R. W. Miller and C. B. Chang, A modified Cram??r-Rao bound and its applications (Corresp.), IEEE Transactions on Information Theory, vol.24, issue.3, pp.398-400, 1978.
DOI : 10.1109/TIT.1978.1055879

Y. Rockah and P. Schultheiss, Array shape calibration using sources in unknown locations--Part I: Far-field sources, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.35, issue.3, pp.286-299, 1987.
DOI : 10.1109/TASSP.1987.1165144

A. N. D-'andrea, U. Mengali, and R. Reggiannini, The modified Cramer-Rao bound and its application to synchronization problems, IEEE Transactions on Communications, vol.42, issue.2/3/4, pp.1391-1399, 1994.
DOI : 10.1109/TCOMM.1994.580247

R. A. Fisher, On an absolute criterion for fitting frequency curves, Mess. of Math, vol.41, pp.155-160, 1912.

M. Fréchet, Sur l'extension de certaines evaluations statistiques au cas de petits echantillons, Revue de l'Institut International de Statistique / Review of the International Statistical Institute, vol.11, issue.3/4, pp.182-205, 1943.
DOI : 10.2307/1401114

G. Darmois, Sur les limites de la dispersion de certaines estimations, Revue de l'Institut International de Statistique / Review of the International Statistical Institute, vol.13, issue.1/4, pp.9-15, 1945.
DOI : 10.2307/1400974

C. R. Rao, Information and the Accuracy Attainable in the Estimation of Statistical Parameters, Bull. Calcutta Math. Soc, vol.37, pp.81-91, 1945.
DOI : 10.1007/978-1-4612-0919-5_16

A. Bhattacharyya, On some analogues of the amount of information and their use in statistical estimation, Sankhya Indian J. Stat, vol.8, pp.1-14, 1946.

E. W. Barankin, Locally Best Unbiased Estimates, The Annals of Mathematical Statistics, vol.20, issue.4, pp.477-501, 1949.
DOI : 10.1214/aoms/1177729943

J. M. Hammersley, Estimating Restricted Parameters, Journal of Roy. Stat. Soc, vol.12, issue.2, pp.192-240, 1950.

D. G. Chapman and H. Robbins, Minimum Variance Estimation Without Regularity Assumptions, The Annals of Mathematical Statistics, vol.22, issue.4, pp.581-586, 1951.
DOI : 10.1214/aoms/1177729548

D. A. Fraser and I. Guttman, Bhattacharyya Bounds without Regularity Assumptions, The Annals of Mathematical Statistics, vol.23, issue.4, pp.629-632, 1952.
DOI : 10.1214/aoms/1177729344

J. Kiefer, On Minimum Variance Estimators, The Annals of Mathematical Statistics, vol.23, issue.4, pp.627-629, 1952.
DOI : 10.1214/aoms/1177729343

W. James and C. Stein, Estimation with Quadratic Loss, Proc. Fourth Berkeley Symp. on Math. Statist. and Prob, vol.1, pp.361-379, 1961.
DOI : 10.1007/978-1-4612-0919-5_30

R. Mcaulay and L. P. Seidman, A useful form of the Barankin lower bound and its application to PPM threshold analysis, IEEE Transactions on Information Theory, vol.15, issue.2, pp.273-279, 1969.
DOI : 10.1109/TIT.1969.1054297

W. R. Blischke, A. J. Truelove, and P. B. Mundle, On Non-Regular Estimation. I. Variance Bounds for Estimators of Location Parameters, Journal of the American Statistical Association, vol.33, issue.327, pp.1056-1072, 1969.
DOI : 10.1080/01621459.1969.10501036

R. Mcaulay and E. M. Hofstetter, Barankin Bounds on Parameter Estimation, IEEE Transactions on Information Theory, vol.17, issue.6, pp.669-676, 1971.
DOI : 10.1109/TIT.1971.1054719

F. E. Glave, A new look at the Barankin lower bound, IEEE Transactions on Information Theory, vol.18, issue.3, pp.349-356, 1972.
DOI : 10.1109/TIT.1972.1054810

C. R. Blyth, Necessary and Sufficient Conditions for Inequalities of Cramer-Rao Type, The Annals of Statistics, vol.2, issue.3, pp.464-473, 1974.
DOI : 10.1214/aos/1176342707

J. S. Abel, A bound on mean-square-estimate error, IEEE Transactions on Information Theory, vol.39, issue.5, pp.1675-1680, 1993.
DOI : 10.1109/18.259655

E. Chaumette, J. Galy, A. Quinlan, and P. , A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators, IEEE Transactions on Signal Processing, vol.56, issue.11, pp.5319-5333, 2008.
DOI : 10.1109/TSP.2008.927805

URL : https://hal.archives-ouvertes.fr/lirmm-00344323

K. Todros and J. Tabrikian, General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators, IEEE Transactions on Information Theory, vol.56, issue.10, pp.5064-5082, 2010.
DOI : 10.1109/TIT.2010.2059850

E. Chaumette, A. Renaux, and P. , Lower bounds on the mean square error derived from mixture of linear and non-linear transformations of the unbiasness definition, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009.
DOI : 10.1109/ICASSP.2009.4960266

URL : https://hal.archives-ouvertes.fr/inria-00444810

M. Moeneclaey, A Simple Lower Bound on the Linearized Performance of Practical Symbol Synchronizers, IEEE Transactions on Communications, vol.31, issue.9, pp.1029-1032, 1983.
DOI : 10.1109/TCOM.1983.1095941

M. Moeneclaey, A Fundamental Lower Bound on the Performance of Practical Joint Carrier and Bit Synchronizers, IEEE Transactions on Communications, vol.32, issue.9, pp.1007-1012, 1984.
DOI : 10.1109/TCOM.1984.1096172

H. Messer and Y. Adar, New lower bounds on frequency estimation of a multitone random signal in noise, Signal Processing, vol.18, issue.4, pp.413-424, 1989.
DOI : 10.1016/0165-1684(89)90083-2

I. Reuven and H. Messer, A Barankin-type lower bound on the estimation error of a hybrid parameter vector, IEEE Transactions on Information Theory, vol.43, issue.3, pp.1084-1093, 1997.
DOI : 10.1109/18.568725

F. Gini, R. Reggiannini, and U. Mengali, The modified Cramer-Rao bound in vector parameter estimation, IEEE Transactions on Communications, vol.46, issue.1, pp.52-60, 1998.
DOI : 10.1109/26.655403

F. Gini, A radar application of a modified Cramer-Rao bound: parameter estimation in non-Gaussian clutter, IEEE Transactions on Signal Processing, vol.46, issue.7, pp.1945-1953, 1998.
DOI : 10.1109/78.700966

M. Moeneclaey, On the true and the modified Cramer-Rao bounds for the estimation of a scalar parameter in the presence of nuisance parameters, IEEE Transactions on Communications, vol.46, issue.11, pp.1536-1544, 1998.
DOI : 10.1109/26.729398

F. Gini and R. Reggiannini, On the use of Cramer-Rao-like bounds in the presence of random nuisance parameters, IEEE Transactions on Communications, vol.48, issue.12, pp.2120-2126, 2000.
DOI : 10.1109/26.891222

F. Lu and J. V. Krogmeier, Modified Bhattacharyya bounds and their application to timing estimation, 2002 IEEE Wireless Communications and Networking Conference Record. WCNC 2002 (Cat. No.02TH8609), 2002.
DOI : 10.1109/WCNC.2002.993499

S. Bay, B. Geller, A. Renaux, J. Barbot, and J. Brossier, On the Hybrid Cram??r Rao Bound and Its Application to Dynamical Phase Estimation, IEEE Signal Processing Letters, vol.15, pp.453-456, 2008.
DOI : 10.1109/LSP.2008.921461

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.324.1119

J. P. Delmas, Closed-Form Expressions of the Exact Cramer-Rao Bound for Parameter Estimation of BPSK, MSK, or QPSK Waveforms, IEEE Signal Processing Letters, vol.15, pp.405-408, 2008.
DOI : 10.1109/LSP.2008.921477

URL : https://hal.archives-ouvertes.fr/hal-01298715

S. Fortunati, A. Farina, F. Gini, M. S. Greco, A. Graziano et al., Least Squares Estimation and Cramér–Rao Type Lower Bounds for Relative Sensor Registration Process, IEEE Transactions on Signal Processing, vol.59, issue.3, pp.1075-1087, 2011.
DOI : 10.1109/TSP.2010.2097258

S. Fortunati, F. Gini, A. Farina, A. Graziano, M. S. Greco et al., On the application of the expectation-maximisation algorithm to the relative sensor registration problem, IET Radar, Sonar & Navigation, vol.7, issue.2, pp.191-203, 2013.
DOI : 10.1049/iet-rsn.2012.0050

S. Gogineni, M. Rangaswamy, B. D. Rigling, and A. Nehorai, Cramér-Rao Bounds for UMTS-Based Passive Multistatic Radar, IEEE Transactions on Signal Processing, vol.62, issue.1, pp.95-106, 2014.
DOI : 10.1109/TSP.2013.2284758

W. Pei, D. Dongping, and Q. Z. Bin, Modified Cramer-Rao Bounds for Parameter Estimation of Hybrid Modulated Signal Combining PRBC and LFM, 2014 IEEE 17th International Conference on Computational Science and Engineering, 2014.
DOI : 10.1109/CSE.2014.204

A. Filip and D. Shutin, Cram??r???Rao bounds for L-band digital aeronautical communication system type 1 based passive multiple-input multiple-output radar, IET Radar, Sonar & Navigation, vol.10, issue.2, pp.348-358, 2016.
DOI : 10.1049/iet-rsn.2015.0202

O. Besson, Bounds for a Mixture of Low-Rank Compound-Gaussian and White Gaussian Noises, IEEE Transactions on Signal Processing, vol.64, issue.21, pp.5723-5732, 2016.
DOI : 10.1109/TSP.2016.2603965

J. Galy, E. Chaumette, F. Vincent, A. Renaux, and P. Larzabal, Lower bounds for non standard deterministic estimation, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), 2016.
DOI : 10.1109/SAM.2016.7569710

URL : https://hal.archives-ouvertes.fr/hal-01346613

P. Forster and P. , On lower Bounds For Deterministic Parameter Estimation, Proc. of IEEE ICASSP, 2002.
DOI : 10.1109/icassp.2002.1005948

URL : https://hal.archives-ouvertes.fr/halshs-00158304

K. Todros and J. Tabrikian, Hybrid lower bound via compression of the sampled CLR function, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, 2009.
DOI : 10.1109/SSP.2009.5278503

A. Yeredor, The joint MAP-ML criterion and its relation to ML and to extended least-squares, IEEE Transactions on Signal Processing, vol.48, issue.12, pp.3484-3492, 2000.
DOI : 10.1109/78.887041

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society, vol.39, issue.1, pp.1-38, 1977.

H. L. Van-trees and K. L. Bell, Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, 2007.
DOI : 10.1109/9780470544198

M. Stein, S. Bar, J. A. Nosseky, and J. Tabrikian, Performance analysis for pilot-based 1-bit channel estimation with unknown quantization threshold, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016.
DOI : 10.1109/ICASSP.2016.7472499

URL : http://arxiv.org/abs/1601.08062

Y. Noam and H. Messer, Notes on the Tightness of the Hybrid CramÉr–Rao Lower Bound, IEEE Transactions on Signal Processing, vol.57, issue.6, pp.2074-2084, 2009.
DOI : 10.1109/TSP.2009.2015113

K. Todros and J. Tabrikian, Uniformly Best Biased Estimators in Non-Bayesian Parameter Estimation, IEEE Transactions on Information Theory, vol.57, issue.11, pp.7635-7647, 2011.
DOI : 10.1109/TIT.2011.2159958

D. G. Luenberger, Optimization by vector space methods, 1969.

T. Menni, E. Chaumette, P. Larzabal, and J. P. Barbot, New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters, IEEE Transactions on Signal Processing, vol.60, issue.3, pp.1032-1049, 2012.
DOI : 10.1109/TSP.2011.2177827

A. J. Weiss and E. Weinstein, A general class of lower bounds in parameter estimation, IEEE Trans. on IT, vol.34, issue.2, pp.338-342, 1988.

D. C. Rife and R. R. Boorstyn, Single tone parameter estimation from discrete-time observations, IEEE Transactions on Information Theory, vol.20, issue.5, pp.591-598, 1974.
DOI : 10.1109/TIT.1974.1055282

F. Athley, Threshold region performance of maximum likelihood direction of arrival estimators, IEEE Transactions on Signal Processing, vol.53, issue.4, pp.1359-1373, 2005.
DOI : 10.1109/TSP.2005.843717

C. D. Richmond, Capon algorithm mean-squared error threshold SNR prediction and probability of resolution, IEEE Transactions on Signal Processing, vol.53, issue.8, pp.2748-2764, 2005.
DOI : 10.1109/TSP.2005.850361

J. Tabrikian and J. L. Krolik, Barankin bounds for source localization in an uncertain ocean environment, IEEE Transactions on Signal Processing, vol.47, issue.11, pp.2917-2927, 1999.
DOI : 10.1109/78.796428

P. Stoica and A. Nehorai, Performance study of conditional and unconditional direction-of-arrival estimation, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.38, issue.10, pp.1783-1795, 1990.
DOI : 10.1109/29.60109

M. Viberg and B. Ottersten, Sensor array processing based on subspace fitting, IEEE Transactions on Signal Processing, vol.39, issue.5, pp.1110-1121, 1991.
DOI : 10.1109/78.80966

J. Li and R. T. Compton, Maximum likelihood angle estimation for signals with known waveforms, IEEE Transactions on Signal Processing, vol.41, issue.9, pp.2850-2862, 1993.
DOI : 10.1109/78.236507

A. Renaux, P. Forster, E. Chaumette, and P. Larzabal, On the High-SNR Conditional Maximum-Likelihood Estimator Full Statistical Characterization, IEEE Transactions on Signal Processing, vol.54, issue.12, pp.4840-4843, 2006.
DOI : 10.1109/TSP.2006.882072

URL : https://hal.archives-ouvertes.fr/inria-00444708

C. F. Wu, On the Convergence Properties of the EM Algorithm, The Annals of Statistics, vol.11, issue.1, pp.95-103, 1983.
DOI : 10.1214/aos/1176346060

G. Mclachlan and T. Krishnan, The EM Algorithm and Extensions, 1996.

S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, 1998.

P. Stoica and A. Nehorai, Performance study of conditional and unconditional direction-of-arrival estimation, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.38, issue.10, pp.1783-1795, 1990.
DOI : 10.1109/29.60109

P. Stoica, E. G. Larsson, and A. B. Gershman, The stochastic CRB for array processing: a textbook derivation, IEEE Signal Processing Letters, vol.8, issue.5, pp.148-151, 2001.
DOI : 10.1109/97.917699

S. F. Yau and Y. Bresler, A compact Cramer-Rao bound expression for parametric estimation of superimposed signals, IEEE Transactions on Signal Processing, vol.40, issue.5, pp.1226-1230, 1992.
DOI : 10.1109/78.134484

S. Bar and J. Tabrikian, Bayesian Estimation in the Presence of Deterministic Nuisance Parameters—Part I: Performance Bounds, IEEE Transactions on Signal Processing, vol.63, issue.24, pp.6632-6646, 2015.
DOI : 10.1109/TSP.2015.2468684