Quantifying the Uncertainties-Induced Errors in Robot Impact Detection Methods

Abstract : In the context of human-robot collaboration, an efficient impact detection is essential for safe operation. Residual-based collision detection relies on the difference between the estimated and actual motor torques. However, in these model-based methods uncertainties affect the residual in the same structural way as a collision does, leading to potential false alarms. This paper proposes to quantify the influence of uncertainties on residual generation methods based on the inverse dynamic model for both rigid and elastic-joint robots. These uncertainties-induced errors are investigated depending on their origin (parameters estimation or numerical differentiation). Boundaries of these errors are determined along a given trajectory and account as the minimum threshold of detectability of a collision. These results are illustrated in simulation.
Type de document :
Communication dans un congrès
IECON 2016 - 42nd Annual Conference of IEEE Industrial Electronics Society, Oct 2016, Florence, Italy. pp.5328-5334, 2016, 〈10.1109/iecon.2016.7793186 〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal-centralesupelec.archives-ouvertes.fr/hal-01416124
Contributeur : Maria Makarov <>
Soumis le : mercredi 14 décembre 2016 - 09:41:37
Dernière modification le : lundi 24 septembre 2018 - 11:34:03
Document(s) archivé(s) le : mercredi 15 mars 2017 - 13:12:47

Fichier

Briquet 2016 - Quantifying the...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nolwenn Briquet-Kerestedjian, Maria Makarov, Pedro Rodriguez-Ayerbe, Mathieu Grossard. Quantifying the Uncertainties-Induced Errors in Robot Impact Detection Methods. IECON 2016 - 42nd Annual Conference of IEEE Industrial Electronics Society, Oct 2016, Florence, Italy. pp.5328-5334, 2016, 〈10.1109/iecon.2016.7793186 〉. 〈hal-01416124〉

Partager

Métriques

Consultations de la notice

347

Téléchargements de fichiers

213