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Weiss-Weinstein Bound on Multiple
Change-Points Estimation

Lucien Bacharach, Student Member, IEEE, Alexandre Renaux, Member, IEEE, Mohammed Nabil El Korso,
and Éric Chaumette

Abstract—In the context of multiple change-points estimation,
performance analysis of estimators such as the maximum likeli-
hood is often difficult to assess since the regularity assumptions
are not met. Focusing on the estimators variance, one can
however use lower bounds on the mean square error. In this
paper, we derive the so-called Weiss-Weinstein bound (WWB)
which is known to be an efficient tool in signal processing to
obtain a fair overview of the estimation behavior. Contrary to
several works about performance analysis in the change-point
literature, our study is adapted to multiple changes. First, useful
formulas are given for a general estimation problem whatever
the considered distribution of the data. Second, closed-form
expressions are given in the cases of i) Gaussian observations
with changes in the mean and/or the variance, and ii) changes
in the mean rate of a Poisson distribution. Furthermore, a semi-
definite programming formulation of the minimization procedure
is given in order to compute the tightest WWB. Specifically, it
consists of finding the unique minimum volume covering the set
constituted by hyper-ellipsoid elements which are generated using
the derived candidate WWB matrices w.r.t. the so-called Loewner
partial ordering. Finally, simulation results are provided to show
the good behavior of the proposed bound.

Index Terms—Weiss-Weinstein bound, change-point, mean
square error, Bayesian lower bound

I. INTRODUCTION

NON stationary signals are often encountered in many
practical applications. The possible causes of such non

stationarities are extensive, which results in numerous ways
of characterizing them. One type of non stationary signals are
those submitted to one or several abrupt changes. This means
that, at some time instants (generally unknown), the character-
istics of the signal of interest change almost instantaneously.
More precisely, as the signal is often considered random, such
changes can be reflected by shifts in the parameters of its
distribution.

They are usually referred to as “change-points” in the lit-
erature, and arise in many signal processing applications such
as instrument fault detection, system monitoring or speech
processing (see e.g., [1] for an overview of the main potential
applications). Depending on the application and its purpose,
the problem of change-points in a signal can be formulated
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Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), 31055 Toulouse,
France.

This work has been partially supported by the iCODE institute, research
project of the IDEX Paris-Saclay, by the MAGELLAN project (ANR-14-
CE23-0004-01), and by the DGA MRIS.

in different manners: i) offline detection, in which the aim is
to decide whether there is a change in a given finite data set,
ii) online detection, in which the aim is still to detect a change
but data are assumed to be received gradually [1]. At last, the
context of iii) offline estimation is adequate to locate a change
as precisely as possible, once it is known to occur, see e.g.,
[2]. This paper deals with this latter formulation.

Among all the possible estimation schemes, the maximum
likelihood estimator (MLE) is often preferred for its good
statistical properties. Of course, the ideal achievement when
one is interested in performance analysis is to obtain the
distribution of the latter estimator. However, in the context
of change- point estimation, certain regularity assumptions,
usually used to prove the asymptotic normality of the MLE,
are obviously not fulfilled (e.g., see Theorem 3.10 in [3,
Chapter 6]), especially because of the discrete nature of
the parameter to estimate. Consequently, the study of such
estimator performance requires a specific analysis. For a single
change-point, the asymptotic distribution of the MLE was first
derived by Hinkley under certain assumptions [4]. Later on,
Fotopoulos and Jandhyala derived exact computable forms of
this distribution for exponentially distributed data [5], as well
as Gaussian data [6].

It should be noticed that all these results have been obtained
in the asymptotic context and for a single change. Therefore,
one has to take interest in other ways of characterizing the
estimation performance as soon as such assumptions do not
hold. One of them is to work on the moments of the estimator’s
distribution. Even if those are not necessarily easily accessible
either, lower bounds can be used to overcome these difficulties
as they generally require less complex computations and can
yield closed-form expressions in some specific cases.

Among the plethora of lower bounds on the Mean Square
Error (MSE), the Cramér-Rao Bound (CRB) is the most
famous in the signal processing community. Indeed, the attrac-
tiveness of the CRB comes from the fact that various closed-
form expressions are available for a large class of observation
models (see e.g., [7]–[9]. However, even if the CRB is known
to be tight in the asymptotic region [3], [10], [11], it is
unfortunately not the case for low SNR and/or low number of
observations. An important point is that in our context of un-
known discrete parameters, the regularity conditions to apply
the CRB are not fulfilled since the likelihood involved in the
Fisher information computation is not differentiable w.r.t. these
parameters. As a first alternative to this fence, the regulariza-
tion of the problem by approximating the signals by smoother
one, has been studied, e.g., in [12], [13]. A second way, more
natural, of overcoming the aforementioned limitations is to
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use lower bounds with less regularity conditions, particularly
lower bounds which do not involve the differentiability of the
likelihood. To the best of our knowledge, only the Barankin
bound [14]–[16] has been applied to change point estimation
in the case of a single change point in [17], and then extended
to multiple changes in [18].

In both cases, the resulting bounds appeared to be quite
coarse. Lower bounds on the global MSE (GMSE) also exist
in the Bayesian context but they received quite little attention
in the change-points literature, even though early works in this
area as [19], [20] were conducted using a Bayesian approach.
The Weiss-Weinstein bound (WWB) is known to be one of the
tightest Bayesian bounds, and for this reason, its derivation
would be of great interest for change-point estimation. We
recently derived it for a single change-point [21], and the
aim of this paper is to generalize this study to the context of
multiple changes. Note that even if the WWB is a Bayesian
bound, it can still be used to assess the performance of the
MLE in terms of global MSE, see e.g., [22]–[25]. Finally, the
tightest WWB is computed in a fast and efficient manner using
a convex equivalent formulation of the original maximization
procedure.

This paper is organized as follows: in Section II, the
observation model is presented and the main assumptions
are stated. Section III briefly recalls the general expression
of the WWB. Its derivation is achieved in Section IV for
any data distribution, and this result is then applied to two
particular distributions, namely the Gaussian and the Poisson
distributions, in Section V. Finally, numerical results are given
in Section VII to assess the behavior of the proposed bound.

II. PROBLEM SETUP

We consider an independent multivariate time series X =
[x1,x2, . . . ,xN ] ∈ RM×N , where N denotes the number of
observations and M the length of each vector xi (possibly
corresponding to the number of sensors, e.g., in the array
processing context), in which a total number of change-points
Q are known to occur (Q < N ) at unknown time instants tq ,
1 ≤ q ≤ Q. This can be modeled as follows:

xi ∼ pη1
(xi) for i = 1, . . . , t1

xi ∼ pη2
(xi) for i = t1 + 1, . . . , t2

...
...

xi ∼ pηQ+1
(xi) for i = tQ + 1, . . . , N

(1)

where pηq
is the probability distribution (discrete or continu-

ous, depending on the nature of the values taken by the ob-
servations) on the q-th segment, i.e., between two consecutive
change-points tq−1 and tq , q ∈ {1, . . . , Q+ 1}, t0 and tQ+1

being defined as t0
∆
= 0 and tQ+1

∆
= N . These distributions are

parameterized by a vector ηq (e.g., in the case of a Gaussian
law, ηq includes the mean and the covariance matrix), and
they are assumed to belong to the same family of distribution.

Note that since the framework of our study is the estimation
performance of algorithms such as the Maximum Likelihood
estimator (or the Maximum A Posteriori estimator), the num-
ber of changes Q has to be assumed known. This assumption

is usually made in the mathematical change-point literature,
dealing with the distribution of such estimators [4], [6], [26].
There are also practical examples in which Q is a priori known
[27], [28], [2, page 221]. In addition, one can consider that a
preliminary detection step giving the number of changes has
been operated as in [29], [30].

The unknown parameter vector is t = [t1, . . . , tQ]
T , where

tq ∈ N \ {0}, q = 1, . . . , Q. In the Bayesian framework,
the unknown parameters are random variables whose a priori
distribution has to be properly chosen. Since the total number
of changes is known, a practical distribution that is compatible
with this assumption is a uniform random walk, i.e., for all
q ∈ {1, . . . , Q}:

tq = tq−1 + εq (2)

where εq are i.i.d. variables following a discrete uniform
distribution on the finite set of integers {1, . . . , τ}, τ ∈ N\{0}
being the maximum gap between two consecutive change-
points: Pr (εq = k) = 1/τ if k ∈ {1, . . . , τ}, otherwise it
is zero. As a consequence, τ is defined in such a way that
the last change-point tQ does not exceed the total number of
observations, i.e., tQ < N . This leads to the fact that the
product τQ does not exceed N − 1, or equivalently,

τ ≤
⌊
N − 1

Q

⌋
(3)

where b.c denotes the floor function.
In order to obtain the distribution of t, we write the

distribution of each tq conditionally to tq−1 as:

Pr (tq = kq|tq−1 = kq−1)

= Pr (tq−1 + εq = kq|tq−1 = kq−1)

= Pr (εq = kq − kq−1)

=

{
1
τ if kq−1 + 1 ≤ kq ≤ kq−1 + τ

0 otherwise.
(4)

The a priori joint distribution of t can then be written as:

Pr (t = k) =

{(
1
τ

)Q
if kq ∈ Jq for all q ∈ {1, . . . , Q}

0 otherwise
(5)

where, for any integer q ∈ {1, . . . , Q}, we define the set of
integers Jq

∆
= {kq−1 + 1, . . . , kq−1 + τ}.

In the next section, we recall the definition of the WWB in
a general framework.

III. BACKGROUND ON THE WWB

For any Bayesian estimator t̂ (X) of the parameter vector t
lying in the parameter space Θ (that can be a subset of ZQ or
RQ, depending on the application), the multiparameter version
of the WWB as given by [31] satisfies the following matrix
inequality:

EX,t
{[
t̂ (X)− t

] [
t̂ (X)− t

]T} �HG−1HT (6)

in which A � B means that A − B is a non negative
matrix, EX,t {.} denotes the expectation operation w.r.t. the
joint distribution between the random vectors X and t, H =[
t̃1 − t, . . . , t̃Q − t

]
∈ ΘQ where, for all q ∈ {1, . . . , Q}, t̃q
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denote the so-called test-points. Those test points lie in Θ, and
their choice is left to the user. For simplicity, we define the
vectors hq = t̃q − t so that H = [h1, . . . ,hQ]. Finally, the
Q×Q matrix G is defined by:

[G]m,n =

EX,t

{[
Lsm(X, t+hm, t)−L1−sm(X, t−hm, t)

]
×
[
Lsn(X, t+hn, t)−L1−sn(X, t−hn, t)

]}
EX,t

{
Lsm(X, t+hm, t)

}
EX,t

{
Lsn(X, t+hn, t)

} (7)

where L (X,ϕ,ψ)
∆
= p (X,ϕ) /p (X,ψ). The inequality (6)

holds for any combination of hq , sq ∈ ]0, 1[ such that G is
invertible, and maximizing the right side of (6) w.r.t. these
variables leads to the tightest WWB, i.e.,

WWB = sup
h1,...,hQ
s1,...,sQ

HG−1HT (8)

where the supremum operation is taken w.r.t. Loewner partial
ordering [32] (see Section VI).

Note that with this formulation, the computation of the
supremum has to be made over a total of (Q2+Q) parameters,
which is computationally prohibitive and leads to unfeasible
calculations. For these reasons, and since inequality (6) is valid
for any matrixH , we will use a restricted version of the WWB
where we assume, for q = 1, . . . , Q, hq = [0, . . . , hq, . . . , 0]

T ,
i.e., H = diag (h1, . . . , hQ). As explained in [18], this form
makes it possible to derive closed-form expressions of G, and
then to compute the WWB efficiently. Under this assumption,
the maximization has to be performed w.r.t. a reduced number
of parameters of 2Q. This number could even be reduced to
Q by making the choice sq = 1/2, q = 1, . . . , Q, since it has
been noticed, for some applications, that this value leads to
the tightest bound [33]. However, in order to be extensive and
contrary to [21], we do not make such a restrictive assumption.
Specifically, the following derivation of the bound is done for
any value of sq in order to verify whether the optimal value
of sq can differ from 1/2 for the specific problem of multiple
change-points.

In order to derive G in a compact form, let us introduce the
function ζ defined, for (α, β) ∈ ]0, 1[ × ]0, 1[ and u,v being
Q× 1 vectors such that t+ u ∈ Θ and t+ v ∈ Θ, by:

ζ (α, β,u,v)
∆
=EX,t

{
Lα(X, t+u, t)Lβ(X, t+v, t)

}
. (9)

With this definition, we rewrite (7) as:

[G]m,n =


ζ (sm, sn,hm,hn)
+ ζ (1− sm, 1− sn,−hm,−hn)
− ζ (sm, 1− sn,hm,−hn)
− ζ (1− sm, sn,−hm,hn)


ζ (sm, 0,hm,0) ζ (sn, 0,hn,0)

. (10)

Since matrix G is symmetric, it is possible to only derive
the diagonal and upper triangle terms, i.e., to assume m ≤ n.
The remaining terms (those of the lower triangle of G) are
directly deduced by symmetry.

Then, finding a closed-form expression of ζ (α, β,u,v)
directly implies finding that of G, which is the cornerstone
of the WWB derivation. In the next section, we give the main
steps to achieve this task in our multiple change-points context.

IV. DERIVATION OF THE WWB

In this section, it is assumed that the observations X have
a probability density function (p.d.f.), although the equations
remain valid if their range space is discrete. Taking model (1)
into account (particularly the discrete nature of the unknown
parameters), we rewrite ζ as:

ζ (α, β,u,v) =∑
k∈I

∫
Ω

pα (X, t = k + u) pβ (X, t = k + v)

pα+β−1 (X, t = k)
dX (11)

where Ω is the observation space, and p (X, t = k) de-
notes the joint distribution between the random vec-
tors X and t, and where k = [k1, . . . , kQ]

T is the
value taken by the random vector t. In other words,
p (X, t = k) = p (X|t = k) Pr (t = k). Notice that the sum∑
k∈I(.) in (11) has to be understood as the Q-fold sum∑
k1∈I1 . . .

∑
kQ∈IQ(.), in which we define the set I ⊂ ZQ as

the range of vector k such that the terms in the sum
∑
k∈I(.)

are nonzero, and the sets Iq are such that their cartesian
product

∏Q
q=1 Iq = I. We give an explicit expression of these

sets in Appendix.
Since we assumed the matrix H diagonal, we restrain

to vectors u and v under the form u = um =
[0, . . . , um, . . . , 0]

T , whose elements are all zero except the
m-th element, and v = vn = [0, . . . , vn, . . . , 0]

T in which
vn can be 0, as in the denominator of (10). Then, with abuse
of notation, we replace vectors um and vn with their only
nonzero value um and vn in the arguments of the function ζ
and everywhere it is not necessary.

A. Expression of ζ (α, β, um, vn)

In this section, we give the expression of ζ (α, β, um, vn),
which enables to obtain [G]m,n using (10). This expression
can actually be written in several different manners, depending
on the three cases (i) n = m (case named “D”, for “diagonal”);
(ii) n > m + 1 (case “UT”, for “upper triangle”); and (iii)
n = m + 1 (case “FSD”, for “first superdiagonal”). All the
technical details leading to the following results are given in
Appendix.

1) Case D (n = m): In this case, as it can be seen from
the numerator of (10), um and vm can either be the same,
i.e., um = vm, or opposed, i.e., um = −vm. In addition, the
terms in the denominator of (10) can also be derived under
this scope using the special case vm = 0. Then, by using the
following discrete step-function Uγ defined for γ ∈ R as

Uγ (n) =

{
γ if n ≥ 0

1− γ if n < 0,
(12)

we obtain (see Appendix)

ζ (α, β, um, um) = fD (τ , um, um) ρ|um|
m

(
Uα+β (um)

)
(13)

ζ (α, β, um,−um) = fD (τ , um,−um) ρ|um|
m

(
Uα (um)

)
(14)

× ρ|um|
m

(
Uβ (−um)

)
ζ (α, 0, um, 0) = fD (τ , um, 0) ρ|um|

m

(
Uα (um)

)
(15)
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where fD(τ , um, vm) is defined as

fD(τ , um, vm)
∆
=



[
(τ−|um|)+

τ

]2
if m ≤ Q− 1

and vm = um or vm = 0,[
(τ−|um|−|vm|)+

τ

]2
if m ≤ Q− 1

and vm = −um,
(τ−|uQ|)+

τ if m = Q
and vQ = uQ or vQ = 0,

(τ−|uQ|−|vQ|)+
τ if m = Q

and vQ = −uQ,

(16)

in which the function (x)+ ∆
= max(x, 0) is introduced; and

ρm(α), m = 1, . . . , Q, is defined as

ρm (α)
∆
=

∫
Ω′

pαηm
(x)

pα−1
ηm+1

(x)
dx (17)

in which Ω′ denotes the observation space in one single time
instant, i.e.,

∏N
i=1 Ω′ = Ω (Cartesian product).

As already mentioned, the choices of um and vn are left to
the user. Nevertheless, note that these choices must be made in
an admissible range so that the matrix G is invertible. Specif-
ically, we deduce from (15) and (16) that values satisfying
|um| ≥ τ or |vn| ≥ τ vanish the denominator of (10). This is
incompatible with the invertibility of G and these values for
the test-points are consequently dismissed. As a consequence,
in the following, we assume that max (|um|, |vn|) ≤ τ − 1,
∀m,n ∈ {1, . . . , Q}.

2) Case UT (n > m + 1): In this case, quite similarly as
in the previous one, we obtain

ζ (α, β, um, vn) =

fUT (τ , um, vn) ρ|um|
m

(
Uα (um)

)
ρ|vn|n

(
Uβ (vn)

) (18)

where fUT (τ , um, vn) is defined as

fUT (τ , um, vn) =


((τ−|um|)+)

2
((τ−|vn|)+)

2

τ4 if n ≤ Q− 1

((τ−|um|)+)
2
(τ−|vn|)+

τ3 if n = Q.

(19)

Note that if max (|um| , |vn|) > τ − 1, fUT (τ , um, vn) = 0,
as well as that fUT does not depend on the signs of um nor
vn.

3) Case FSD (n = m+ 1): As reflected in Appendix, this
case is more complicated than the previous two, because of
what we name the possible “overlap between the test-points”.
As explained in Appendix, this situation occurs only if um > 0
and vn < 0 and if, in that case, min(|um| , |vm+1|) ≥ 2. Let
us first handle the case where there is no overlap.

a) Case without overlap, i.e., [um > 0 and vm+1 > 0],
or [um < 0 and vm+1 < 0], or [um < 0 and vm+1 > 0]:
This situation is similar to the previous ones, and we obtain

ζ (α, β, um, vm+1) = (20)

fFSD (τ , um, vm+1) ρ|um|
m

(
Uα (um)

)
ρ
|vm+1|
m+1

(
Uβ (vm+1)

)

where fFSD (τ , um, vm+1) is defined as

fFSD (τ , um, vm+1)
∆
=

(τ−|um|)(τ−(−um,vm+1)+−(um,−vm+1)+)
+

(τ−|vm+1|)
τ3

if m+ 1 < Q

(τ−|uQ−1|)(τ−(−uQ−1,vQ)+−(uQ−1,−vQ)+)
+

τ2

if m+ 1 = Q.

(21)

One can notice in particular that fFSD (τ , um, vm+1) 6= 0 if
(−um, vm+1)

+
+ (um,−vm+1)

+ ≤ τ − 1 (which implies that
max (|um| , |vm+1|) ≤ τ − 1).

b) Case with possible overlap, i.e.,
[um > 0 and vm+1 < 0]: Here, we obtain:

ζ (α, β, um, vm+1) =

fov (τ , α, β, um, vm+1) ρ|um|
m (α) ρ

|vm+1|
m+1 (1− β)

(22)

where fov (τ , α, β, um, vm+1) is defined as

fov (τ , α, β, um, vm+1)

∆
=



(τ−|um|)(τ−|vm+1|)
τ3

[
(τ − |um| − |vm+1|+ 1)

+

− 1−(Rm(α,β))
1−(|um|,|vm+1|)−

1−Rm(α,β)

]
if m+ 1 < Q

(τ−|uQ−1|)
τ2

[
(τ − |uQ−1| − |vQ|+ 1)

+

− 1−(RQ−1(α,β))
1−(|uQ−1|,|vQ|)

−

1−RQ−1(α,β)

]
if m+ 1 = Q,

(23)

in which

Rm (α, β)
∆
=
ρm (α) ρm+1 (1− β)

κm (α, 1− α− β)
, (24)

with function κm(α1, α2) defined, for m ∈ {1, . . . , Q − 1}
and α1, α2 ∈ R, by

κm (α1, α2)
∆
=

∫
Ω′
pα1
ηm

(x) pα2
ηm+1

(x) p1−α1−α2
ηm+2

(x) dx, (25)

and the function (x, y)−
∆
= min(x, y, 0) is used in (23).

It is worth noticing that, if min (|um|, |vm+1|) = 1, we
have fov (τ , α, β, um, vm+1) = fFSD (τ , um, vm+1), then
(22) remains valid whether min (|um|, |vm+1|) ≥ 2, or
min (|um|, |vm+1|) = 1, i.e., whether there is indeed overlap
or not.

Since we gave closed-form expressions of ζ in all possible
cases (as given by (13), (14), (15), (18), (20) and (22)), we
are now able to deduce a closed-form expression for matrix
G, as presented in the next section.

B. Expression of matrix G

First, we will give the expression of the diagonal terms of
G (case n = m), then the first superdiagonal terms (case
n = m+ 1), and we will finish with the upper triangle terms
(case n > m+ 1).
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1) Diagonal terms (case n = m): By plugging (13)–
(15) into (10), and by using the fact that U1−sm (−hm) =
Usm (hm), we obtain the following closed-form of the diago-
nal of G:

[G]m,m =fD (τ , hm, hm)

×
[
ρ
|hm|
m

(
U2sm (hm)

)
+ ρ
|hm|
m

(
U2sm−1 (hm)

)]
− 2fD (τ , hm,−hm) ρ

2|hm|
m

(
Usm (hm)

)


f2
D (τ , hm, 0) ρ

2|hm|
m

(
Usm (hm)

) . (26)

Notice that in the special case of one single change-point, i.e.,
Q = m = 1, with s1 = 1/2 and τ = N − 1, by plugging (26)
into (8), we find:

WWB = sup
h

h2

[G]1,1
(

1
2 , h
)

= sup
h

h2
(

1− |h|
N−1

)2

ρ
2|h|
1 ( 1

2 )

2
(

1− |h|
N−1 −

(
1− 2|h|

N−1

)
ρ

2|h|
1 ( 1

2 )
) (27)

which is our proposed bound in [21].
2) Upper triangle terms (case n > m+1): We notice from

(18) that, for this case n > m+ 1

ζ (sm, sn, hm, hn) = ζ (1− sm, 1− sn,−hm,−hn)

= ζ (sm, 1− sn, hm,−hn)

= ζ (1− sm, sn,−hm, hn)

(28)

which is obtained by using the fact that U1−sm (−hm) =
Usm (hm). This directly implies that

[G]m,n = 0. (29)

3) First superdiagonal terms (case n = m+1): In order to
avoid a tedious sign analysis of hm and hm+1, let us rewrite
the numerator of (10) as

num
(

[G]m,m+1

)
= sign (hmhm+1) (30)

×
[
ζ
(
Usm (hm) , Usm+1 (hm+1) , |hm| , |hm+1|

)
+ ζ
(
Usm (−hm) , Usm+1

(−hm+1) ,− |hm| ,− |hm+1|
)

− ζ
(
Usm (hm) , Usm+1

(−hm+1) , |hm| ,− |hm+1|
)

− ζ
(
Usm (−hm) , Usm+1 (hm+1) ,− |hm| , |hm+1|

)]
where, for any real x, sign (x) = 1 if x > 0 and
sign (x) = −1 if x < 0. Since |hm| > 0 > − |hm+1|,
according to results from Section C3b, the third term
ζ
(
Usm (hm) , Usm+1

(−hm+1) , |hm| ,− |hm+1|
)

in (30) has
to be written according to (22), whereas the remaining three
terms are given by (20).

Then, by appropriately plugging (20) and (22) into (30), we
find:

num
(

[G]m,m+1

)
=

sign (hmhm+1) gov (τ , sm, sm+1, hm, hm+1)

× ρ|hm|
m

(
Usm (hm)

)
ρ
|hm+1|
m+1

(
Usm+1

(hm+1)
) (31)

where gov (τ , hm, hm+1) is defined, for m+ 1 < Q, by

gov (τ , hm, hm+1)
∆
= fFSD (τ , |hm| , |hm+1|)

+ fFSD (τ ,− |hm| ,− |hm+1|)

− fov (τ , sm, sm+1, |hm| ,− |hm+1|)

− fFSD (τ ,− |hm| , |hm+1|)

=
(τ − |hm|) (τ − |hm+1|)

τ3

[
2 (τ − |hm| − |hm+1|)+

− (τ − |hm| − |hm+1|+ 1)
+ −

(
τ − (|hm|, |hm+1|)+

)+

+
1−
(
Rm(Usm (hm),Usm+1

(−hm+1))
)1−(|hm|,|hm+1|)

−

1−Rm(Usm (hm),Usm+1
(−hm+1))

]
(32)

and for m + 1 = Q, gov (τ , hQ−1, hQ) is obtained by
replacing the term (τ−|hm|)(τ−|hm+1|)

τ3 in (32) with τ−|hQ−1|
τ2 .

The denominator of [G]m,m+1 is obtained by plugging (15)
twice into (10), i.e., once with α = sm and um = hm, and
once with α = sm+1 and um = hm+1. We finally obtain, for
any m ∈ {1, . . . , Q− 1}

[G]m,m+1 = τ sign(hmhm+1)
(τ−|hm|)(τ−|hm+1|)

[
2 (τ − |hm| − |hm+1|)+

− (τ − |hm| − |hm+1|+ 1)
+ −

(
τ − (|hm|, |hm+1|)+

)+

+
1−
(
Rm(Usm (hm),Usm+1

(−hm+1))
)1−(|hm|,|hm+1|)−

1−Rm(Usm (hm),Usm+1
(−hm+1))

]
. (33)

Notice (33) is valid also if |hm| = |hm+1| = 1, as well as if
m+ 1 = Q.

We conclude, due to (26), (33) and (29), that matrix G is
tridiagonal, i.e.,

G =



A1 B1 0 · · · 0

B1 A2 B2
. . .

...

0 B2
. . . . . . 0

...
. . . . . . . . . BQ−1

0 · · · 0 BQ−1 AQ


(34)

where, for any m ∈ {1, . . . , Q}, Am is given by the right
hand side of (26), and for m ∈ {1, . . . , Q− 1}, Bm is
given by the right hand side of (33).

Note that the same kind of result was obtained in [18],
where the Barankin information matrix plays the same role as
G in this paper. As in [18], the fact that there exists some
m such that Bm 6= 0 confirms that the joint estimation of
Q change-points is not equivalent to estimating one single
change-point Q times. However, a noticeable difference with
results from [18] is that Bm generally never equals zero,
consequently matrix G is not block diagonal. Even if its
inversion is not as simple, it can still be computed efficiently
[34].

These results have been obtained whatever the distribution
of the observations. In the next section, we apply these
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results to the changes in Gaussian and Poisson distributed
observations. Note that from equations (26) and (33), for a
given distribution of the observations, the only terms that need
to be calculated are ρm (α) as defined in (17), and κm (α, β)
as defined in (25), whereas Rm (α, β) is deduced from them,
using (24).

V. CASES OF GAUSSIAN AND POISSON DISTRIBUTIONS

Gaussian and Poisson distributions both are widely encoun-
tered in signal processing applications, see e.g., [2], [35], [36].
For this reason, this section is dedicated to the derivation of
the terms of matrix G in these two cases.

A. Gaussian Case

In this section, we assume the distribution of the obser-
vations is piecewise Gaussian i.i.d.: xi ∼ N

(
µq, σ

2
qI
)

for
i = tq−1 + 1, . . . , tq , with q = 1, . . . , Q + 1 (we recall that,
by definition, t0 = 0 and tQ+1 = N ). It is then possible to
derive ρm (α) for 1 ≤ m ≤ Q and 0 < α < 1, using (17). In
the case where both mean and variance are likely to change,
after some manipulations we obtain

ρm (α) =

( (
snrv

m,m+1

)α
αsnrv

m,m+1 + 1− α

)M
2

× exp

{
−

α (1− α) snrm
m,m+1

2
(
αsnrv

m,m+1 + 1− α
)} (35)

where the following signal-to-noise ratios (SNR) have been
defined:

snrm
m,n =

‖µn − µm‖
2

σ2
m

and snrv
m,n =

σ2
n

σ2
m

(36)

for m,n = 1, . . . , Q. The adaptation to the expression of
ρm
(
Uα (hm)

)
is straightforward. If the changes occur either

in the mean only (i.e., snrv
m,m+1 = 1, ∀m), or in the variance

only (i.e., snrm
m,m+1 = 0, ∀m), the expression of ρm (α) can

be simplified accordingly:

ρm (α) = exp

{
−α (1− α)

2
snrm

m,m+1

}
(37)

if the variance is constant, and

ρm (α) =

( (
snrv

m,m+1

)α
αsnrv

m,m+1 + 1− α

)M
2

(38)

if the mean is constant.
Regarding κm (α, β) defined in (25), the same kind of

manipulations leads to

κm (α, β) =

[ (
snrv

m,m+2

)α (
snrv

m+1,m+2

)β
αsnrv

m,m+2 + βsnrv
m+1,m+2 + 1− α− β

]M
2

× exp


−

αβsnrv
m+1,m+2snrm

m,m+1

+ α (1− α− β) snrm
m,m+2

+ β (1− α− β) snrm
m+1,m+2

2(αsnrv
m,m+2 + βsnrv

m+1,m+2

+ 1− α− β)


. (39)

Finally, Rm can be calculated by plugging (35) and (39)
into (24), and we obtain

Rm (α, β)

=

[
αsnrv

m,m+2 + (1− α− β) snrv
m+1,m+2 + β(

αsnrv
m,m+1 + 1− α

) (
(1− β) snrv

m+1,m+2 + β
)]M

2

× exp

{
− αβ

2
(
αsnrv

m,m+2 + (1− α− β) snrv
m+1,m+2 + β

)
×

(
αsnrv

m,m+2 + 1− α
αsnrv

m,m+1 + 1− α
snrm

m,m+1

+
(1− β) snrv

m,m+2 + β

(1− β) snrv
m+1,m+2 + β

snrm
m+1,m+2

− snrm
m,m+2

)}
. (40)

B. Poisson case

Let us now assume that the observations follow a piecewise,
i.i.d., Poisson distribution, i.e., xi ∼ P (λq) for i = tq−1 +
1, . . . , tq and q = 1, . . . , Q + 1. As in the previous section,
it is possible to obtain closed-form expressions for ρm (α),
κm (α, β) and Rm (α, β), which we give hereafter. Since the
distribution is discrete, one has to replace the integral operator
in (17) and (25) with a discrete sum. Then, we have

ρm (α) =

+∞∑
k=0

Prαλm
(x = k)

Prα−1
λm+1

(x = k)

= exp {−αλm − (1− α)λm+1}
+∞∑
k=0

(
λαmλ

1−α
m+1

)k
k!

= exp
{
−αλm − (1− α)λm+1 + λαmλ

1−α
m+1

}
. (41)

In a similar way, we obtain the expression of κm (α, β),
that is

κm (α, β) =

+∞∑
k=0

Prαλm
(x = k) Prβλm+1

(x = k)

Prα+β−1
λm+2

(x = k)

= exp

{
−αλm − βλm+1 − (1− α− β)λm+2

+
λαmλ

β
m+1

λα+β−1
m+2

}
, (42)

as well as that of Rm (α, β):

Rm (α, β) = exp

{
−λm+1

[
1−

(
λm
λm+1

)α
−
(
λm+2

λm+1

)β
+

(
λm
λm+1

)α(
λm+2

λm+1

)β]}
. (43)
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VI. COMPUTATION OF THE TIGHTEST WWB

In this section, we aim to present a fast and efficient
procedure in order to compute the tightest WWB, w.r.t. the
global mean square error, given by

EX,t
{[
t̂ (X)− t

] [
t̂ (X)− t

]T}�WWB

= sup
h,

s1,...,sQ

HG−1HT
(44)

in which h = [h1, . . . , hQ]T . It is worth mentioning that, we
notice by extensive simulations, see Section VII, that sq = 1

2
for q = 1, . . . , Q seems to be the optimal value ∀h1, . . . , hQ ∈
A, in which the set of the possible test points A, satisfies G to
be a positive definite matrix. Consequently, in the remaining
of this section, we focus on the computation of the supremum
of the finite set W = {WWB(h) | (h1, . . . , hQ) ∈ A} w.r.t.
Loewner partial ordering [32] by using a similar methodology
to [18], [37], in which, for sake of clarity the WWB matrices
are indexed by the vector containing the test point h for fixed
sq = 1

2 for q = 1, . . . , Q.
First, let us recall some useful definitions: The greatest

element WWB(h∗) w.r.t. (S,�) ofW , if it exists, is defined
as the element of W satisfying WWB(h) � WWB(h∗),
∀h ∈ A in which S denotes the set of square matrices of size
Q×Q andA � B means thatA−B is a non-negative definite
matrix. Whereas, the supremum is a minimal-upper bound on
W that could be not contained in the setW . Meaning that, the
greatest element may not exist (in the case of the presence of
at least two non comparable matrices w.r.t. Loewner partial
ordering and belonging to W), but if it exists, thus, it is
also the supremum. Finally, a maximal element, w.r.t. (S,�),
WWB(h′), of W insures that there is no element in W such
that WWB(h′) �WWB(h′′).

Second, let us recall Lemma 3 of [18], which sates that
for any two positive definite matrices A and A′, A �
A′ if and only if ε(A′) ⊆ ε(A) in which the hyper-
ellipsoid ε(A) is defined as ε(A) =

{
y | yTA−1y ≤ 1

}
.

Consequently, WWB(h∗) is given as the generating matrix
of the minimum volume hyper-ellipsoid containing the set
constituted of the hyper-ellipsoids generated by all matrices
belonging to W . This means that, the computation of the
supremum is done by finding ε(WWB(h∗)) which contains
EW = {ε(WWB(h)) | h ∈ A}. Furthermore, for a lower
computational cost, EW can be reduced to Q′ elements stacked
in the set E ′W in which only the maximal elements of EW are
retained (this can be done by a simple Matlab routine).

Finally, the computation of the minimum volume ellipsoid
covering an union of ellipsoids can be solved efficiently using
the following convex optimization problem (see page 411 of
[37], for more details)

minimize log
(

det
(
WWB(h)

1
2

))
(45)

subject to b1 ≥ 0, b2 ≥ 0, . . . , bm ≥ 0,[
WWB(h)−1 − biWWB(hi)

−1 0
0 bi − 1

]
� 0

(i = 1, . . . , Q′) ,

in which WWB(hi) ∈ E ′W .

VII. NUMERICAL RESULTS

In order to illustrate the previous theoretical results, we
now apply them to simulated data. First of all, we present the
conditions of these simulations. We then investigate the three
cases introduced in the previous section, namely changes in i)
the mean of a Gaussian time series with constant variance, ii)
the variance of a Gaussian time series with constant mean
and iii) the parameter of a Poisson distribution. These are
the cases treated in [18], however the approach is different
since we assume the changes locations are random variables,
as explained in section II. Consequently, it is important to keep
in mind that the WWB holds on the global mean square error
(GMSE). The presented results thus essentially consist in the
comparison between the GMSE of the Maximum A Posteriori
(MAP) estimator and the proposed bound.

A. MAP estimator and simulation parameters

By definition, the MAP estimator is given by

t̂MAP = arg max
k

ln Pr (t = k|X) (46)

which reduces to, using the fact that Pr (t = k) does not
depend on k (see (5)) and the Bayes’ rule:

t̂MAP = arg max
k

ln p (X|t = k)

= arg max
k

Q+1∑
q=1

ln pηq

(
xkq−1+1, . . . ,xkq

)
(47)

where k0 = t0 = 0 and kQ+1 = tQ+1 = N . Its computation
is done numerically.

The following simulations were conducted with M = 1
(i.e., single time series), N = 80 and a number of changes
Q = 2 or 3. We plot the average GMSE of the MAP computed
over 1000 Monte-Carlo experiments. It is traced in function of
SNRs, whose definitions are recalled hereafter for each case.
The prior law parameter was fixed at its maximum value, i.e.,
τ =

⌊
N−1
Q

⌋
, given that the number of changes Q is assumed

to be known (as we stated in (3)).

B. Mean changes of a Gaussian distribution

As stated in (8), the WWB is obtained by solving (45)
using CVX package [38] w.r.t. h1, h2, h3, and for different
values of s1, s2, s3 if necessary. We took the test-points in
their maximum acceptable range, that is |hq| ≤ τ − 1 for all
q.

We consider the first particular case described in section
V-A, namely multiple changes in the mean of a Gaussian
distribution with constant variance. The corresponding matrix
G from (8) is given by (26) and (33), in which one has to
plug (37) and (40) with snrv

m,n = 1, ∀m,n. In our example,
we chose σ2 = 1, µ1 = 1, and µ2, µ3 and µ4 are set in such
a way that snrm

1,2 = snrm
2,3 = snrm

3,4 = snr. More precisely,
we set µm+1 = µm + (−1)

m
√
σ2snr, m = 1, 2, 3.

The influence of parameters sq is first studied on a reduced
simulation with Q = 2 and for a large number of couple values
(s1, s2) ∈ ]0, 1[

2. Our simulation results reveal that s1 = s2 =
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Fig. 1. Plot of trace(WWB) in function of the SNR for various values of
parameter sq in the particular case s1 = s2, for Q = 2 changes in the mean
of a Gaussian distribution.

0.5 seems to be the optimal value. For sake of clarity, we
present in Fig. 1 only a sample of this values, namely, s1 = s2

lying in the set {0.01, 0.25, 0.33, 0.5, 0.66, 0.75, 0.90}.
In Fig. 2, we illustrate the global mean square error and

the associated WWB for each change-point t1, t2, t3, as a
function of snr, by plotting the diagonal terms of the matrices
GMSE and WWB, respectively. One can note that, even
though the gap between the GMSE and the bound increases for
SNRs between -20 dB and 10 dB, it decreases for SNR higher
than 10 dB to less than 10 dB of difference. In addition, it is
worth mentioning that a gap of 13 dB between the estimated
GMSE and the bound, as it is the case at snr = 9 dB
regarding to t1, corresponds to a difference of 1 sample in
terms of the root mean square error, which is reasonable.
Such an asymptotic gap can be explained by the fact that
the estimated parameters are discrete, and in this context the
classical theorems of convergence, consistence and efficiency
of estimators like the MLE are no longer valid: one can refer
to [39] for more details on discrete parameters estimation. One
can also remark that, at snr = −15 dB, both the GMSE and
the WWB are higher regarding to t1 than they are regarding
to t3. This is somewhat intuitive since the error made at
estimating the first change is likely to accumulate with that
made when estimating the subsequent ones. The derived bound
consequently reflects this behavior. The study is restricted to
a SNR range under 15 dB, since for higher SNR, the bound
and the GMSE drastically tend to zero. This is partly due
to the integer nature of the parameters: at high SNR, the
average GMSE over all the Monte-Carlo simulations is more
and more likely to equal zero, then its logarithm tends to −∞,
consequently the corresponding points cannot be plotted. One
way to overcome this problem is to increase the number of
Monte-Carlo experiments.

C. Variance changes of a Gaussian distribution

In this section, we study the second particular case described
in section V-A, namely multiple changes in the variance of a
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3,3
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Difference = 1 sample

Fig. 2. WWBs and estimated GMSEs w.r.t. each change-point versus SNR,
for Q = 3 changes in the mean of a Gaussian distribution. Green arrow: gap
between the GMSE and the bound in terms of root mean square error.

Gaussian distribution with constant mean. The matrix G in
(8) is once again obtained from (26) and (33), in which one
plugs (38) and (40) with snrm

m,n = 0, ∀m,n. In this example,
we chose µ = 0, σ2

1 = 1, and σ2
2, σ2

3 and σ2
4 are set such

that σ2
m+1 = σ2

msnr, m = 1, 2, 3, where snr = snrv
1,2 =

snrv
2,3 = snrv

3,4. Fig. 3 illustrates the behavior of the GMSE
and the WWB for each change-point t1, t2, t3 as a function of
snr, which is approximately the same as in the previous case,
except the gap between them seems slightly smaller.

D. Mean Rate changes of a Poisson distribution

In the same way as in the previous examples, we study the
case of three change-points in the mean rate of a Poisson
distribution, as formulated in section V-B. One here uses
equations (41) and (43) to obtain (26) and (33), which enables
us to compute the WWB as stated in (8). In this context,
we define the SNR for the mth change-point as snrλm,m+1 =

(λm+1 − λm)
2
/ (λm)

2. In practice, we set λ1 = 1 and the
followings are set in such way that snrλ1,2 = snrλ2,3 = snrλ3,4 =
snr. More precisely, λm+1 = λm (1 +

√
snr). In Fig. 4, we

illustrate the behavior of the WWB compared to the GMSE
performance of the MAP estimator. The main difference with
the previous cases is that neither the WWB nor the GMSE
performance for each change-point tend to be equivalent at
high SNR: there exists a cross point (snr = −6 dB) below
which the behavior is similar to the Gaussian case (i.e., the
GMSE – and the WWB – is higher for late changes than for
the early ones) and above which the errors relative order is
inverted, i.e., the error relative to late changes becomes smaller
than that relative to early changes. This different behavior can
be explained by two reasons:

1) The fact that a change in λ affects both the mean and
the variance of the distribution. In the Poisson case, only one
parameter (the mean rate λm) is likely to change from one
segment to another, but unlike in the Gaussian case, it drives
both mean and variance. Yet, it can intuitively be understood
that a composite change that affects both mean and variance is
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Fig. 3. WWBs and estimated GMSEs w.r.t. each change-point versus SNR,
for Q = 3 changes in the variance of a Gaussian distribution. Green arrow:
gap between the GMSE and the bound in terms of root mean square error.

more easily estimated than a simple change in the mean only,
for example (a mathematical justification of this point can be
found in [1]).

2) The definition of the SNR used for this simulation.
Indeed, the relation λm+1 = λm (1 +

√
snr) defines an in-

creasing geometric progression (λm)m≥1, which makes the
difference between the means of consecutive segments higher
for late changes (for instance for the last one t3 between
segments [t2 + 1, t3] and [t3 + 1, N ]) than for early changes
(for example the one before t2 between segments [t1 + 1, t2]
and [t2 + 1, t3]).

VIII. CONCLUSION

In this paper, we analyzed the Weiss-Weinstein bound
(WWB) for the estimation of multiple change-points whose
total number is assumed to be known, completing [21]. Partic-
ularly, we have given a closed-form expression for the matrix
G that is involved in its computation. The tridiagonal structure
of this matrix shows that, in this Bayesian context as well,
the estimation of consecutive change-points interfere one with
another. We then applied the proposed bound to two types of
distribution: first in the Gaussian case with changes either in
the mean or in the variance, secondly in the Poisson case.
Furthermore, a semi-definite problem formulation is given in
order to solve efficiently the optimization problem leading to
the tightest WWB. Simulations were conducted for each of
these examples, which led to similar conclusions: even if there
is a slight gap between the WWB and the estimates errors,
the proposed bound is in good agreement with the estimation
behavior.

APPENDIX
TECHNICAL DETAILS ON THE DERIVATION OF

ζ(α, β, um, vn)

In this appendix, we compute ζ (α, β, um, vn) in order to
obtain [G]m,n. Using the conditional probabilities chain rule,
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Fig. 4. WWBs and estimated GMSEs w.r.t. each change-point versus SNR,
for Q = 3 changes in the mean rate of a Poisson distribution. Green arrow:
gap between the GMSE and the bound in terms of root mean square error.

we rewrite (11) as:

ζ (α, β, um, vn)

=
∑
k∈I

(
Prα (t = k + um) Prβ (t = k + vn)

Prα+β−1 (t = k)

×
∫

Ω

pα (X|t = k + um) pβ (X|t = k + vn)

pα+β−1 (X|t = k)
dX

)

=
∑
k∈I

(
π (α, β, um, vn,k)

∫
Ω

` (X, α, β, um, vn,k) dX

)
(48)

in which we define

π (α, β, um, vn,k)
∆
=

Prα(t = k + um) Prβ(t = k + vn)

Prα+β−1 (t = k)
(49)

and

` (X, α, β, um, vn,k)
∆
=

pα (X|t = k + um) pβ (X|t = k + vn)

pα+β−1 (X|t = k)
. (50)

In the following, we first give the expres-
sion of π (α, β, um, vn,k). Then, we derive∫

Ω
` (X, α, β, um, vn,k) dX , and we finally deduce a

closed-form expression of ζ.

A. Derivation of π (α, β, um, vn,k)

We directly deduce the expression of the denominator of
(49) from (5) as:

Prα+β−1 (t = k) =
(

1
τ

)Q(α+β−1)
if kq ∈ Jq for all q ∈ {1, . . . , Q}

0 otherwise.
(51)
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TABLE I
RANGE OF VALUES FOR kq INDICES IN THE CASE D (m = n)

q (kq)min (kq)max

m km−1 + 1 + (−um,−vm)+ km−1 + τ − (um, vm)+

m+ 1 km + 1 + (um, vm)+ km + τ − (−um,−vm)+

Other kq−1 + 1 kq−1 + τ

The two terms on the numerator of (49) are obtained
similarly by writing the elements of vectors um and vn as
follows:

[um]i = umδm,i and [vn]i = vnδn,i (52)

where [um]i denotes the i-th element of vector um and δm,i
is the Krönecker delta, i.e., δm,i = 1 iff i = m, otherwise
δm,i = 0. Then, from (51) and (52), we deduce, on the one
hand:

Prα (t = k + um) ={(
1
τ

)Qα
if kq ∈ Jq,um for all q ∈ {1, . . . , Q}

0 otherwise,
(53)

where, for any integers q ∈ {1, . . . , Q} and um ∈ Z,
we define the sets of integers Jq,um as Jq,um

∆
= Jq +

um (δm,q−1 − δm,q), in which the “+” sign denotes the trans-
lation of the set. More explicitly:
Jq,um

= Jq = {kq−1 + 1, . . . , kq−1 + τ} if q 6= m,m+ 1

Jm,um
= {km−1 − um + 1, . . . , km−1 − um + τ}

Jm+1,um = {km + um + 1, . . . , km + um + τ} .

(54)

On the other hand, in the same way, we have:

Prβ (t = k + vn) ={(
1
τ

)Qβ
if kq ∈ Jq,vn for all q ∈ {1, . . . , Q}

0 otherwise.
(55)

It is necessary that the terms in (51), (53) and (55) are
simultaneously nonzero to ensure that π (α, β, um, vn,k) in
(49) is nonzero as well. Consequently, for all q = 1, . . . , Q,
the summation domain Iq w.r.t. kq in (48) is given by:

Iq = Jq,0 ∩ Jq,um
∩ Jq,vn . (56)

Tables I, II and III give the smallest element (kq)min

∆
= min Iq

and the greatest element (kq)max

∆
= max Iq of each set Iq

in the three cases n = m (D), n > m + 1 (UT) and n =
m + 1 (FSD), respectively. In these tables, we also use the
functions (x)

+ ∆
= max (x, 0), defined earlier, and (x, y)

+ ∆
=

max (x, y, 0).
Finally, the complete expression of π (α, β, um, vn,k) is

deduced by plugging (51), (53) and (55) into (49):

π (α, β, um, vn,k) ={(
1
τ

)Q
if kq ∈ Iq for all q ∈ {1, . . . , Q}

0 otherwise,
(57)

where the sets Iq are given by tables I to III.

TABLE II
RANGE OF VALUES FOR kq INDICES IN THE CASE UT (m+ 1 < n)

q (kq)min (kq)max

m km−1 + 1 + (−um)+ km−1 + τ − (um)+

m+ 1 km + 1 + (um)+ km + τ − (−um)+

n kn−1 + 1 + (−vn)+ kn−1 + τ − (vn)
+

n+ 1 kn + 1 + (vn)
+ kn + τ − (−vn)+

Other kq−1 + 1 kq−1 + τ

TABLE III
RANGE OF VALUES FOR kq INDICES IN THE CASE FSD (m+ 1 = n)

q (kq)min (kq)max

m km−1 + 1 + (−um)+ km−1 + τ − (um)+

m+ 1 km + 1 + (um,−vm+1)
+ km + τ − (−um, vm+1)

+

m+ 2 km+1 + 1 + (vm+1)
+ km+1 + τ − (−vm+1)

+

Other kq−1 + 1 kq−1 + τ

B. Derivation of
∫

Ω
` (X, α, β, um, vn,k) dX

Let us now derive the second term of (48). Given the
model (1), and particularly using the independency of the
observations one from another, the likelihood p (X|t = k) of
the observations is given by:

p (X|t = k) =

Q+1∏
q=1

kq∏
i=kq−1+1

pηq
(xi) (58)

and in the same way,

p (X|t = k + um) =
k1∏
i=1

pη1
(xi)

k2∏
i=k1+1

pη2
(xi) . . .

km+um∏
i=km−1+1

pηm
(xi)

×
km+1∏

i=km+um+1

pηm+1
(xi) . . .

N∏
i=kQ+1

pηQ+1
(xi) . (59)

Of course, the expression of p (X|t = k + vn) is the same
as that in (59) by only replacing m with n and um with vn.
As already mentioned in the main body of this paper, since
matrix G is symmetric, it is possible to consider the case
m ≤ n only (diagonal and upper triangle terms). We separate
the study of the diagonal elements (case D m = n) from that
of the upper triangle ones (case UT m < n), as done in the
next two sections.

1) Case D (m = n): In this case, as it can be seen
from the numerator of (10), um and vm can either be the
same, i.e., um = vm, or opposed, i.e., um = −vm. Then,
depending on the sign of um, the study of the expression of∫

Ω
` (X, α, β, um, vm,k) dX can be split into the following

four cases (“D” stands for “diagonal”):
a) Case D1: um = vm > 0

b) Case D2: um = vm < 0

c) Case D3: um = −vm > 0

d) Case D4: um = −vm < 0.

(60)
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a) Case D1 (um = vm > 0): Using (58) and (59), we
rewrite ` (X, α, β, um, um,k) as:

` (X, α, β, um, um,k)

=
pα+β (X|t = k + um)

pα+β−1 (X|t = k)

=

k1∏
i=1

pα+β
η1

(xi) . . .
km+um∏
i=km−1+1

pα+β
ηm

(xi)

k1∏
i=1

pα+β−1
η1

(xi) . . .
km∏

i=km−1+1

pα+β−1
ηm

(xi)

×

km+1∏
i=km+um+1

pα+β
ηm+1

(xi) . . .
N∏

i=kQ+1

pα+β
ηQ+1

(xi)

km+1∏
i=km+1

pα+β−1
ηm+1

(xi) . . .
N∏

i=kQ+1

pα+β−1
ηQ+1

(xi)

=
k1∏
i=1

pη1
(xi) . . .

km∏
i=km−1+1

pηm
(xi)

×
km+um∏
i=km+1

pα+β
ηm

(xi)

pα+β−1
ηm+1

(xi)

×
km+1∏

i=km+um+1

pηm+1
(xi) . . .

N∏
i=kQ+1

pηQ+1
(xi) . (61)

By integrating over Ω, we notice that all variables xi, i =
1, . . . , N are separated. Thus, given (61) the integrals w.r.t.
x1, . . . ,xkm ,xkm+um+1, . . . ,xkQ equal 1, then we have:∫

Ω

` (X, α, β, um, um,k) dX

=

∫
(Ω′)um

km+um∏
i=km+1

pα+β
ηm

(xi)

pα+β−1
ηm+1

(xi)
dxkm+1 . . . dxkm+um

=
km+um∏
i=km+1

(∫
Ω′

pα+β
ηm

(xi)

pα+β−1
ηm+1

(xi)
dxi

)

=

(∫
Ω′

pα+β
ηm

(x)

pα+β−1
ηm+1

(x)
dx

)um

∆
= ρum

m (α+ β) (62)

in which Ω′ denotes the observation space in one single time
instant, i.e.,

∏N
k=1 Ω′ = Ω, and where we define

ρq (α)
∆
=

∫
Ω′

pαηq
(x)

pα−1
ηq+1

(x)
dx (63)

with q, r ∈ {1, . . . , Q+ 1} and α ∈ R.
b) Case D2 (um = vm < 0): In this case, we follow the

same method as in the previous case, and (62) becomes:∫
Ω

` (X, α, β, um, um,k) dX

=
km∏

i=km+um+1

(∫
Ω′

pα+β
ηm+1

(xi)

pα+β−1
ηm

(xi)
dxi

)

=

(∫
Ω′

pα+β
ηm+1

(x)

pα+β−1
ηm

(x)
dx

)−um

= ρ−um
m (1− α− β) . (64)

c) Case D3 (um = −vm > 0): Using the same
methodology, we obtain slightly different expressions since
we have to rewrite ` (X, α, β, um,−um,k) as:

` (X, α, β, um,−um,k)

=
pα (X|t = k + um) pβ (X|t = k − um)

pα+β−1 (X|t = k)

=
k1∏
i=1

pη1
(xi) . . .

km−um∏
i=km−1+1

pηm
(xi)

×
km∏

i=km−um+1

pβηm+1
(xi)

pβ−1
ηm

(xi)

km+um∏
i=km+1

pαηm
(xi)

pα−1
ηm+1

(xi)

×
km+1∏

i=km+um+1

pηm+1
(xi) . . .

N∏
i=kQ+1

pηQ+1
(xi) . (65)

which gives, by integrating over Ω:∫
Ω

` (X, α, β, um,−um,k) dX

=

(∫
Ω′

pβηm+1
(x)

pβ−1
ηm

(x)
dx

)um
(∫

Ω′

pαηm
(x)

pα−1
ηm+1

(x)
dx

)um

= ρum
m (1− β) ρum

m (α) . (66)

d) Case D4 (um = −vm < 0): This last case is once
again very similar to the previous one: as in (66), we have∫

Ω

` (X, α, β, um,−um,k) dX = ρ−um
m (β) ρ−um

m (1− α) .

(67)
Summary of cases D1–D4: Finally, by using the follow-

ing discrete step-function Uγ defined for γ ∈ R as

Uγ (n) =

{
γ if n ≥ 0

1− γ if n < 0
(68)

one can merge (62), (64), (66) and (67) into∫
Ω

` (X, α, β, um, vm,k) dX ={
ρ
|um|
m

(
Uα+β (um)

)
if vm = um

ρ
|um|
m

(
Uα (um)

)
ρ
|vm|
m

(
Uβ (vm)

)
if vm = −um

(69)

which reduces, for vm = 0, um 6= 0 and β = 0, to:∫
Ω

` (X, α, 0, um, 0,k) dX = ρ|um|
m

(
Uα (um)

)
. (70)

The same work now remains to be done for n > m.
2) Case UT (m < n): What differs from the previous case,

is that um and vn can differ not only in their sign, but also in
their absolute value. As in the previous section, we split the
study into four cases based on the respective signs of um and
vn (“UT” stands for “upper triangle”):

a) Case UT1: um > 0 and vn > 0

b) Case UT2: um < 0 and vn < 0

c) Case UT3: um < 0 and vn > 0

d) Case UT4: um > 0 and vn < 0.

(71)

The study of the aforementioned four cases is simi-
lar to that of the previous section, i.e., we first write
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` (X, α, β, um, vm,k) in the same way as in (65), then we
integrate over Ω. After some calculus, the obtained expressions
in each case are given below.

a) Case UT1 (um > 0 and vn > 0):∫
Ω

` (X, α, β, um, vn,k) dX = ρum
m (α) ρvnn (β) (72)

b) Case UT2 (um < 0 and vn < 0):∫
Ω

` (X, α, β, um, vn,k) dX = ρ−um
m (1− α) ρ−vnn (1− β)

(73)
c) Case UT3 (um < 0 and vn > 0):∫

Ω

` (X, α, β, um, vn,k) dX = ρ−um
m (1− α) ρvnn (β) (74)

d) Case UT4 (um > 0 and vn < 0): In this case, it
should be noticed that, despite we assumed m < n, which
implies km < kn, one could have km + um > kn + vn,
meaning an overlap between the test-points, that we have to
take into account. A careful inspection of tables II and III
shows that this overlap can only occur if n = m+ 1 (i.e., for
terms in the first superdiagonal of matrix G, and by symmetry
in the first subdiagonal). The necessary condition for at least
one overlap point is then km + um > (km+1)min + vm+1,
which is equivalent to min(um,−vm+1) ≥ 2. Thus, we obtain
two expressions for

∫
Ω
` (X, α, β, um, vn,k) dX , depending

on whether this condition is satisfied or not, i.e., whether there
is at least one overlap point or there is none.
• No overlap case: min(um,−vm+1) = 1
In this situation, the calculations are similar to those in cases

UT1–UT3, consequently we obtain:∫
Ω

` (X, α, β, um, vn,k) dX = ρum
m (α) ρ−vnn (1− β) (75)

• Overlap case: min(um,−vm+1) ≥ 2
This situation requires special attention. In this case one

must be careful about the order of the change-points in
each p.d.f. when writing ` (X, α, β, um, vm,k) as in (65). In
particular, one has km < km+1 + vm+1 < km + um < km+1,
then

` (X, α, β, um, vm,k)

=
pα (X|t = k + um) pβ (X|t = k + vm+1)

pα+β−1 (X|t = k)

=
k1∏
i=1

pη1
(xi) . . .

km∏
i=km−1+1

pηm
(xi)

×
km+1+vm+1∏
i=km+1

pαηm
(xi)

pα−1
ηm+1

(xi)

×
km+um∏

i=km+1+vm+1+1

pαηm
(xi) p

β
ηm+2

(xi)

pα+β−1
ηm+1

(xi)

×
km+1∏

i=km+um+1

pβηm+2
(xi)

pβ−1
ηm+1

(xi)

×
km+2∏

i=km+1+1

pηm+2
(xi) . . .

N∏
i=kQ+1

pηQ+1
(xi) . (76)

By integrating over Ω, we obtain:∫
Ω

` (X, α, β, um, vm,k) dX =

ρ
km+1+vm+1−km
m (α) ρ

km+1−(km+um)
m+1 (1− β)

κ
(km+1+vm+1)−(km+um)
m (α, 1− α− β)

(77)

with function κm defined as in (25).
Summary of cases UT1–UT4 (cases without overlap):

As in the previous section, we can summarize the previous
results into:∫

Ω

` (X, α, β, um, vn,k) dX =

ρ|um|
m

(
Uα (um)

)
ρ|vn|n

(
Uβ (vn)

)
(78)

which is valid for n > m + 1, and for n = m + 1 only if
min(um,−vm+1) = 1.

C. Final expression of ζ (α, β, um, vn)

Finally, it is possible to deduce the closed-form expressions
of ζ (α, β, um, vn) given in Section IV-A of the main body,
by plugging results from Appendix A and B into (48). Since
results from Appendix B depend upon the three cases D (m =
n), UT (m + 1 < n) and FSD (m + 1 = n) (see (69), (78)
and (77)), we need to separate them in the following as well.

1) Case D (m = n): Equations (13), (14) and (15)
are obtained by plugging (57) and (69) or (70) into (48).
Since neither (57) nor (69) depend on k, they both can
be taken out of the sum over I in (48). This leads to
function fD (τ , um, vm) introduced in (16), whose actual basic
definition is fD (τ , um, vm)

∆
= Card(I)

τQ =
∑
I 1

τQ , and whose
expression is directly deduced from Table I.

2) Case UT (m + 1 < n): Equation (18) is obtained
by plugging (57) and (78) into (48). Here again, since nei-
ther (57) nor (78) depend on k, they both can be taken
out of the sum over I in (48). This leads to function
fUT (τ , um, vn) introduced in (19), whose actual basic defini-
tion is fUT (τ , um, vn)

∆
= Card(I)

τQ as well, and its expression
is deduced from Table II.

3) Case m + 1 = n: This case is tricky because we need
to distinguish between the cases without and with overlap
between the test-points.

a) Case without overlap: Equation (20) is obtained by
plugging (57) and (75) into (48). Here again, since nei-
ther (57) nor (75) depend on k, they both can be taken
out of the sum over I in (48). This leads to function
fFSD (τ , um, vm+1) introduced in (21), whose actual basic
definition is fFSD (τ , um, vm+1)

∆
= Card(I)

τQ as well, and its
expression is deduced from Table III.

b) Case with possible overlap, i.e., um > 0 and
vm+1 < 0: This case is different from the previous ones,
since

∫
Ω
` (X, α, β,um,vm+1,k) dX depends on k if

km + um > km+1 + vm+1 (see (77)). Consequently, we split
the discrete sum in (48) into two parts depending on whether
km + |um| ≷ km+1 − |vm+1|. More precisely, for km+1 ∈{
km + (|um| , |vm+1|)+

+ 1, . . . , km + |um|+ |vm+1| − 1
}

∆
=

Iovm+1 there is overlap, leading to (77). On the other hand,
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for km+1 ∈ {km + |um|+ |vm+1| , . . . , km + τ} ∆
= Inom+1,

there is no overlap, thus,
∫

Ω
` (X, α, β,um,vm+1,k) dX

is given by (78) with n = m + 1. Notice that the only
situation in which there is no overlap terms at all, i.e.,
Card

(
Iovm+1

)
= 0, is when min (|um|, |vm+1|) = 1, then we

can write ζ (α, β, um, vm+1) according to (20).
Let us then derive ζ in a case with at least one overlap term,

i.e., min (|um|, |vm+1|) ≥ 2, or equivalently Card
(
Iovm+1

)
≥

1. Let us also first assume that m + 1 < Q. We can then
rewrite ζ as:

ζ (α, β, um, vm+1) =(
1

τ

)Q ∑
k1:m∈I1:m

[
z1 (α, β, um, vm,k1:m)
+ z2 (α, β, um, vm,k1:m)

] (79)

where ki:j denotes the truncated vector [ki, . . . , kj ]
T , and Ii:j

the cartesian product Ii× . . .×Ij , and where the overlapping
terms are included in

z1 (α, β, um, vm,k1:m)
∆
=∑

km+1∈Iovm+1

( ∑
km+2:Q∈Im+2:Q

[
ρkm+1−|vm+1|−km
m (α)

× κ(km+|um|)−(km+1−|vm+1|)
m (α, 1− α− β)

× ρkm+1−(km+|um|)
m+1 (β)

])
(80)

and the non-overlapping terms are included in

z2 (α, β, um, vm,k1:m) =

ρ|um|
m (α) ρ

|vm+1|
m+1 (1− β)

∑
km+1∈Inom+1

 ∑
km+2:Q∈Im+2:Q

1

 . (81)

The expression of z2 in (81) can be simplified in the same
way as in the non-overlapping cases, and we obtain

z2 (α, β, um, vm,k1:m) = τQ−m−2 (τ − |vm+1|)
× (τ − |um| − |vm+1|+ 1)

+

× ρ|um|
m (α) ρ

|vm+1|
m+1 (1− β) ,

(82)

and z1 in (80) can be simplified as

z1 (α, β, um, vm,k1:m) =

τQ−m−2 (τ − |vm+1|) ρ|um|
m (α)

× ρ|vm+1|
m+1 (1− β)

(
Rm (α, β)

)1−(|um|,|vm+1|)− − 1

1−Rm (α, β)

(83)

where (x, y)
− ∆

= min (x, y, 0), and Rm (α, β) is the common
ratio of the geometric series appearing in (79), defined as in
(24).

The manipulations are very similar in the case m+ 1 = Q.
Hence, by noticing that neither z1 nor z2 actually depend on
k1:m, we find that (79) results in (22).
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