Bipartite and cooperative output synchronizations of linear heterogeneous agents: A unified framework
Farnaz Adib Yaghmaie, Rong Su, Frank L. Lewis, Sorin Olaru

To cite this version:

HAL Id: hal-01509304
https://hal-centralesupelec.archives-ouvertes.fr/hal-01509304
Submitted on 28 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Bipartite and Cooperative Output Synchronizations of Linear Heterogeneous Agents: A Unified Framework

Farnaz Adib Yaghmaie\(^a\), Rong Su\(^a\), Frank L. Lewis\(^b\), Sorin Olaru\(^c\)

\(^a\)School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
\(^b\)UTA Research Institute, The University of Texas at Arlington, Texas 76118 USA and Qian Ren Consulting Professor, Northeastern University, Shenyang 110036, China.
\(^c\)Automatic Control Department, SUPELEC, 3 rue Joliot-Curie, 91192 Gif Sur Yvette Cedex, France.

Abstract

This paper investigates cooperative output synchronization and bipartite output synchronization of a group of linear heterogeneous agents in a unified framework. For a structurally balanced signed graph, we prove that the bipartite output synchronization is equivalent to the cooperative output synchronization over an unsigned graph whose adjacency matrix is obtained by taking the absolute value of each entry in the adjacency matrix of the signed graph. We obtain a new \(H_\infty\)-criterion which is sufficient for both cooperative output synchronization and bipartite output synchronization.

Key words: Bipartite Output Synchronization, Cooperative Output Synchronization, Heterogeneous Multi-Agent Systems

1 Introduction

Cooperative consensus of multi-agent systems has been studied widely in the literature [10]. One particular interest is the Cooperative Output Synchronization (COS), where the outputs of the agents synchronize to each other or to a reference trajectory. There are several applications for COS like formation control, distributed control of UAVs, sensor networks, etc [10,6]. However, in a number of contexts such as social networks, marketing or games the interactions among agents are not necessarily cooperative [3], which are usually described by a signed graph, where positive and negative edge weights denote cooperation and competition among concerned nodes respectively.

One type of agreement over a signed graph is bipartite synchronization, where agents reach an agreement over the modulus of a variable. Bipartite Output Synchronization (BOS) studies output synchronization of the agents in modulus with possibly different signs. There are many engineering applications for BOS like analyzing trustworthiness of the nodes in a network [5] and anticipating unanimity of the opinions in a decision process in the presence of stubborn agents [4].

Comparing with [3,13,11,8], which consider a bipartite state synchronization problem, this paper studies a bipartite output synchronization problem. The BOS of linear heterogeneous agents is considered in [8] where the agents communicate the states of their dynamic com...

* The material in this paper is partially presented at the IEEE American Control Conference, July 6-8, 2016, Boston, MA, USA. Corresponding author Rong Su. Tel. +65 6790-6042, Fax: +65 6793-3318.

Email addresses: farnaz001@e.ntu.edu.sg (Farnaz Adib Yaghmaie), rsu@ntu.edu.sg (Rong Su), lewis@uta.edu (Frank L. Lewis), Sorin.Olaru@supelec.fr (Sorin Olaru).
2 Preliminaries

Let $\mathbb{R}^{n \times m}$ be the set of $n \times m$ real matrices. I_n, 1_n and 0 denote the identity matrix of dimension $n \times n$, an n-dimensional column vector of 1, and a matrix of zeros with a compatible dimension, respectively. The Kronecker product of two matrices A and B is denoted as $A \otimes B$. Let $A_i \in \mathbb{R}^{n_i \times m}$ for $i = 1, \ldots, N$. The operator $\text{Diag} \{ A_i \}$ builds a block diagonal matrix with N diagonal blocks, whose ith diagonal block is A_i. The spectrum of matrix A is denoted by $\text{spec}(A)$ which is the multiset of its eigenvalues λ_i. The spectral radius of A is denoted as $\rho(A) = \max_{\lambda_i \in \text{spec}(A)} |\lambda_i|$. Given $A = [a_{ij}] \in \mathbb{R}^{n \times m}$, let $B := [a_{11}, a_{22}, \ldots, a_{mm}] \in \mathbb{R}^{(n-1) \times (m-1)}$ be a matrix formed by rows n_1, \ldots, n_m and columns m_1, \ldots, m_m of A. The cardinality of a set V is denoted by $|V|$. A disjoint union of two sets V^1 and V^2 is denoted by $V^1 \cup V^2$.

The following definition is used throughout the paper.

Definition 1 ([7]) A pair of $M_1 = I_p \otimes \beta$, $M_2 = I_p \otimes \tau$ incorporate a p-copy internal model of a square matrix A if (β, τ) is controllable and the minimal polynomial of A divides the characteristic polynomial of β.

By [12], a signed graph is represented by a tuple $G^s = (V, E, \theta)$, where $V = \{v_1, \ldots, v_N\}$ denotes a finite vertex set, $E \subseteq V \times V$ is a directed edge set, and $\theta : E \rightarrow \{1, -1\}$ is a partial edge labeling function, which assigns either a positive or negative sign to each edge. We call $G^u = (V, E)$ the corresponding unsigned graph. A (follower) subgraph of G^u obtained by removing the (leader) node v_0 can be represented by an $N \times N$ adjacent matrix $A^u \oplus [a^u_{ij}]$, where $a^u_{ij} = 1$ if $(v_i, v_j) \in E$, and $a^u_{ij} = 0$, otherwise. The adjacency matrix of node v_0 and node v_1 is denoted by a^u_0 and is defined similarly. The upper stream neighbor set of a node $v \in V$ is defined as $N_v = \{v' \in V \mid (v, v') \in E\}$. The in-degree matrix F of that (follower) subgraph is defined as $\hat{F} = \text{Diag}(\{N_{v_i}\})$.

The Laplacian of that (follower) subgraph is defined as $L^s = \hat{F} - A^u$, where $A^u := [a^u_{ij} := \theta(v_i, v_j)a^u_{ij}]$ is the signed adjacent matrix. The signed pinning gain from the node v_0 to other nodes is denoted by the matrix $G^s = \text{Diag}(g^s_{v_i} := \theta(v_0, v_i)a^u_{ij})$, and $G^u = \text{Diag}(g^u_{v_i} := a^u_{ij})$ is the unsigned pinning gain. While the entries of the adjacency matrix A^u of the unsigned graph G^u are nonnegative, the entries of the adjacency matrix A^s of G^s can attain positive or negative values.

A directed graph is a directed tree if every node, except for one node called the root, has an in-degree equal to one, and the root node has its in-degree equal to zero, and in addition, each non-root node is reachable from the root node via a directed path. A directed graph has a spanning tree if it contains a directed tree over all nodes. A subgraph $G^s_s = (V_s, E_s, \theta_s)$, where $V_s \subseteq V$, $E_s \subseteq E$ and θ_s being the restriction of θ over E_s, is called a strongly connected subgraph of G^s if each pair of different nodes $v_{i,k}, v_{j,k} \in V_s$ are reachable from each other via a directed path in the subgraph. In particular, a subgraph consisting of only one node, which is called a singleton subgraph, is always a strongly connected subgraph. G^s_s is maximal if there does not exist another strongly connected subgraph that contains G^s_s as a subgraph.

Definition 2 (Structurally Balanced Graph [3]) A signed graph $G^s = (V, E, \theta)$ is structurally balanced if it admits a bipartition of the nodes, $V = V^1 \cup V^2$, such that (i) for all $(v_i, v_j) \in E \cap (V^q \times V^q)$ with $q = 1, 2$, $	heta(v_i, v_j) = 1$; and (ii) for all $v_i \in V^q, v_j \in V^r$ with $(v_i, v_j) \in E$, $q, r \in \{1, 2\}$, $q \neq r$, $\theta(v_i, v_j) = -1$. Let \mathcal{D} be the set of gauge transformations $\mathcal{D} = \{ \Sigma = \text{Diag} \{ \sigma_i \} | \sigma_i \in \{ \pm 1 \} \}$. We define the following notations

$$H^s = \text{Diag} \left\{ \frac{1}{|N_{v_i}| + q_i^s} \right\} (F - A^u + G^s),$$

$$H^u = \text{Diag} \left\{ \frac{1}{|N_{v_i}| + q_i^u} \right\} (F - A^u + G^u).$$

Lemma 1 ([13,3]) Let $G^u = (V, E, \theta)$ be a signed graph which is structurally balanced with the bipartition $V = V^1 \cup V^2$, and $G^u = (V, E)$ be its unsigned equivalent.

Then $\Sigma_1 A^u \Sigma_1 = A^u$ and $\Sigma_1 H^u \Sigma_1 = H^u$ if and only if $\Sigma_1 = \text{Diag} \{ \sigma_i \} \in \mathcal{D}$, where for all $v_i \in V^q, v_j \in V^r$ with $q, r \in \{1, 2\}$, we have $\sigma_i = \sigma_j$ if and only if $q = r$.

Lemma 2 ([9]) Let a graph $G = (V, E)$ contain K maximal strongly connected subgraphs $G_k = (v_k, E_k), k = 1, \ldots, K$. One can reorder the nodes such that the adjacent matrix A of G is lower block triangular and its m-th diagonal blocks is $\Xi_m \in \{A_k | 1 \leq k \leq K \}$, where A_k is the adjacent matrix of G_k.

3 Bipartite and Cooperative Output Synchronization Problems

Consider a group of $N + 1$ linear heterogeneous agents consisting of N followers labeled as $i = 1, \ldots, N$ and a leader labeled as 0:

$$\dot{x}_i = A_i x_i + B_i u_i, \quad (2)$$

$$y_i = C_i x_i, \quad (3)$$

$$z_i = D_i x_i, \quad i = 1, \ldots, N, \quad (4)$$

$$\dot{x}_0 = A_0 x_0, \quad (5)$$

$$y_0 = C_0 x_0, \quad (6)$$

where $x_i \in \mathbb{R}^{n_i}$, $y_i \in \mathbb{R}^p$, $u_i \in \mathbb{R}^m$, and $z_i \in \mathbb{R}^q$ are the state, the output, the control and the measured output of the agent $i (i = 0, \ldots, N)$, respectively. We make the following assumption.

Assumption 1 The signed graph $G^s = (V, E, \theta)$ associated with the multi-agent system is structurally balanced.

Without loss of generality, let $\Sigma_1 = \text{Diag} \{ \sigma_i \}$ be the gauge transformation introduced in Lemma 1, where $v_0 \in V^1, (\forall v_i \in V^1) \sigma_i = 1$, and $(\forall v_j \in V^2) \sigma_j = -1$.

Problem 1 Bipartite Output Synchronization (BOS) Problem: Consider a group of $N + 1$ linear heterogeneous agents defined by (2-6). Assume that the agents communicate y_i’s, over a structurally balanced signed graph $G^s = (V, E, \theta)$. Design the matrices $K_{1i} \in \mathbb{R}^{m \times n_i}$, $K_{2i} \in \mathbb{R}^{m \times \Sigma_{n_i}}$, $R_i \in \mathbb{R}^{m \times \Sigma_{n_i}}$, $S_i \in \mathbb{R}^{m \times \Sigma_{n_i}}$ for each $i = 1, \ldots, N$, such that

$$u_i = K_{1i} z_i + K_{2i} \eta_i,$$

$$\eta_i = R_i \eta_i + S_i \delta_i, \quad \text{where} \eta_i \in \mathbb{R}^{\Sigma_{n_i}},$$

$$\delta_i = \frac{1}{|N_{v_i}| + q_i^s} \left(\sum_{j=1}^{N} \left(a^s_{ij} y_i - a^s_{uj} y_j \right) + g^w_i y_i - g^w_j y_0 \right).$$

render $\lim_{t \rightarrow +\infty} e_{bi}(t) = 0$.

In this paper, we transform the BOS problem into another problem called cooperative output synchronization problem, which is defined below.
Consider a group of N heterogeneous agents defined by (2-6). Assume that the agents communicate y_i over an unsigned graph $G^u = (V,E)$. Design the matrices K_1, K_2, R_i, S_i such that for each $i = 1, \ldots, N$,

$$\dot{u}_i = K_1 z_i + K_2 y_i, \quad \dot{y}_i = R_i \dot{y}_i + S_i \delta_i,$$

$$\delta_i = \frac{1}{|N_c| + y_n^u} \sum_{j=1}^N a_{ij}^s (y_i - y_j) + g_i^s (y_i - y_j),$$

render $\lim_{t \to +\infty} e_{c(t)} (t) = y_i (t) - y_0 (t) = 0 \quad \blacksquare$

The controls (7-8) reduce to a state-feedback for $z_i = \xi_i$ and an explicit output-feedback for $z_i = y_i$. We now show the equivalence of the COS and the BOS problems by means of a similarity transformation.

Let $\tilde{H}^u = H^u \otimes I_p, \tilde{H}^u = H^u \otimes I_p, Z = \tilde{H}^u - I_{N_p}$, $\bar{X} = \text{Diag} \{X_i\}, X_i \in \{A_1, B_1, C_1, D_1, R_i, S_i, K_1, K_2\}$, $
\bar{A}_0 = I_N \otimes A_0, \bar{C}_0 = I_N \otimes C_0, \bar{C}_c = \begin{bmatrix} \tilde{C} \ 0 \end{bmatrix}$,
$$\bar{A}_c = \begin{bmatrix} \bar{A} + \bar{B} \tilde{K}_1 \tilde{D} & \bar{B} \tilde{K}_2 \end{bmatrix}, \quad \bar{A}_c = \begin{bmatrix} \tilde{A} + \tilde{B} \tilde{K}_1 \tilde{D} & \tilde{B} \tilde{K}_2 \end{bmatrix},$$
$$\bar{B}_c = \begin{bmatrix} 0 \\ -\tilde{S}(G^u \otimes I_p) \bar{C}_0 \end{bmatrix}, \quad \bar{B}_c = \begin{bmatrix} 0 \\ -\tilde{S}H^u \bar{C}_0 \end{bmatrix}.$$}

The overall closed-loop system of all agents (2) seeking the BOS over the structurally balanced signed graph G^s via controllers (7) is given by

$$\begin{align*}
\dot{\xi}_b &= A_c \xi_b + B_c r_G, \\
r_G &= \bar{A}_0 r_G, \\
e_b &= C_c \xi_c - \bar{C}_0 r_G,
\end{align*}$$

where $\xi_b = [x_1^T, \ldots, x_N^T, \eta_1^T, \ldots, \eta_{N_p}^T]^T, r_G = 1_N \otimes x_0$.

The closed-loop system of all agents (2) seeking the COS over G^u via the control signal (8) is given by

$$\begin{align*}
\dot{\xi}_c &= \bar{A}_c \xi_c + \bar{B}_c r_G, \\
r_G &= \bar{A}_0 r_G, \\
e_c &= C_c \xi_c - \bar{C}_0 r_G,
\end{align*}$$

where $\xi_c = [x_1^T, \ldots, x_N^T, \eta_1^T, \ldots, \eta_{N_p}^T]^T$.

The equivalence between the cooperative state synchronization and the bipartite state synchronization of first-order homogeneous agents is shown in [3]. Next, we show the equivalence between the COS and the BOS for a general linear heterogeneous multi-agent system.

Theorem 1 The control signal u_i in (7) solves the BOS problem over a structurally balanced signed graph $G^s = (V, E, \theta)$ if and only if the control signal \bar{u}_i in (8) solves the COS problem over the unsigned graph $G^u = (V, E)$.\square

Proof. Denote $\Sigma_2 = \text{Diag} \{\sigma_i \otimes I_{n_i}\}$, $\Sigma_3 = \text{Diag} \{\sigma_i \otimes I_{n_{u_i}}\}, \Sigma_4 = \Sigma_1 \otimes I_p, \Sigma = \begin{bmatrix} \Sigma_2 & 0 \\ 0 & \Sigma_3 \end{bmatrix}$. Clearly $\Sigma^{-1} = \Sigma$. Let $\bar{\xi} = \Sigma \xi_b$. Then

$$\dot{\bar{\xi}} = \Sigma A \bar{\xi} + \Sigma B r_G, \quad e_b = C_c \bar{\xi} - \Sigma_1 \otimes C_0 r_G.$$

According to the definition of $\bar{\Sigma}$ we have

$$\begin{align*}
\Sigma A \Sigma &= \begin{bmatrix} \bar{A} + \bar{B} \tilde{K}_1 \tilde{D} & \bar{B} \tilde{K}_2 \\ \tilde{S}(H^u \Sigma_2) \Sigma_3 & \tilde{R} \end{bmatrix}, \\
\Sigma B_c &= \begin{bmatrix} 0 \\ -\tilde{S}(\Sigma_1 G^u \otimes I_p) \bar{C}_0 \end{bmatrix} = \begin{bmatrix} 0 \\ -\tilde{S}(G^u \otimes I_p) \bar{C}_0 \end{bmatrix}.
\end{align*}$$

It is easy to show that $\Sigma_3 (\tilde{S} H^u \Sigma_2) = \tilde{S} \Sigma_4 \tilde{H}^u \Sigma_4 \tilde{C} = \tilde{S} (\Sigma_1 H^u \Sigma_1 \otimes I_p) \bar{C}_0 \tilde{C}$. According to Lemma 1, $\Sigma_1 H^u \Sigma_1 = H^u$. Hence $\Sigma A \Sigma \bar{\xi} = \Sigma c_e$. Similarly,

$$\Sigma B_c = \begin{bmatrix} 0 \\ -\tilde{S}(\Sigma_1 G^u \otimes I_p) \bar{C}_0 \end{bmatrix} = \begin{bmatrix} 0 \\ -\tilde{S}(G^u \otimes I_p) \bar{C}_0 \end{bmatrix}.$$
Assumption 4 The pair \((R_i, S_i)\) contains a p-copy of the leader dynamics \(A_0\).

Assumption 5 The triple \(\left(\begin{bmatrix} A_i & 0 \\ S_iC_i & R_i \end{bmatrix}, \begin{bmatrix} B_i \\ 0 \end{bmatrix}, \begin{bmatrix} D_i & 0 \\ 0 & I_{n_{oi}} \end{bmatrix} \right)\) is output-feedback stabilizable.

Theorem 2 Consider Assumptions 2-5. If \(K_{1i}\) and \(K_{2i}\) are selected in such a way that for all \(k \in \{1, \cdots, K\}\),

\[
\max \|h_i\|_{\infty} < \frac{1}{\rho(Z_k)}, \quad \forall v_i \in V_k
\]

then (8) solves the COS problem over \(G^n\).

PROOF. The characteristic equation of \(\hat{A}_c\) reads

\[
\Delta = \det(sI - \hat{A}_c) = \det(X - \left[\begin{array}{c} 0 \\ S \end{array} \right]^T Z \left[\begin{array}{c} \hat{C} \\ 0 \end{array} \right])
= \det(X) \det(I - \left[\begin{array}{c} \hat{C} \\ 0 \end{array} \right] X^{-1} \left[\begin{array}{c} 0 \\ \hat{S} \end{array} \right]^T Z),
\]

where \(X = \left[\begin{array}{cc} sI - (\hat{A} + \hat{B} \hat{K}_1 \hat{D}) & -\hat{B} \hat{K}_2 \\ \hat{S} \hat{C} & sI - \hat{R} \end{array} \right]\) and we have used the Sylvester’s determinant Theorem to obtain the last equation. Let \(T = [c_1, c_{k+1}, c_{2}, c_{k+2}, \ldots, c_{2N}]\)

\[
c_i \in \mathbb{R}^{N \times (N + \sum_{i=1}^{N} n_i)}, \quad i = 1, \ldots, 2N
\]

where \(g_i = n_i\) if \(i = 1, \ldots, N\) and \(g_i = n_{oi}\) otherwise. The matrix \(c_i\) is a block row matrix with \(2N\) blocks which all are zero except the \(i\)th row block which is \(I_{g_i}\). Then,

\[
\Delta = \det(T^{T} TXT^{-1}) \times \det(I - \left[\begin{array}{c} \hat{C} \\ 0 \end{array} \right] T^{-1} TX^{-1} T^{-1} \left[\begin{array}{c} 0 \\ \hat{S} \end{array} \right] Z)
= \det(T^{-1} \det(TXT^{-1}) \det(I + h(s)Z) = \det(\text{Diag}(sI - \hat{A}_c)) \times \det(I + h(s)Z),
\]

where \(h(s) = \text{Diag}(h_i)\). Noting that \(\Delta\) is the characteristic equation of \(\hat{A}_c\), this matrix is stable if all roots of \(\Delta\) are strictly negative. The stability of \(F(s) = I + h(s)Z\) guarantees that all poles of \(h(s)\) are stable which are given by the eigenvalues of \(\hat{A}_c\). Hence, the stability of \(F(s)\) implies the stability of \(A_c\) and totally, they guarantee the stability of \(\hat{A}_c\). Since the transfer matrix \(h(s)\) is diagonal and the nodes are numbered such that \(Z\) is lower block triangular (Lemma 2), \(F(s)\) is lower block triangular and the stability of \(F(s)\) is given by the stability of its diagonal blocks. For the nodes in \(G_k\), the stability of \(F_k(s) = I + h_{nc_k} Z_k\) is of interest, where \(h_{nc_k}(s) = \text{Diag} (h_i(s))\). By the small gain theorem, \(F_k(s)\) is stable if the condition in (14) is satisfied. Thus, \(\hat{A}_c\) is stable and the COS is achieved.

Remark 1 The sufficient condition in Theorem 2 is more relaxed than Theorem 2 of [2]. According to Theorem 2, \(\|h_i\|_{\infty}\) should be bounded by \(\frac{1}{\rho(Z_k)}\). However by Theorem 2 of [2], this should be bounded by \(\frac{1}{\max \rho(Z_k)}\).

Clearly, the result by Theorem 2 of [2] is more stringent than Theorem 2. Moreover, according to Theorem 2, if a disjoint strongly connected subgraph \(G_k\) contains a single node, \(Z_k = 0\) and (14) simplifies to the stability of \(\hat{A}_c\).

Corollary 1 Consider Assumptions 1-5. Assume that \(K_{1i}\) and \(K_{2i}\) are selected such that (14) holds. Then (7) solves the BOS problem over \(G^n\).

PROOF. It follows from Theorem 1 and Theorem 2.

5 Simulation Results

Consider the signed graph \(G^n\) shown in Fig. 1. The signed graph \(G^n\) satisfies Assumptions 1-2. Also, it has two non-single-node maximal strongly connected subgraphs containing the nodes \(V_1 = \{3a, 3b, 3c\}\) and \(V_2 = \{7a, 7b, 7c\}\) respectively. We have \(\rho(Z_1) = 0.7937\) and \(\rho(Z_2) = 0.8514\) for \(G_1\) and \(G_2\) respectively. Consider the dynamics of the leader and the followers as

\[
\begin{align*}
0: & \quad \dot{x}_0 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x_0, \quad y_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x_0, \\
1,3a, 3c, 7a, 7c: & \quad \dot{x}_1 = \begin{bmatrix} -0.3 & -2 \\ 0.1 & -0.2 \end{bmatrix} x_1 + \begin{bmatrix} 1.8 & -0.8 \\ 0.9 & 1.6 \end{bmatrix} u_1, \\
2,3b, 4, 6, 7b: & \quad \dot{x}_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x_2 + \begin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix} u_2, \\
5,8: & \quad \dot{x}_5 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x_5 + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} u_5.
\end{align*}
\]

Select the p-copy of the leader as \(R_i = I_2 \otimes \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\), \(S_i = I_2 \otimes \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\), \(i = 1, \ldots, N\). Select the controller gains as

\[
K_1 = \begin{bmatrix} -10 & -4 & 460 & 172 & -497 & -183 \\ 6 & -13 & -501 & -203 & 246 & 87 \end{bmatrix},
\]

\[
K_{3a,3c} = \begin{bmatrix} -0.35 & -0.86 & 0 & -0.09 & -0.01 & -0.3 \\ 0.14 & -1.5 & -0.01 & -0.34 & 0 & -0.01 \end{bmatrix},
\]

\[
K_{3b} = \begin{bmatrix} -1.93 & 1.59 & -0.47 & -2.91 & -0.09 & -2.19 \\ -10.9 & 12.45 & -2.97 & -16.12 & -0.84 & -18.36 \end{bmatrix},
\]

Fig. 1. The communication graph.
In Fig. 2 the outputs of all followers, $y_i, i = 1, \ldots, 12$, the output of the leader, y_0, and its mirror, $-y_0$, are sketched. From the figure we can see that the agents achieve the BOS with two subgroups $V^1 = \{0, 3c, 4, 5, 6, 7a, 7b, 8\}$ and $V^2 = \{1, 2, 3a, 3b, 7c\}$, where $y_i \to y_0, \forall i \in V^1$ and $y_j \to -y_0, \forall j \in V^2$. The initial conditions are selected randomly.

6 Conclusion

In this paper we have investigated the COS and the BOS problems of a group of $N + 1$ linear heterogeneous agents consisting of one leader and N followers. We have obtained a relaxed H_{∞}-criterion as a sufficient condition to ensure the existence of a control solution to the COS problem by using the concept of the maximal strongly connected subgraphs. Moreover, we have shown that the BOS problem over a signed graph is equivalent to the COS problem over an unsigned graph in the sense that a control solution to one problem induces a control solution to the other, e.g., that relaxed H_{∞} criterion.

References