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ABSTRACT

Assume that aN -dimensional noisy measurement vector is available
via a N × R linear random sensing operation of a R-dimensional
Gaussian signal of interest, denoted by s. The problem statement be-
ing addressed here is the study of the minimal Bayes’ error probabil-
ity for the detection of s where N →∞ with N/R→ β ∈ (1,∞).
When the exact derivation of this probability is intractable, statistical
similarity metrics, nourishing their roots in the information geome-
try theory, are useful to characterize the exponential rate of the error
probability. More precisely, the Chernoff information is asymptot-
ically given by the minimum over s ∈ (0, 1) of the s-divergence.
In many applications, it is hard to evaluate the s-divergence. Worse,
due to the asymmetry of the s-divergence for the considered detec-
tion problem, the Bhattacharyya divergence (s = 1/2), cannot cir-
cumvent this problem. As a consequence, the derivation of the opti-
mal value of s requires a costly numerical optimization strategy. In
this work, we propose two contributions. The first one is to provide a
closed-form expression of the asymptotic normalized s-divergence.
The second contribution is to provide an analytic expression for the
optimal value of s.

Index Terms— Optimal Bayesian detection, information ge-
ometry, minimal error probability, Chernoff/Bhattacharyya upper
bound, large random sensing matrix.

1. INTRODUCTION

Evaluate the performance limit for the ”Gaussian information plus
noise” detection problem is a challenging research topic, see for
instance [1–6]. Given a binary hypothesis problem, the Bayes’ deci-
sion rule is based on the principle of the largest posterior probability.
Specifically, the Bayesian detector chooses the alternative hypoth-
esis H1 if Pr(H1|yN ) > Pr(H0|yN ) for a given N -dimensional
measurement vector yN and the null hypothesis H0, otherwise.
Consequently, the optimal decision rule can often only be derived at
the price of a costly numerical computation of the log posterior-odds
ratio [6] but an exact calculation of the minimal Bayes’ error proba-
bility P (N)

e is often intractable [6,7]. To circumvent this problem, it
is standard to exploit well-known information theory based bounds
on P (N)

e [8–12]. In particular, the Chernoff information [13,14] is
asymptotically (in N ) relied to the exponential rate of P (N)

e . Due
to its strong link to the powerful Amari’s divergence in information
geometry [14–18], the Chernoff information turns out to be useful in
many problems of practical importance as for instance, distributed

sparse detection [19], sparse support recovery [20], energy detec-
tion [21], MIMO radar processing [22,23], network secrecy [24],
Angular Resolution Limit in array processing [25], detection perfor-
mance for informed communication systems [26], etc. In addition,
the Chernoff information can be tight for a maximal s-divergence
over parameter s ∈ (0, 1). Generally, this step requires to solve
numerically an optimization problem [27] and often leads to a com-
plicated and uninformative expression of the optimal value of s. To
circumvent this difficulty, a simplified case of s = 1/2 is often used
corresponding to the well-known Bhattacharyya divergence [8] at
the price of a less accurate estimation of P (N)

e .
In this work, our primary goal is to derive a closed-form expression
of the Chernoff information for any s ∈ (0, 1) for the detection of a
R-dimensional Gaussian signal acquired via a N ×R linear random
sensing operation corrupted by an additional N -dimensional Gaus-
sian noise for N → ∞ with N/R → β ∈ (1,∞). A secondary
contribution is to derive a simple approximated analytical expres-
sion for the optimal value of s. To reach this goal, it turns out that
the large Random Matrix Theory (RMT) framework [28–31] will be
relevant.

2. CHERNOFF INFORMATION FRAMEWORK

2.1. The Bayes’ detection theory

Let Pr(Hi) be the a priori hypothesis probability with Pr(H0) +
Pr(H1) = 1. Let Pr(yN |Hi) and Pr(Hi|yN ) be the i-th condi-
tional hypothesis and the posterior probabilities, respectively. The
Bayes’ detection rule chooses the hypothesis Hi associated with
the largest posterior probability Pr(Hi|yN ). Introduce the indica-
tor hypothesis function according to φ(yN ) ∼ Bernou(α) where
Bernou(α) stands for the Bernoulli distribution of success probabil-
ity α = Pr(φ(yN ) = 1) = Pr(H1). Function φ(yN ) is defined on
X → {0, 1} where X is the data-set enjoying the following decom-
position X = X0 ∪ X1 where X0 = {yN : φ(yN ) = 0} = X \ X1

and

X1 = {yN : φ(yN ) = 1}

=

{
yN : Ω(yN ) = log

Pr(H1|yN )

Pr(H0|yN )
> 0

}
=

{
yN : Λ(yN ) = log

Pr(yN |H1)

Pr(yN |H0)
> log τ

}
in which τ = 1−α

α
, Ω(yN ) is the log posterior-odds ratio and

Λ(yN ) is the log-likelihood ratio. The average error probability is



defined as

P (N)
e = E{Pr(Error|yN )} (1)

with

Pr(Error|yN ) =

{
Pr(H0|yN ) if yN ∈ X1,
Pr(H1|yN ) if yN ∈ X0.

The standard strategy to minimize Pr(Error|yN ) for a given
yN is min {Pr(H0|yN ),Pr(H1|yN )} [6]. So using eq. (1), the
minimal average error probability can be expressed according to

P (N)
e = E

{
min {Pr(H0|yN ),Pr(H1|yN )}

}
=

∫
X

min
{

(1− α)Pr(yN |H0), αPr(yN |H1)
}
dyN (2)

using the Bayes’ relation.

2.2. Chernoff Upper Bound (CUB)

Using min {a, b} ≤ asb1−s with a, b > 0 and s ∈ (0, 1) in eq. (2),
the minimal error probability is upper bounded according to

P (N)
e ≤ α

τs

∫
X

Pr(yN |H0)sPr(yN |H1)1−sdyN

def.
=

α

τs
· exp[−µN (s)] (3)

where

µN (s) = − logMΛ(yN |H1)(−s) (4)

is the (Chernoff) s-divergence and MX(t) = E exp[t · X] is the
moment generating function (mgf) of variableX . Term µN (s) char-
acterizes the exponential rate of the error exponent of P (N)

e . The
Chernoff information, denoted by µ(s), is an asymptotic characteri-
zation on the best achievable Bayes’ error probability and is derived
according to [8,10,11,32] :

− lim
N→∞

logP
(N)
e

N
= lim
N→∞

µN (s)

N

def.
= µ(s). (5)

As parameter s is free, the Chernoff information can be retrieved
as the unique minimizer:

s? = arg min
s∈(0,1)

µ(s). (6)

Finally using eq. (3), eq. (5) and eq. (6), we obtain the Chernoff
Upper Bound (CUB). The Bhattacharyya Upper Bound (BUB) is
obtained by eq. (3) and eq. (5) and by fixing s = 1/2 instead of
solving eq. (6).

3. INFORMATION GEOMETRY FOR LARGE RANDOM
SENSING MATRICES

3.1. Model definition and associated binary hypothesis test

Assume that we dispose of N noisy measurements collected in vec-
tor yN via a linear random sensing operation where the i.i.d. noise
n ∼ N (0, σ2IN ) is assumed to be statistically independent of the
i.i.d. signal of interest s ∼ N (0, σ2

sIR) where N > R. The ran-
dom sensing system is modeled thanks to the N × R matrix Φ

whose each entry is an i.i.d. random variable generated as an ob-
servable/known single realization of an unspecified probability dis-
tribution function parametrized by a zero-mean and a variance of
1/R. Let SNR = σ2

s/σ
2 be the signal to noise ratio. The detec-

tor chooses the null hypothesisH0 for a null SNR and choosesH1,
otherwise. More formally, the considered binary hypothesis test is{
H0 : yN ∼ N

(
0,Σ0 = σ2IN

)
,

H1 : yN ∼ N
(
0,Σ1 = σ2

(
SNR ·ΦΦT + IN

) )
.

(7)

The data-space for hypothesisH1 is given by

X1 =
{

yN : yTN (Σ−1
0 −Σ−1

1 )yN > τ ′
}

(8)

with τ ′ = log detΣ0
τ2detΣ1

where det(·) stands for the determinant. The
performance of the above detection problem is clearly related to the
question: ”How can the covariance matrices Σ0 and Σ1 be discrim-
inated ? ”. This is a canonical problem in the context of the theory
of information geometry for covariance matrices.

3.2. Chernoff information for a large sensing matrix

In this section, we derive a closed-form expression the CUB for the
test of eq. (7) in the regime N →∞ with N/R→ β ∈ (1,∞).

Lemma 3.1 The log-mgf given by eq. (4) for test of eq. (7) is given
by

µN (s) =
1− s

2
log det

(
SNR ·ΦΦT + I

)
− 1

2
log det

(
SNR · (1− s)ΦΦT + I

)
. (9)

Proof See Appendix 6.1

Result 3.2 Using Lemma 3.1, the Chernoff information defined in
eq. (5) takes the following simple expression:

µN (s)

N

a.s−→ µ(s)

=
(1− s)

2β
Ψβ (SNR)− 1

2β
Ψβ

(
SNR · (1− s)

)
(10)

with a.s standing for ”almost sure convergence” and

Ψβ (x) = β log

(
1 + x−

Φ2
β(x)

4

)
+ log

(
1 + βx−

Φ2
β(x)

4

)

−
Φ2
β(x)

4x
, Φβ(x) =

√
x(1 +

√
β)2 + 1−

√
x(1−

√
β)2 + 1.

Proof See Appendix 6.2.

Using Result 3.2, the Bhattacharyya information is given by

µ

(
1

2

)
=

Ψβ (SNR)

4β
− 1

2β
Ψβ

(SNR

2

)
. (11)



3.3. Chernoff information in the high SNR regime

The derivation of an analytic expression for µ(s) allows to obtain
for an insignificant computational cost the CUB. This is crucial for
large sensing systems. Another advantage is that given an analytic
expression for µ(s), it is possible to derive in closed-form s? and
thus to avoid the costly numerical optimization step of eq. (6). The
following Results provide analytic expressions for s? and for the
Chernoff information in the high SNR regime.

Result 3.3 In the high SNR regime, the optimal parameter s is ob-
tained analytically according to

s?
SNR�1
≈ 1− 1

Ψβ (SNR)
. (12)

Proof See Appendix 6.3.

Result 3.4 The Chernoff information takes the following simple ex-
pression:

µ(s?)
SNR�1
≈ 1

2β

(
1−Ψβ

(
SNR

Ψβ (SNR)

))
. (13)

Proof The proof is straightforward using eq. (10) and eq. (12). �

4. NUMERICAL ILLUSTRATIONS

In this simulation part, the sensing matrix Φ is generated as a pre-
scribed single 60 × 10 Gaussian realization with E[Φ]n,r = 0 and
E[Φ]2n,r = 1

R
δn−r . We fix α = 1/2. On Fig. 1, the Chernoff in-

formation (using Result 3.2) and the normalized s-divergence with
respect to parameter s are drawn. First, we can see that the numeri-
cal and closed-form expressions are almost merged. In addition, the
Chernoff information is asymmetric. This means that s? 6= 1/2 and
thus the Bhattacharyya information cannot be considered as the best
strategy. On Fig. 2, the closed-form expression of eq. (12) obtained
in the high SNR regime is illustrated by comparison with the numer-
ical optimization of eq. (6) involving eq. (9). We can note that the
proposed analytical expression of eq. (12) accurately predicts the co-
efficient s? for a wide range of SNR greater than approximatively 10
dB. We can also note that the BUB is interesting only in the very low
SNR regime. To study the detection performance, the upper bound
on P (N)

e has been drawn in linear (resp. log) scale on Fig. 3 (resp.
Fig. 4) for a wide range of SNRs. On these figures, several configu-
rations of CUB and BUB are compared and detailed in Table 1. We
can check that the BUB2 given by eq. (11) as a closed-form expres-
sion is an efficient and low cost upper bound for negative SNRs. Fig.
3 and in particular Fig. 4 illustrate that the BUB is a relaxed upper
bound in the high SNR regime. As expected, the CUB3 which is de-
rived in the high SNR regime is not informative for negative SNRs.
But, we can observe that the CUB3 given by eq. (13) provides a very
accurate and low cost solution to upper bound the error probability
P

(N)
e for positive SNR.

5. CONCLUSION

In the Bayes’ detection framework, the performance in term of
the minimal error probability, P (N)

e , for the detection of a ran-
domly acquired R-dimensional Gaussian signal corrupted by a N -
dimensional Gaussian noise is a canonical problem in the framework
of the geometry information of covariance matrices. Indeed, P (N)

e
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Fig. 2. Optimal value of parameter s vs SNR in dB

admits asymptotically an upper bound governed by the Chernoff
information. In many applications, it is hard to obtain closed-form
expressions of the s-divergence for any s ∈ (0, 1) and of the op-
timal parameter s? in a realistic computational time. The default
choice s = 1/2 corresponding to the Bhattacharyya information
is shown to be not the optimal strategy since the s-divergence is
asymmetric for the detection problem of interest. In this work, we
propose two contributions. The first one is to provide a closed-form
expression of the Chernoff information for linear random sensing
systems. The derivation of such analytic expressions has two mains
advantages. Firstly, the Chernoff information for any s ∈ (0, 1) and
Bhattacharyya information can be evaluated thanks to an analytic
expression and thus for a very low computational cost. Secondly, the

Normalized log-mgf s? Comput. cost
CUB1 Numeric with eq. (9) Numeric Highest
CUB2 Analytic with eq. (10) Numeric Medium
CUB3 Analytic with eq. (13) Analytic Lowest
BUB1 Numeric with eq. (9) 1/2 High
BUB2 Analytic with eq. (11) 1/2 Lowest

Table 1. Description of the tested configurations in Fig. 3 and 4
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optimal parameter s is derived analytically in the high SNR regime.

6. APPENDIX

6.1. Proof of Lemma 3.1

The log-mgf in eq. (4) for the following binary hypothesis test{
H0 : yN ∼ N (0,Σ0) ,
H1 : yN ∼ N (0,Σ1)

is given by [14]:

µN (s) =
1

2
log

det(sΣ0 + (1− s)Σ1)

[detΣ0]s[detΣ1]1−s
. (14)

Using the expressions of the covariance matrices Σ0 and Σ1,
the numerator in eq. (14) is given by

N log σ2 + log det
(

SNR · (1− s)ΦΦT + I
)

and the two terms at its numerator are log[det Σ0]s = sN log σ2

and

log[det Σ1]1−s = (1−s)
(
N log σ2+log det

(
SNR ·ΦΦT + I

))
.

Using the above expressions, µN (s) is given by eq. (9).

6.2. Proof of Result 3.2

For N,R→∞ with N/R→ β ∈ (1,∞), eq. (10) is derived using
Lemma 3.1 and the following property (see [28–31] for instance):
1
N

log det
(
x ·ΦΦT + I

) a.s−→ 1
β

Ψβ(x) where function Ψβ(·) is
defined in Result 3.2.

6.3. Proof of Result 3.3

The first step of the proof is based on the derivation of an alternative
expression of µN (s) given by eq. (14) involving the inverse of the
covariance matrices Σ0 and Σ1. Specifically, we have

µN (s) =
1

2
log

(detΣ0)(detΣ1)det((1− s)Σ−1
0 + sΣ−1

1 )

[detΣ0]s[detΣ1]1−s

= −1

2
log

det
(
[(1− s)Σ−1

0 + sΣ−1
1 ]−1

)
[detΣ0]1−s[detΣ1]s

. (15)

The second step is to derive a closed-form expression in the high
SNR regime using the following the approximation (see [33] for in-

stance):
(
x ·ΦΦT + I

)−1 x�1
≈ Π⊥Φ = IN −ΦΦ† where Π⊥Φ is an

orthogonal projector such as Π⊥ΦΦ = 0 and Φ† = (ΦTΦ)−1ΦT .
The numerator in eq. (15) is given by

[
(1− s)Σ−1

0 + sΣ−1
1

]−1 SNR�1
≈ σ2

(
IN − sIN + sΠ⊥Φ

)−1

= σ2
(
IN − sΦΦ†

)−1

.

As sΦΦ† is a rank-R projector matrix scaled by factor s > 0, its
eigen-spectrum is given by

{
s, . . . , s︸ ︷︷ ︸

R

, 0, . . . , 0︸ ︷︷ ︸
N−R

}
. In addition, as the

rank-N identity matrix and the scaled projector sΦΦ† can be diag-
onalized in the same orthonormal basis matrix, the n-th eigenvalue
of the inverse of matrix IN − sΦΦ† is given by

λn

{(
IN − sΦΦ†

)−1
}

=
1

λn {IN} − sλn
{
ΦΦ†

}
=

{
1

1−s , 1 ≤ n ≤ R,
1, R+ 1 ≤ n ≤ N

with s ∈ (0, 1). Using the above property, we obtain

log det
(

[IN − sΦΦ†]−1
)

= log

N∏
n=1

λn

{(
IN − sΦΦ†

)−1
}

= −R log(1− s).

Finally, thanks to eq. (15), we have

µN (s)

N

SNR�1
≈ R

2N
log(1− s) +

s

2N
log det

(
SNR ·ΦΦT + I

)
a.s−→ µ(s)

SNR�1
≈ 1

2β

(
log(1− s) + s ·Ψβ (SNR)

)
.

Finally, to obtain s? in eq. (12), we solve ∂µ(s)
∂s

= 0.
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