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Abstract—We consider the point-to-point multi-input-multiple-
output (MIMO) channel with phase uncertainty (MIMO phase
noise channel) at high SNR. With phase noise on the individual
paths of the channel (model A), we show that the multiplexing
gain is 1

2
, which implies that the capacity does not scale with

the channel dimension at high SNR. With phase noise at both
the input and output of the channel (model B), the multiplexing
gain is upper-bounded by 1

2
min{nt, (nr − 2)++ 1}, and lower-

bounded by 1
2
min{nt, bnr+1

2
c}, where nt and nr are the number

of transmit and receive antennas, respectively. The multiplexing
gain is enhanced to 1

2
min{nt, nr} without receive phase noise,

and to 1
2
min{2nt − 1, nr} without transmit phase noise. Our

main results rely on the derivation of non-trivial upper and lower
bounds on the capacity of such channels.

I. INTRODUCTION

The capacity of a point-to-point multiple-input-multiple-
output (MIMO) Gaussian channel is still open in the non-
coherent case, i.e., when the channel state is unknown. Never-
theless, the capacity in asymptotic regimes, e.g., at high signal-
to-noise ratio (SNR), has been obtained in some important
cases.

In the seminal paper [1], Lapidoth and Moser proposed a
powerful technique, called the duality approach, that can be
applied to a large class of fading channels and derived the
exact high SNR capacity up to an o(1) term. In particular,
when the differential entropy of the channel matrix is finite,
i.e., h(HHH) > −∞, it was shown in [1] that the pre-log (a.k.a.
multiplexing gain), of the capacity is 0 and the high-SNR
capacity is log log SNR + χ(HHH) + o(1) where χ(HHH) is the so-
called fading number of the channel. In [2], Zheng and Tse
showed that for block fading MIMO Rayleigh channels, the pre-
log is M∗(1−M∗/T ) where T is the channel coherence time
and M∗ , min

{
nt, nr, bT2 c

}
. In this work, we are interested

in the MIMO phase noise channels in which the phases of the
channel coefficients are not perfectly known.

Applying the duality approach and the “escape-to-infinity”
property of the channel input, Lapidoth characterized the high-
SNR capacity of the discrete-time phase noise channel in the
single-antenna case [3]. It was shown in [4] that the capacity-
achieving input distribution is in fact discrete. Recently,
capacity upper and lower bounds of the single-antenna channels
with Wiener phase noise have been extensively studied in the
context of optical fiber and microwave communications (see
[5], [6], [7] and the references therein). In these works, the
upper bounds are derived via duality and lower bounds are
computed numerically using the auxiliary channel technique

proposed in [8]. In particular, in [7], Durisi et al. investigated
the MIMO phase noise channel with a common phase noise,
a scenario motivated by the microwave link with centralized
oscillators. The SIMO and MISO channels with common and
separate phase noises are considered in [9]. The 2× 2 MIMO
phase noise channel with independent transmit and receive
phase noises at each antenna was studied in [10], where the
authors showed that the multiplexing gain is 1

2 for a specific
class of input distributions. For general MIMO channels with
separate phase noises, to the best of our knowledge, even the
multiplexing gain is unknown.

In this work, we make some progresses in this direction. We
consider two classes of discrete-time stationary and ergodic
MIMO phase noise channels: model A with individual phase
noises on the entries of the channel matrix, and model B with
individual phase noises at the input and the output of the
channel instead. The phase noise processes in both models are
assumed to have finite differential entropy rate. For model A, we
obtain the exact multiplexing gain 1

2 for any channel dimension,
which implies that the capacity does not scale with the channel
dimension at high SNR. For model B with both transmit and
receive phase noises, we show that the multiplexing gain is
upper-bounded by 1

2 min{nt, (nr−2)++1}, and lower-bounded
by 1

2 min{nt, bnr+1
2 c}, where nt and nr are the number of

transmit and receive antennas, respectively. The upper and
lower bounds coincide for nr ≤ 3 or nr ≥ 2nt − 1. Further,
when receive phase noise is absent, the multiplexing gain is
improved and we obtain the exact value of 1

2 min{nt, nr}. If
the transmit phase noise is absent instead, the multiplexing gain
becomes 1

2 min{2nt − 1, nr}. The main technical contribution
of this paper lies in the upper and lower bounds on the capacity
of MIMO phase noise channels. The novelty of the upper bound
is the finding of a suitable auxiliary distributions with which
we apply the duality upper bound proposed by Lapidoth and
Moser [1]. In this paper, we introduce a class of multi-variate
Gamma distributions that, combined with the duality upper
bound, allows us to obtain a complete pre-log characterization
for model A and partially for model B. The second contribution
is the derivation of the capacity lower bounds for model B,
based on the remarkable property of the differential entropy
of the output vector in this channel.

The remainder of the paper is organized as follows. The
system model and main results are presented in Section II.
The upper bounds are derived in Section III. We prove the
lower bound for model B in section IV. Concluding remarks



are given in Section V. Due to the lack of space, proofs of
the lemmas and some technical steps are omitted and can be
found in the full version of the paper [11].

II. SYSTEM MODEL AND MAIN RESULTS

Throughout the paper, we use the following notational
conventions. For random quantities, we use upper case letters,
e.g., X , for scalars, upper case letters with bold and non-italic
fonts, e.g., VVV, for vectors, and upper case letter with bold and
sans serif fonts, e.g., MMM, for matrices. Deterministic quantities
are denoted in a rather conventional way with italic letters,
e.g., a scalar x, a vector vvv, and a matrix MMM . Logarithms are
in base 2. The Euclidean norm of a vector and a matrix is
denoted by ‖vvv‖ and ‖MMM‖, respectively. The transpose and
conjugated transpose of MMM are MMM T and MMMH, respectively. HHHHHHHHH†

is the pseudo-inverse of a tall matrixHHHHHHHHH . We useAAA◦BBB to denote
the Hadamard (point-wise) product between vectors/matrices.
We also use c0 to represent a bounded constant whose value is
irrelevant but may change at each occurrence. Similarly, cH is
a constant that may depend on HHH but the value is irrelevant.

A. Channel model

In this paper, we are interested in a class of discrete-time
MIMO phase noise channels with nt transmit antennas and nr
receive antennas, defined by

YYYt = (HHH ◦ ejΘΘΘt)xxxt + ZZZt, t = 1, 2, . . . , N, (1)

where the deterministic channel matrix HHH belongs to a set of
generic matrices1 H ⊂ Cnr×nt ; xxxt ∈ Cnt×1 is the input vector
at time t, with the average power constraint 1

N

∑N
t=1 ‖xxxt‖2 ≤

P ; the additive noise process {ZZZt} is assumed to be spatially
and temporally white with ZZZt ∼ CN (0, IIInr); ΘΘΘt is the matrix
of phase noises on the individual entries of HHH at time t; the
phase noise process {ΘΘΘt} is stationary and ergodic, and is
independent of the additive noise process {ZZZt}. Both {ZZZt}
and {ΘΘΘt} are unknown to the transmitter and the receiver.
Since the additive noise power is normalized, the transmit
power P is identified with the SNR throughout the paper.
The end-to-end channel is captured by the random channel
matrix HHH ,

[
hike

Θik
]
i,k

. We consider two types of phase
noise according to the spatial structures.
• Model A refers to channels with phase uncertainty on

the individual paths of the channel (path phase noise),
such that the sequence {ΘΘΘt} has finite entropy rate
h({ΘΘΘt}) > −∞. It corresponds to the case where the
phase information of the channel cannot be obtained
accurately, e.g., in an optical fiber channel.

• Model B refers to channels with phase noises at the input
and/or output of the channel, i.e., Θik = ΘR,i+ΘT,k. The
vector ΘΘΘT ,

[
ΘT,i

]nt

i=1
contains the nt phase noises at

the transmit antennas, and ΘΘΘR ,
[
ΘR,k

]nr

k=1
is the vector

of the nr phase noises at the receive antennas. This model
captures the phase corruption at both the transmit and

1It means that the channel matrix HHH does not lie on any algebraic
hypersurface. If we draw the entries of HHH i.i.d. from a continuous set, then
HHH is generic almost surely.
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Fig. 1. Multiplexing gain of the MIMO phase noise channels.

receive RF chains, e.g., caused by imperfect oscillators.
We consider three cases of model B: i) model B1
with both transmit and receive phase noises such that
h({ΘΘΘT,t,ΘΘΘR,t}) > −∞; ii) model B2 with only transmit
phase noise such that h({ΘΘΘT,t}) > −∞; iii) model B3
with only receive phase noise such that h({ΘΘΘR,t}) > −∞.

Note that model B1 covers the case where both the transmitter
and receiver use separate (and imperfect) oscillators for
different antennas, whereas models B2 and B3 correspond
to the case with centralized oscillators at one side and separate
oscillators at the other side.

The capacity of such a stationary and ergodic channel is
C(P ) , limN→∞ sup 1

N I(XXXN ;YYYN ), where the supremum is
taken over all distributions with the average power constraint
1
N

∑N
k=1 E

[
‖XXXk‖2

]
≤ P . Our work focuses on the multiplex-

ing gain r of such a channel, defined as the pre-log of the
capacity C(P ) as P →∞, r , limP→∞

C(P )
logP .

B. Main results

The main results of this work are summarized as follows,
and are illustrated in Fig. 1. First, the case with common phase
noise is rather straightforward from [7].

Proposition 1. With common phase noise, i.e., ΘΘΘt = Θt111nr×nt

and h({Θt}) > −∞, the multiplexing gain is min{nt, nr}− 1
2 .

Then, our new results are on channels with separate phase
noises either on the individual paths (model A) or at the
input/output (model B) of the channel.

Theorem 1. The multiplexing gain of model A is 1
2 .

The above result shows that extra transmit and receive
antennas do not improve the multiplexing gain of a channel
with phase uncertainty on each path of the channel. The
achievability of the single-antenna case was shown in [3].
Our main contribution is the converse, proved in Section III.

Theorem 2. The multiplexing gain of model B is
• upper-bounded by 1

2 min{nt, (nr − 2)+ + 1}, and lower-
bounded by 1

2 min{nt, bnr+1
2 c} with both transmit and

receive phase noises, the upper bound is achievable when
nr ≤ 3 or nr ≥ 2nt − 1;

• min{nr
2 ,

nt
2 }, with only transmit phase noise;

• min{nr
2 , nt − 1

2}, with only receive phase noise.

Interestingly, the multiplexing gain of model B depends on
the number of transmit and receive antennas differently, which



is rarely the case for previously studied point-to-point MIMO
channels.

Remark II.1. As shown in Fig. 1, transmit phase noise is
more detrimental than receive phase noise, and strictly so
when nr > nt > 1. Intuitively, with transmit phase noise, each
transmitted symbol is accompanied by a different phase noise
symbol, which means that no more than half of the total spatial
degrees of freedom is available for useful signal. On the other
hand, with receive phase noise, although half of the received
signal dimension is occupied by phase noises, it is enough to
increase the number of receive antennas to recover almost all
transmitted symbols.

Remark II.2. Obviously, the multiplexing gain of model B1 is
upper-bounded by that of models B2 and B3. Such a “trivial”
upper bound is given by min{nt

2 ,
nr
2 , nt − 1

2} = min{nt
2 ,

nr
2 }.

When nr ≤ nt, the optimal multiplexing gain is nr
2 with phase

noises at either side of the channel, whereas no more than
(nr−2)++1

2 is achievable with phase noises at both sides. These
are the cases for which model B1 is strictly “worse” than both
models B2 and B3. When nr ≥ 2nt − 1, with transmit phase
noise, the optimal multiplexing gain is nt

2 regardless of the
presence of receive phase noise.

The remainder of the paper is dedicated to outlining the proof
of the main results. Due to space limitation, we only consider
the memoryless case, which can be shown to be without loss
of optimality as far as the multiplexing gain is concerned.

III. CAPACITY UPPER BOUND

A. Capacity Upper Bound for Model A

The main ingredients of the proof are the genie-aided bound
and the duality upper bound. In the following, we detail the
five steps that lead to the desired result of Theorem 1.

1) Genie-aided bound: Let us define the auxiliary random
variable U as the index of the strongest input entry, i.e.,2

U = arg max
1≤i≤nt

|Xi|. (2)

Thus, we use XU to denote the element in XXX with the largest
module. It is obvious that U ↔ XXX↔ YYY form a Markov chain,
and that U does not contain more than log nt bits. Assuming
that a genie provides U to the receiver, we have

I(XXX;YYY) ≤ I(XXX;YYY, U) (3)
≤ I(XXX;YYY |U) + log nt. (4)

2) Canonical form:

Definition 1 (Canonical channel). We define the canonical
form u, u = 1, . . . , nt, of the channel HHH as

GGG(u) , diag
(
h−1

1,u, . . . , h
−1
nr,u

)︸ ︷︷ ︸
AAAu

HHH. (5)

Note that the elements in the u th column of GGG(u) has
normalized modules. Now, with the information U from the

2When there are more than one such elements, we pick an arbitrary one.

genie, the receiver can convert the original channel into one
of the canonical forms, namely, the form U . Thus,

I(XXX;HHHXXX + ZZZ |U)

= I(XXX;AAAUHHHXXX +AAAUZZZ |U) (6)
≤ I(XXX;AAAUHHHXXX + aZZZ |U) (7)

= I(a−1XXX; a−1GGG(U)XXX + ZZZ |U) (8)

= I(X̃XX;GGG(U)X̃XX + ZZZ |U), (9)

where a , mini,u |h−1
i,u|; (7) is due to the fact that reducing the

additive noise can only increase the mutual information; we
define X̃XX , a−1XXX, and accordingly, WWW , GGG(u)X̃XX + ZZZ. In the
following, we derive an upper bound on I(X̃XX;WWW |U). From
now on, we focus on the mutual information

I(X̃XX;WWW |U) = h(WWW |U)− h(WWW | X̃XX, U) (10)

= h(WWW |U)− h(WWW | X̃XX), (11)

where the last equality comes from the fact that U is a function
of XXX and thus a function of X̃XX, since X̃XX is simply a scaled version
of XXX. Next, we bound h(WWW | X̃XX) and h(WWW |U) separately.

3) Lower bound on h(WWW | X̃XX):

Lemma 1. For model A, we have

h(WWW | X̃XX) ≥ nr E
[
log+|X̃U |

]
+ nr E

[
log+|X̃V |

]
+ cH , (12)

where X̃U and X̃V have the largest and second largest modules
in X̃XX, respectively.

Remark that the above bound depends not only on the
strongest but also on the second strongest input of the channel.

4) Upper bound on h(WWW |U): Upper-bounding h(WWW |U)
as a non-trivial function of the input distribution is hard in
general. A viable way for that purpose is through an auxiliary
distribution, also called the duality approach [1]. Namely, for
any3 pdf q(www), we have

h(WWW |U) = E
[
− log q(WWW)

]
− EU

[
D(pWWW|U=u ‖ q)

]
(13)

≤ E
[
− log q(WWW)

]
(14)

due to the non-negativity of the Kullback-Leibler divergence
D(pWWW|U=u ‖ q). Hence, the key is to choose a proper auxiliary
pdf q(www) to obtain a tight upper bound on the capacity of our
channel. The commonly used distributions for MIMO channels
are related to the class of isotropic distributions [1], [3], [7].
Unfortunately, the isotropic distributions are not suitable in
our case. To see this, let us assume that an isotropic output
WWW was indeed close to optimal. On the one hand, the pdf of
an isotropic output WWW would only depend on the norm ‖WWW‖
which is essentially dominated by the largest input entry XU .
Therefore, the value of E

[
− log q(WWW)

]
would be insensitive to

the number of active input entries. On the other hand, the lower
bound on the conditional entropy h(WWW | X̃XX) is increasing with

3Formally, we should say that the probability measure Q corresponding
to the density q(www) is such that P (· |U = u) is absolutely continuous with
respect to Q. Throughout the paper, for brevity, we implicitly make the
assumption to avoid such formalities.



both of the largest input entries XU and XV , according to (12).
Therefore, the capacity upper bound E

[
− log q(WWW)

]
−h(WWW | X̃XX)

would become larger when the second strongest input went to
zero, i.e., only one transmit antenna is active. But this would
be in contradiction with the isotropic assumption, since if only
one transmit antenna was active, then the output entries would
be highly correlated and the output distribution would be far
from being isotropic.

In light of the above discussion, we are led to think that
a good choice of q(www) should reflect not only the strongest
input entry, but also the weaker ones. We adopt the following
pdf built from the multivariate Gamma distribution from [12],

q(www) =
gααα
nr!
|ŵ1|2(α1−1)

nr∏
i=2

(
|ŵi|2 − |ŵi−1|2

)αi−1

· exp(−µ|ŵnr |2)µα1+···+αnr , www ∈ Cnr , (15)

where ŵ1, . . . , ŵnr are the ordered version of wi’s with
increasing modules. Essentially, we let each Wi be circularly
symmetric and let the ordered version of (|W1|2, . . . , |Wnr |2)
follow the multivariate Gamma distribution. Applying change
of variables and the order statistics (whence the term nr!), we
can obtain the pdf of WWW as written in (15). Remarkably, the
differences between |Wi|2 and |Wj |2, i 6= j, are introduced
into the upper bound, which is crucial for bringing in the
impact of individual input entries X̃i’s other than the strongest
entry as will be shown in the following.

Lemma 2. By choosing 0 < αi < 1, i = 1, . . . , nr, and
µ = min{P−1, 1}, we have for model A,

E
[
− log q(WWW)

]
≤

nr∑
i=1

αi log+P +

(
(1− α1) +

nr∑
i=1

(1− αi)

)
E
[
log+|X̃U |

]
+

nr∑
i=2

(1− αi)E
[
log+|X̃V |

]
+ cH , (16)

where X̃U and X̃V are the strongest and second strongest
elements in X̃XX, respectively.

5) Upper bound for model A: Combining (11), (12), (14),
and (16) from the previous steps, we get

I(X̃XX;WWW |U) ≤

(
nr∑
i=1

αi +
1

2

)
log+P + c′H . (17)

Finally, we conclude from (4) and (9) that, for model A,

I(XXX;YYY) ≤ I(X̃XX;WWW |U) + c0 (18)

≤

(
nr∑
i=1

αi +
1

2

)
log+P + cH (19)

which implies that the multiplexing gain is upper-bounded by

rA ≤
nr∑
i=1

αi +
1

2
, ∀ααα ∈ (0, 1)nr . (20)

By taking the infimum over ααα, we have rA ≤ 1
2 .

B. Capacity Upper Bound for Model B

We only provide the proof for model B1, with both transmit
and receive phase noises. The other cases are proved in the full
paper [11]. Note that the multiplexing gain of this case is upper-
bounded by that of case B2 and case B3, since we can enhance
the channel by providing the information on the transmit or
receive phase noises to both the transmit and receiver. In other
words, the upper bound min{nr

2 ,
nt
2 , nt − 1

2} = min{nr
2 ,

nt
2 } is

still valid for this case. In the following, we show that we can
tighten the upper bound nr

2 to (nr−2)++1
2 with the duality upper

bound using the multi-variate Gamma distribution. This new
upper bound turns out to be crucial for the case nt = nr = 2
where min{nr

2 ,
nt
2 } = 1 is not tight and is strictly larger than

(nr−2)++1
2 = 1

2 . The proof is in the same vein as the proof for
model A. Specifically, the first four steps are exactly the same
as for model A, except for Step 3 in which the conditional
entropy has a different lower bound, as shown below.

Lemma 3. For model B1, we have

h(WWW | X̃XX) ≥ nr E
[
log+|X̃U |

]
+ E

[
log+|X̃V |

]
+ cH , (21)

where X̃U and X̃V have the largest and second largest modules
in X̃XX, respectively.

Finally, in Step 5, we apply (11), (14), (16), and (21), and
after some manipulations

I(X̃XX;WWW |U) ≤
( (nr − 2)+ + 1

2
+

nr∑
i=1

αi

)
log+P + c′H .

(22)

Therefore, we conclude from (4), (9), and (22) that,

I(XXX;YYY) ≤

(
nr∑
i=1

αi +
(nr − 2)+ + 1

2

)
log+P + c′H (23)

from which we obtain the multiplexing gain upper bound
rB ≤ (nr−2)++1

2 , after taking the infimum over ααα.

IV. CAPACITY LOWER BOUND FOR MODEL B

In this section, we derive a lower bound on the capacity
of model B using the class of memoryless Gaussian input
distributions. Although the optimal input distribution has been
proved to be discrete in [4], the use of a simple Gaussian input
provides tight lower bounds on the pre-log, which is enough
for our purpose here.

A. Case B1: Transmit and receive phase noise

In this case, we set XXX ∼ CN (0, Pnt
IIInt). For convenience, let

us rewrite the received signal as

YYY =

√
P

nt
ejΘ̃ΘΘR ◦

(
HHH(ejΘ̃ΘΘT ◦XXX0)

)
+ ZZZ (24)

=

√
P

nt
ejΘ̃ΘΘR ◦ ŶYY + ZZZ =

√
P

nt
ỸYY + ZZZ, (25)

where XXX0 ∼ CN (0, IIInt) is the normalized version of XXX;
Θ̃ΘΘR , ΘΘΘR + ΘT,1 and Θ̃ΘΘT , ΘΘΘT − ΘT,1. Note that Θ̃T,1 = 0



by definition and h(Θ̃ΘΘR) > −∞. The mutual information of
interest can be written as

I(XXX;YYY) = I(XXX, Θ̃ΘΘT;YYY)− I(Θ̃ΘΘT;YYY |XXX) (26)

= h(YYY)− h(YYY |XXX, Θ̃ΘΘT)− I(Θ̃ΘΘT;YYY |XXX). (27)

First, the following lemma, which provides a lower bound on
h(YYY) in (27), is crucial for the achievability proof.

Lemma 4. With receive phase noise such that h(ΘΘΘR) > −∞,

h(YYY) ≥
(nr

2
+

1

2
min{nr, 2nt − 1}

)
log+P + cH . (28)

Next, we derive upper bounds on the two negative terms
in (27) as follows. The conditional differential entropy can be
upper-bounded as

h(YYY |XXX, Θ̃ΘΘT) ≤
nr∑
k=1

h(Yk |XXX, Θ̃ΘΘT) (29)

≤ nr

2
log+P + cH , (30)

where the intuition behind this bound is that given (XXX, Θ̃ΘΘT) the
dominating random part of YYY comes from the nr receive phase
noises and scales as nr

2 logP when the signal is strong. And

I(Θ̃ΘΘT;YYY |XXX) ≤ I(Θ̃ΘΘT;YYY, Θ̃ΘΘR |XXX) (31)

= I(Θ̃ΘΘT;YYY |XXX, Θ̃ΘΘR) + I(Θ̃ΘΘT; Θ̃ΘΘR) (32)

= I(Θ̃ΘΘT; ejΘ̃ΘΘT ◦XXX +HHH+ZZZ |XXX, Θ̃ΘΘR) + c0 (33)

≤ I(Θ̃ΘΘT; ejΘ̃ΘΘT ◦XXX + Z̃ZZ |XXX, Θ̃ΘΘR) + c0 (34)

= h(ejΘ̃ΘΘT ◦XXX + Z̃ZZ |XXX, Θ̃ΘΘR)

− h(ejΘ̃ΘΘT ◦XXX + Z̃ZZ |XXX, Θ̃ΘΘR, Θ̃ΘΘT) + c0 (35)

≤ nt − 1

2
log+P + cH , (36)

where Z̃ZZ ∼ CN (0, σ2
min(HHH†)IIInt), with σmin(HHH†) being the

minimum singular value of HHH†; to obtain the last inequality,
we use the fact that Θ̃T,1 = 0 and apply the same reasoning
as for (30) on the rest of the nt − 1 entries of Θ̃ΘΘT.

Plugging (30), (36), and (28) into (27), we obtain

I(XXX;YYY) ≥ 1

2
min{nr − nt + 1, nt} log+P + cH . (37)

Note that the above lower bound holds when we substitute nt
by any n′t ≤ nt, i.e., by activating only n′t transmit antennas.
It is clear that when nr − nt + 1 ≥ nt, i.e., nr ≥ 2nt − 1,
we should let n′t = nt. Otherwise, we should decrease n′t to
balance between nr− n′t + 1 and n′t , which gives n′t = bnr+1

2 c.
This completes the proof of the lower bound for model B1.

B. Case B2: Transmit phase noise

In this case, we use n′t , min{nt, nr} input antennas and
desactivate the remaining ones. The active inputs, denoted
by XXX′, are i.i.d. Gaussian, i.e., follow CN (0, Pn′

t
IIIn′

t
). We

rewrite the output vector as YYY = HHH ′(ejΘΘΘ
′
T ◦XXX′) + ZZZ where

HHH ′ is the nr × n′t submatrix of HHH corresponding to the
active inputs, and ΘΘΘ′T is similarly defined. It follows that

I(XXX′;YYY) = I(XXX′; (HHH ′)†YYY). Then, we have h((HHH ′)†YYY) =
h(ejΘΘΘ

′
T ◦XXX′+(HHH ′)†ZZZ) = n′t log+P+cH and h((HHH ′)†YYY |XXX′) =

h(ejΘΘΘ
′
T ◦XXX′+(HHH ′)†ZZZ |XXX′) ≤ h(ejΘΘΘ

′
T ◦XXX′+σmax

(
(HHH ′)†

)
ZZZ |XXX′).

The latter is further upper-bounded by n′
t

2 log+P+c′H according
to the same reasoning as for (30). This shows the lower bound
1
2 min{nt, nr} on the multiplexing gain.

C. Case B3: Receive phase noise

As in Case B1, we let XXX ∼ CN (0, Pnt
IIInt). First, h(YYY) is

lower-bounded in Lemma 4. Next, following the same steps
(29) and (30), we can show that

h(YYY |XXX) ≤ nr

2
log+P + cH , (38)

since we are in the same situation as in Case B1 when Θ̃ΘΘT is
known. Finally, combining (28) and (38), we get

I(XXX;YYY) = h(YYY)− h(YYY |XXX) (39)

≥ 1

2
min{nr, 2nt − 1} log+P + cH . (40)

V. CONCLUSIONS

In this work, we obtained the exact multiplexing gain of the
discrete-time stationary and ergodic MIMO phase noise channel
in some important cases. Interesting future works include the
refined capacity analysis (beyond pre-log) of such channels, as
well as the extension of the results to multi-user channels.
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