.

PROOF. It is clear that for every [A B] ∈ Ωrob and
∀i ∈ IN : (A + BGi)Xi ⊕ Bgi⊆X . Note also that
∀i ∈ IN ,Xi⊆X , the above inclusion is equivalent to:
Xi⊆{x ∈ X | F [(A+BGi)x+Bgi] ≤ h} . In this form,

the inclusion has the advantage of an explicit halfspace
representation for both terms:

{x : Fix ≤ hi}⊆{x ∈ X | F [(A+BGi)x+Bgi] ≤ h} .

Using the Extended Farkas Lemma [14,24], there exists a
matrix Γi with non-negative elements such that:

F (A+BGi) = ΓiFi, Γihi ≤ h− FBgi, ∀i ∈ IN . (20)

The proof is complete by observing that all the realizations
of [A B] ∈ Ωrob are spanned by convex combinations of the
extreme realizations in the polytopic uncertainty set (5):{∑L

j=1 αjF (Aj +BjGi) = ΓiFi

Γihi ≤ h− F
∑L
i=1 αjBjgi

∀i ∈ IN . (21)

One can observe that (21) defines a polyhedron in the ex-
tended space of the elements of α and of the matrices Γi,
therefore, the set Ωαrob is obtained by the projection onto the
space of α as specified by (18). 2

The robustness margin, constructed via the halfspace repre-
sentation, can be technically computed by the intersection
of the sets of α = [α1 . . . αL]

T ∈ SL corresponding to the
regions in the polytopic partition PN (X ), satisfying (21).
This technical aspect will be detailed in the computational
aspects section.

3.4 Further properties of the robustness margin

The convexity of the set Ωrob is confirmed by the construc-
tion (12) which expresses an isomorphic relation with the
set Ωαrob in terms of operations of projection and intersec-
tion. Both operations are closed over the space of convex
sets. The following corollary characterizes in a formal man-
ner the structural properties of the robustness margin.

Corollary 3.4 The set Ωrob representing the robustness
margin of PWA dynamics (10) is a polytope.

PROOF. The sets SL and R used in the construction (12)
are polytopes because of their boundedness, as a conse-
quence Ωαrob inherits this structural property. By virtue of
the isomorphism, the set Ωrob is also a polytope. 2

Theorem 3.2 was stated under Assumptions 1-3 but its for-
mulation can be relaxed if additional properties are consid-
ered.

Corollary 3.5 Under the hypotheses of Theorem 3.2, if
in addition Assumption 4 holds, then Ωαrob is obtained as

5



Ωαrob = Proj RLR∗ with

R∗ =
{

(α,Γ) ∈SL × Rq×p+ | 1TΓ ≤ 1T ,
L∑
j=1

αj(AjW +BjU) = V Γ
}
.

(22)

PROOF. The result is in direct relationship with the one in
Theorem 3.2 except the relaxation of the equality 1TΓ = 1T

to inequality. This inequality can be readily transformed into
1TΓ ≤ β1T for some 0 ≤ β ≤ 1. Subsequently, it ensures
that: (A+BGi)x+Bgi ∈ βX . By the fact 0 ∈ int(X ), it
follows that βX⊆X and the proof is complete. 2

Note that this corollary may be of help for further develop-
ment of robustness margin while guaranteeing the asymp-
totic stability of the origin. More precisely, the contractive-
ness condition of X may be required when appropriate con-
straints are imposed, whereby 1TΓ ≤ 1T is replaced with
1TΓ ≤ β1T , with a scalar 0 ≤ β < 1.

The role of Assumption 3 in Theorem 3.2 is marginal and
only allows a compact treatment of the vertices in the state
space partition. The continuity can be dropped, as shown
in the next result. Despite the relative complication of the
notation, none of the fundamental properties is lost and the
result is equivalent to the one in Theorem 3.3 which makes
abstraction of the continuity in the proof.

Corollary 3.6 Under the hypotheses of Theorem 3.2, if As-
sumption 3 is dropped, then Ωαrob is obtained as Ωαrob =
Proj RLRc with

Rc =
{

(α,Γ1, . . . ,ΓN ) ∈ SL × Rq×q1+ × · · · × Rq×qN+ |
1TΓi ≤ 1T ,

∑L
j=1 αj(AjWi +BjUi) = V Γi,∀i ∈ IN

}
.

PROOF. The argument follows the same line as the one
of Theorem 3.2 with the particularity that the image of the
vertices via the forward mapping becomes multi-valued due
to the presence of common vertices in the set of genera-
tors for neighbor regions, but associated with different con-
trol values. This has to be considered consequently in the
robustness margin description which contains explicitly the
inclusion of the image of each region in the set X . 2

4 Explicit fragility margin for PWA control laws

The present section aims to provide a measure of the maxi-
mal set of admissible variation in the piecewise affine con-
trol law coefficients, also denoted as the fragility margin
such that the closed-loop positive invariance is guaranteed.

4.1 Problem formulation

Given the nominal dynamics (2) and a continuous PWA
control law (3) such that the set X is positively invariant
[4,6,7,14,5,27,1], a fragility margin problem aims to char-
acterize the set of admissible parametric variations on the
local control gains such that the positive invariance property
is preserved. Indeed, due to the piecewise affine character-
istic of the controller, the fragility margins of control gains
for each region are independent and the global study reduces
to the superposition (intersection) of the margins for each
such region in the partition.

Starting from the description of the closed-loop nominal
PWA: xk+1 = (A + BGi)xk + Bgi, for xk ∈ Xi guaran-
teeing the positive invariance of X , one can consider a set
of parametric errors of the PWA control law gains for each
region Xi ⊆ X , denoted as ∆i ⊂ Rmn+m such that:

xk+1 = (A+B(Gi+δGi,k))xk+B(gi+δgi,k) ⊆ X (23)

with i such that xk ∈ Xi and
[
vecT (δGi,k) δTgi,k

]T
∈ ∆i.

The approach will be similar to the one adopted for the ro-
bustness margin. Thus in the preamble, the following theo-
rem can be stated.

Theorem 4.1 The sets ∆i,∀i ∈ IN characterizing the
fragility margin for a PWA controller are convex.

PROOF. See the proof of Theorem 3.1. 2

4.2 Construction based on the vertex representation

Using the dual representation, the fragility problem can be
treated in the same positive invariance framework. The ma-
trix notation in (7)−(9) will be used next.

Theorem 4.2 Consider a discrete LTI system (2) and a
piecewise affine state feedback (3) over a polytopic parti-
tion PN (X ) of the set X such that Assumptions 1-3 are ful-
filled. The fragility margin of the controller defined over Xi
is obtained as

∆G
i = Proj (δGi

,δgi )
Fi, (24)

where Fi represents the polyhedron:

Fi =

{
(δGi

, δgi ,Γi) ∈ Rm×n × Rm × Rq×qi+ | 1TΓi = 1T ,

[
A B

] [Vi
Ui

]
+BδGi

Vi +Bδgi1
T = V Γi

}
.

(25)
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PROOF. By the positive invariance of X , ∀x ∈ Xi

Ax+B((Gi + δGi
)x+ (gi + δgi)) ⊆ X .

By a simple transformation, one can obtain

[
A B

] [ x

fpwa(x)

]
+BδGi

x+Bδgi ⊆ X .

From the boundedness and convexity of Xi, it follows that
∀wil ∈ Wi

[
A B

] [ wil

fpwa(wil)

]
+BδGiwil +Bδgi = yil. (26)

yil ∈ X has another description via the generators of X

yil = V γil for γil ∈ Rq+, satisfying 1T γil = 1. (27)

(26), (27) lead directly to the following

[
A B

] [ wil

fpwa(wil)

]
+BδGiwil +Bδgi = V γil. (28)

Equation (28) holds ∀wil ∈ Wi, thus by completing the
matrix Vi = [Wi] which has its columns as the vertices of
Xi, and Ui being its images via the map fpwa, one can easily

see that
[
A B

] [Vi
Ui

]
+ BδGiVi + Bδgi1

T = V Γi, where

1TΓi = 1T and Γi ∈ Rq×qi+ , qi = Card(Wi). 2

Remark 4.3 The fragility study cannot be extended con-
comitantly to uncertainties in the state space partition and
the associated feedback gains without loosing the linear for-
mulations in (25) and (30). Indeed, to study the impact of
the uncertainties in the partition, the matrices Fi and hi in
(6) need to be perturbed and consequently, equations (25),
(30) become bilinear in the unknowns. The fragility mar-
gin with respect to the state space partition will be studied
independently in Section 5.

It can be observed that the sets ∆G
i ,∀i ∈ IN in (24), are

polyhedra. This property is related to the linearity of the
constraints in the set description (see the argument used in
Corollary 3.4) and can be officially stated as follows:

Corollary 4.4 The set ∆G
i in (24) is a polyhedron ∀i ∈ IN .

PROOF. The proof is similar to the one of Corollary
3.4. 2

Corollary 4.5 Under the hypotheses of Theorem 4.2, if As-
sumption 4 holds, then the fragility margin of the controller
associated with the region Xi, i ∈ IN can be obtained as
∆G∗
i = Proj(δGi

,δgi )
F∗i whose definition is below

F∗i =
{

(δGi , δgi ,Γi) ∈ Rm×n × Rm × Rq×qi+ | 1TΓi ≤ 1T ,[
A B

] [Vi
Ui

]
+BδGi

Vi +Bδgi1
T = V Γi

}
.

PROOF. The proof is similar to the one of Corollary
3.5. 2

Remark 4.6 The following observations can clarify the im-
plications of the above results:

• Corollary 4.5 describes a relaxation in the formulation of
the set Γi. Analyzing exclusively the constraints, it natu-
rally leads to a larger set ∆G∗

i as the result of Corollary
4.5 relative to ∆G

i in Theorem 4.2. Note however that
under Assumptions 1–4 the sets are equivalent as long
as the relaxation to the inequality extends the inclusion
fpwa(X ) ⊆ X to fpwa(X ) ⊆ βX for some 0 ≤ β ≤ 1.

• The fragility margin obtained by the above results can be
used in the context of the explicit MPC design under finite
precision arithmetic discussed in [26].

4.3 Construction based on the half-space representation

Using the halfspace representation of the polytopes in the
partition, the following result can be stated:

Theorem 4.7 Consider a discrete LTI system (2) and a
piecewise affine control law (3) satisfying Assumptions 1-3.
For each region Xi of the partition PN (X ) in the controller
definition, the fragility margin is defined by the set:

∆G
i = Proj (δGi

,δgi )
Qi (29)

where Qi represents the polyhedron:

Qi =
{

(δGi ,δgi , Hi) ∈ Rm×n × Rm × Rr×ri+ |
F (A+B(Gi + δGi)) = HiFi,

Hihi ≤ h− FB(gi + δgi)
}
.

(30)

PROOF. For i ∈ IN and ∀x ∈ Xi

(A+B(Gi + δGi))x+B(gi + δgi) ⊆ X

From the halfspace representation of the polytope X , it fol-
lows that ∀x ∈ Xi

F ((A+B(Gi + δGi))x+B(gi + δgi)) ≤ h.
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In other words, Xi ⊆ Hi, where they are defined below

Xi = {x ∈ Rn | Fix ≤ hi}
Hi =

{
x ∈ Rn | F (A+B(Gi + δGi))x

≤ h− FB(gi + δgi)
}
.

The Extended Farkas Lemma [14,24] leads directly to the
result

F (A+B(Gi + δGi
)) = HiFi, Hihi ≤ h− FB(gi + δgi).

This inclusion completes our proof. 2

5 Explicit fragility of state space partition

In this section, a so-called explicit fragility of the state space
partition problem stemming from the implementation of a
piecewice affine controller, is tackled. It aims to compute
the set of tolerable errors for the description of the regions
in the polytopic partition PN (X ) of the set X provided the
positive invariance property of X is preserved.

Note that if the halfspace representation is considered, the
linearity of imposed constraints will be lost. Instead, we
compute this margin via the vertex representation, whereby
the errors on the halfspace description are implicitly de-
duced.

Consider an LTI dynamic (2) and a continuous PWA con-
trol law (3), this state feedback controller is defined over a
polytopic partition PN (X ) of the state space X . Consider
the vertex representation of Xi as in (7), the description of
Xi in the presence of coefficient errors can be presented as
follows X̃i := conv {wi1 + δi1, . . . , wiqi + δiqi} . A solu-
tion to the explicit fragility margin of the components in the
polytopic partition PN (X ) will be provided next in terms
of the admissible errors δil, l ∈ Iqi for each region Xi. The
polytope X is under the following assumption:
Assumption
(5) The boundary of the polytope X =

⋃
i∈IN Xi is not sub-

ject to uncertainty 2 which is equivalent to X =
⋃
i∈IN X̃i.

This assumption ensures that the positive invariance can be
stated and analyzed in terms of an explicit inclusion:

(A+BGi)x+Bgi ⊆ X , ∀x ∈ X̃i ⊆ X . (31)

with a right hand side represented by a set X free of uncer-
tainties. The set of admissible errors δi =

[
δTi1 . . . δ

T
iqi

]T ∈
Rnqi of the vertices of Xi can be computed through the fol-
lowing result by exploiting the notation introduced in (8),
(9):

2 In the light of the present result this assumption is related to the
vertex representation but the duality makes the assumption hold
in the dual representation

Theorem 5.1 Consider a polytopic partition PN (X ) of X
over which a PWA controller (3) is defined. The controller,
designed with respect to a nominal LTI dynamic (2), satisfies
Assumptions 1-3 and 5. The fragility margin of the vertex
representation of the polytopic partitionPN (X ) is described
for each region Xi via:

∆v
i =

{
δi ∈ Rnqi |

[
I⊗ F

I⊗ F (A+BGi)

]
δi ≤

1⊗ h− (I⊗ F )vec(Vi)

1⊗ h− (I⊗ F [A B])vec

([
Vi

Ui

])},
(32)

where 1 ∈ Rqi and I ∈ Rqi×qi .

PROOF. From Assumption 5 we have that ∀x ∈ X , there
exists γi ∈ Sqi such that ∀x ∈ X̃i ⊆ X and subsequently:
x =

∑qi
l=1 γil(wil + δil). Then we can easily see due to the

halfspace representation of X that: F (wil+δil) ≤ h, ∀l ∈
Iqi . It follows that:

(I⊗ F )δi ≤ 1⊗ h− (I⊗ F )vec(Vi). (33)

In addition, (31) holds true only if it holds also ∀wil ∈
V(Xi). More clearly,

(A+BGi)(wil + δil) +Bgi ⊆ X , ∀l ∈ Iqi . (34)

From the half-space representation of X , (34) is equivalent
to:

F (A+BGi)δil ≤ h− F [A B]

[
wil

fpwa(wil)

]
,∀l ∈ Iqi .

The above inclusion leads directly to the following:

(I⊗F (A+BGi))δi ≤ 1⊗h−(I⊗F [A B])vec

([
Vi

Ui

])
.

Finally, (32) is found by the concomitant satisfaction of (33)
and the above inclusion. 2

From the above result, the following set:

X̂i = conv

 ⋃
l∈Iqi

wil ⊕ Projδil∆
v
i

 , (35)

represents the maximal erroneous halfspace representation
of Xi. More clearly, if X̃i stands for the implemented half-
space representation of Xi, then any implemented X̃i ⊆ X̂i
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can guarantee the positive invariance of X with respect to
the given PWA control law.

6 Computational aspects

The theoretical aspects introduced in the previous sections
establish the existence and point to the effective construc-
tions of robustness and fragility margins in connection with
the closed-loop PWA dynamics. Nevertheless, an analysis
of systems of linear equalities/inequalities involved in the
parameterized set description may provide an insight on the
practical computational aspects.

6.1 Explicit robustness margin of PWA controller

6.1.1 The vertex representation

The construction in (12) and (13) represents a polyhedral set
in high dimensional spaces and their treatment in these orig-
inal formulations will lead to a computational complexity
which is difficult to handle 3 . In order to scale this barrier,
let us consider (13) element by element for l ∈ Ip :

Ωαl =
{
α ∈ SL | 1TΓ(·, l) = 1,Γ(·, l) ∈ Rq+,

L∑
j=1

αj(AjW (·, l) +Bjfpwa(W (·, l))) = V Γ(·, l)
}
.

(36)

Then the robustness margin can also be defined:
Ωαrob =

⋂
l∈Ip Ωαl . Recall that V is the matrix hav-

ing the columns composed of the vertices of X . If
ŵl =

[
WT (·, l) fTpwa(W (·, l))

]T
, then (36) can be rewrit-

ten in the form of a matrix equation where the variable is
βl = [α1 . . . αL ΓT (·, l)]T ≥ 0

[
A1 B1

]
ŵl . . .

[
AL BL

]
ŵl −V

0TL 1Tq

1TL 0Tq

βl =


0n

1

1

 (37)

This system of equations in the form Aβl = B, has a family
of solutions: βl = Ast + Bs, where As is an orthonormal
basis for the null space of A (satisfying AAs = 0), Bs de-
notes a feasible solution of equation (37) and t stands for a
vector of appropriate dimension. Due to the non-negativity
of all elements in βl, we obtain the admissible set of t, de-
noted by Φt i.e. Φt = {t | − Ast ≤ Bs}. It is observed that
Φβl

:= {βl| (37) holds} = AsΦt ⊕ Bs represents a poly-
tope. Therefore, due to the above relation, Φt also repre-
sents a polytope. So one needs only to calculate all vertices
of Φβl

by applying the transformation to the vertices of Φt.
Finally, the set Ωαl of coefficients α for which (36) holds is
obtained via the orthogonal projection of Φβl

on the space
of α: Ωαl = Proj RL Φβl

.

3 We refer here to the computational complexity of the orthogonal
projection of a polytope [11].

6.1.2 The halfspace representation

From equation (18), it follows that Ωαrob =
⋂
i∈IN Proj RLPi,

where Pi ⊂ RL+ × Rr×ri+ are derived from the definition of
P in (19) for each i ∈ IN :

Pi =

{
(α,Γi)

∣∣ L∑
j=1

αjF (Aj +BjGi) = ΓiFi,

Γihi ≤ h− F
L∑
j=1

αjBjgi

}
.

(38)

To facilitate the computation, one needs to transform the
above conditions into a polyhedral form with the meaningful
variables for each region. Indeed, the equation in (38) needs
to be decoupled row by row ∀k ∈ Ir :

Γi(k, ·)Fi = [α1...αL−1]Zk + F (k, ·)(AL +BLGi)

Zk =


F (k, ·)(A1 −AL +B1Gi −BLGi)

. . .

F (k, ·)(AL−1 −AL +BL−1Gi −BLGi)

 .
Denote the following vector: z =

[
vecT (ΓTi )α1 . . . αL−1

]T
,

then the following can be obtained:

D1z = E1, D1 =


Fi . . . 0ri×n
...

. . .
...

0ri×n . . . Fi

−Z1 . . . −Zr



T

,

E1 = (Ir ⊗ (AL +BLGi)
T )vec(FT ).

(39)

In the same way, an equivalent representation of the inequal-
ity in (38) can be presented below:

D2z ≤ E2,

E2 = h− FBLgi,
D2 =


hi . . . 0ri×1
...

. . .
...

0ri×1 . . . hi

Y1 . . . Yr



T

, (40)

with Yk = [F (k, ·)(B1 −BL)gi . . . F (k, ·)(BL−1 −BL)gi]
T

∀k ∈ Ir. The solution of (39) is a set of z which depends on
t s.t. z = D1t+E1, whereD1 is an orthonormal basis for the
null space of D1 and E1 is a feasible solution of (39). Due to
the non-negativity of z, the values of t satisfy −D1t ≤ E1.
Also, due to (40), the set of t denoted by Φt, can be de-
scribed by: Φt = {t | −D1t ≤ E1, D2D1t ≤ E2 −D2E1} .
Recall that the set of z denoted by Φz, can be described via
Φt as: Φz = D1Φt ⊕ E1. Then Proj RLPi can be computed
from Proj RL−1Φz.
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6.2 Explicit fragility margin of PWA controller

For simplicity, without loss of generality, variations in Gi
are exclusively considered.

6.2.1 The vertex representation

Consider the fragility margin for the controller of the region
Xi. Define also the following set for l ∈ Iqi

∆G
il =

{
δGi ∈ Rm×n | 1TΓi(·, l) = 1,Γi(·, l) ∈ Rq+[

A B
] [Vi(·, l)
Ui(·, l)

]
+BδGiVi(·, l) = V Γi(·, l)

}
.

(41)

The fragility margin can also be defined as follows: ∆G
i =⋂

l∈Iqi
∆G
il . If we denote ŵil =

[
V Ti (·, l)UTi (·, l)

]T
, then

(41) can be rewritten as a system of linear equations where
the variable is βil =

[
vecT (δGi) ΓTi (1 : q − 1, l)

]T ∈
Rnm+q−1 (Γi(q, l) = 1− 1Tq−1Γi(1 : q − 1, l)):


V Ti (·, l)(In ⊗B(1, ·))

...

V Ti (·, l)(In ⊗B(n, ·))

−Ṽ

βil = vq −
[
A B

]
ŵil,

(42)

with Ṽ = [v1 − vq . . . vq−1 − vq] (recall that V =
[V(X )] = [v1 . . . vq] .) Equation (42) in the form Aβil = B,
has a family of solutions: βil = Ast + Bs, where As is
an orthonormal basis for the null space of A and Bs de-
notes a feasible solution of (42). Due to the non-negativity
βil(nm + 1 : nm + q − 1) = Γi(1 : q − 1, l) ≥ 0, the
values of t satisfy: −A(2)

s t ≤ B(2)s where the matrices
A(1)
s ,B(1)s ,A(2)

s ,B(2)s are defined below:

[
A(1)
s B(1)s

]
=
[
As Bs

]
(1 : nm, ·),[

A(2)
s B(2)s

]
=
[
As Bs

]
(nm+ 1 : nm+ q − 1, ·).

Also, Γi(1 : q − 1, l) satisfies the constraint: 1TΓi(1 : q −
1, l) ≤ 1. Thus, the set of t denoted by Φt can be presented
as: Φt =

{
t | −A(2)

s t ≤ B(2)s ,1TA(2)
s t ≤ 1− 1TB(2)s

}
,

with the remark that Φβil
= {βil | (42) holds} = AsΦt⊕Bs

represents a polyhedral set. Therefore, due to the bound-
edness of Γi(1 : q − 1, l), Φt is a polytope, meaning so is
∆G
il = A(1)

s Φt ⊕ B(1)
s . Repeat the same computation for

all l ∈ Iqi , then the fragility margin for Gi i.e. ∆G
i can be

obtained.

6.2.2 The halfspace representation

From equation (30), it follows that for each i ∈ IN the
fragility margin can be described in terms of a set:

Qi =
{

(δGi
, Hi) ∈ Rm×n × Rr×ri+ |

Hihi ≤ h− FBgi, F (A+B(Gi + δGi
)) = HiFi

}
.

(43)

In order to facilitate the computation, one has to transform
the above conditions into a polytope formulation with a re-
duced set of meaningful variables for each region. Define

z as: z1 = vec(HT
i ), z2 = vec(δGi), z =

[
zT1 zT2

]T
. The

equality in (43) allows the iterative elimination (step by step
for each row) of dependent variables:

Hi(k, ·)Fi = F (k, ·)BδGi
+ F (k, ·)(A+BGi).

and leads to the following set of relationships:

D1z = E1, D1 =


Fi . . . 0ri×n
...

. . .
...

0ri×n . . . Fi

Z1 . . . Zr



T

,

E1 = (Ir ⊗ (A+BGi)
T )vec

(
FT
)
,

Zk = In ⊗ (−BTFT (k, ·)), ∀k ∈ Ir.

(44)

Similarly, the inequality in (43) is equivalent to:

D2z1 ≤ E2,

E2 = h− FBgi,
D2 =


hi . . . 0ri×1
...

. . .
...

0ri×1 . . . hi


T

. (45)

The family of solutions in (44) has the following form: z =
Asz̃ + Bs, where As is an orthonormal basis for the null
space of D1, Bs is a feasible solution of D1z = E1. Define
the following matrices:

A(1)
s = As(1 : rri, ·), A(2)

s = As(rri + 1 : rri + nm, ·)
B(1)s = Bs(1 : rri), B(2)s = Bs(rri + 1 : rri + nm).

Due to the non-negativity of z1 = vec(HT
i ) and (45),

the set of z̃ denoted by Φz̃ , can be described as:
Φz̃ =

{
z̃ | −A(1)

s z̃ ≤ B(1)s , D2A(1)
s z̃ ≤ E2 −D2B(1)s

}
.

Consequently, ∆G
i can be obtained as: ∆G

i = A(2)
s Φz̃⊕B(2)s .

7 Numerical example

In the present section, several examples allow the previous
theoretical results to be illustrated. Note that every simula-

10



tion in the present article has been carried out in MPT 3.0
(see [15]).

7.1 Explicit robustness margin of PWA controllers

An illustration is carried out on a linear system with uncer-
tainty set described by:

[A1 B1] =

[
1 0 0

0.1 1 1.5

]
, [A2 B2] =

[
1 0 1.5

0.5 1.5 1

]
,

[A3 B3] =

[
1.5 0 1

3.8 1 1

]
,

in the presence of constraints on the control variable and
the output variable: −5 ≤ uk ≤ 5,−5 ≤ yk ≤ 5, with the
nominal model chosen to synthesize a PWA control law:

A = 0.3A1 + 0.2A2 + 0.5A3,

B = 0.3B1 + 0.2B2 + 0.5B3, C = [1 0] .

A continuous PWA state feedback control law is designed
with prediction horizon 2, weighting matrices Q = I2, R =
1 and the terminal constraint chosen as the maximal output
admissible set [12]. The state space partition is presented in
Figure 1.

Figure 2 shows the image of Ωαrob via the orthogonal pro-
jection on the plane [α1 α2]. Note that the shaded violet
region presents the whole region of α1, α2. The blue point
denotes the considered nominal system, this point coincides
with a vertex of this robustness margin set. It is observed
that this robustness margin differs from the classical notion,
because the given control law cannot guarantee the positive
invariance of the feasible region X if the nominal system is
perturbed away from the robustness margin.

7.2 Explicit fragility margin of PWA controllers

Region 6 has the halfspace representation and its correspond-
ing controller as follows:

F6 =

[
−1 1 −0.2073 0.2073

0 0 −0.9783 0.9783

]T
,

h6 =
[
−0.8 5 23.6177 −17.9116

]T
,

u(x) =
[
−1.5625 0

]
x+ 6.25.

The fragility margin for the control law of region X6 is
illustrated in Figure 3. Note that this margin via two different
approaches is theoretically identical. It can be seen that the
slope gain G6 without parametric error of the control law
associated with this region is pointed out at point (0, 0) in
blue which is a vertex of the fragility margin set. It is easy

Fig. 1. State space partition.

to see that this control law is fragile due to the fact that if
the control law gain G6 is perturbed away from the fragility
set, then closed loop stability may be lost.

7.3 Explicit fragility of state space partition

Again, the state space partition and the PWA control law
designed above, are considered. The outer blank polytope
in Figure 4, represents X . For illustration, we focus on the
unconstrained region X5, which is the orange polytope. The
pink polytope represents X̂5, defined in (35). It implies that
for any implemented representation X̃5 of X5, satisfying
X̃5 ⊆ X̂5, the positive invariance of X is ensured with re-
spect to the above PWA control law.

8 Conclusions

A measure of the robustness and fragility of the positive in-
variance for a piecewise affine system has been introduced
in the present paper. Two points of view have been presented
with respect to the closed-loop dynamics of a linear sys-
tem with a piecewise affine control law: the robustness with
respect to parametric model uncertainties and the fragility
of the piecewise affine feedback control function. For both
cases it has been shown that the margins are represented by
convex sets of admissible parameter variations. Following
this idea, the extension to the explicit fragility margin of
the state space partition has been also tackled. This problem
also leads to polyhedral set descriptions making the anal-
ysis very attractive from the computational point of view.
The approach allows one to have a generic vision about the
margins related to continuous PWA state feedback control
laws and also provides new insight in the implementation
limitations for this type of controllers.
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