Tiny companion testchip for 56 Gbaud applications based on microring resonators
Audrey Michard, Jean-François Carpentier, Pietro Maris Ferreira

To cite this version:
Audrey Michard, Jean-François Carpentier, Pietro Maris Ferreira. Tiny companion testchip for 56 Gbaud applications based on microring resonators. Silicon Photonics Summer School, Aug 2016, Ghent, Belgium. <hal-01420967>

HAL Id: hal-01420967
https://hal-centralesupelec.archives-ouvertes.fr/hal-01420967
Submitted on 21 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Objective: To address 56G external I/Os issues

- **Purpose:** IP core for customer at packaging level
- **Tiny & configurable** companion testchips
- **3D assembly validation**
- **Passive & active** components of PIC25G + BiCMOS/CMOS

Driver + MZM demonstrated at 56 Gb/s

Ring modulator demonstrated at 56 Gb/s
IMEC, “56 Gb/s Ring modulator on 300mm silicon photonics platform”, ECOC 2015

Thesis schedule: Dynamic testchip at wafer-level with 3D assembly

- **CMOS driver in B55 at 10 - 25 Gbps**
 - Optimal data rate for on-chip links (most energy efficient solution)
 - Learning phase for future 56G driver
- **Ring resonator modeling**
 - Model required for electro-optical co-simulations
 - Impact of 3D assembly on static characteristics
- **Qualification testchips based on microring resonators for 56 Gbps applications**
 - Demonstration of 3D integration at 25 Gbps
 - Circuit study: Driver @ 56G
 - Device study: Ring @ 56G

PN ring resonator, 8um radius
Measurement of static and dynamic characteristics
- Transmission spectrum: modeling of plasma dispersion effect and self-heating due to TPA & FCA
- Small-signal model: RC values extraction from S-parameters

Energy-speed trade-off of complete photonic link
WDM optical link with aggregate throughput higher than 100 GB/s
- Choice of technological node
- Evaluation of energy consumption: a few pJ/bit