a+ HBM; 6JA@*a " b2/ IJmHiB@aBKmH iBQ
h?Qmb M/ 6JIb QM AM}MB# M/ *Hmbi2"
ailT? M2 0B HH2-C2 M@S?BHBTT2 h p2HH - *?2 B
Ji?B2m * mDQHH2- oBM+2Mi _2BM#QH/

hQ +Bi2 i?Bb p2 bBQM,

aidT? M2 oB HH2- C2 M@S?BHBTT2 h p2HH - *?2°'B7 . /- _2KB *(
2i HXX a+ HBM; 6JA@*a " b2/ JmHIiB@aBKmH iBQM "2vQM/ h?
M/ *Hmbi2 X JQ/2HB+ bbQ+B iBQMX Rki? AMi2 M iBQM H JQ,
kyRd- S° ;m2- *x2+? _2Tm#HB+X ?2iiTbh,ffKQ/2HB+ XQ ;f2p2MibfKQ
[?21iTbh,ffKQ/2HB+ XQ ;f2p2MibfKQ/2HB+ kyRd=X |? H@yR8kde3k=

> G A/, ? H@yR8kde3k
?2iiTh,ff? H@+2Mi® H2bmT2H2+X "+?Bp2b@Qmp2 i2b.
am#KBii2/ QM k9 J v kyRd

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal-centralesupelec.archives-ouvertes.fr/hal-01527682
https://hal.archives-ouvertes.fr

Scaling FMI-CS Based Multi-Simulation Beyond Thousand FMUs
on In niband Cluster

Stephane Vialle? Jean-Philippe Tavelfa Cherifa Dad Remi Corniglio® Mathieu Caujollé
Vincent Reinbold*

1UMI 2958 - GT-CNRS, CentraleSupelec, Université Paris-Saclay, 57070 Metz, France
2LRI - UMR 8623, 91190 Gif-sur-Yvette, France
3EDF Lab Saclay, 91120 Palaiseau, France
4University of Leuven, Department of Civil Engineering, 3001 Leuven, Belgium

Abstract

In recent years, co-simulation has become an increasingly
industrial tool to simulate Cyber Physical Systems includ-
ing multi-physics and control, likemart electric grids
since it allows to involve different modeling tools within
the same temporal simulation. The challenge now is to in-
tegrate in a single calculation scheme very numerous and .
intensely inter-connected models, and to do it without any

loss in model accuracy. This will avoid neglecting néigure 1. Generic FMU graph implementing a multi-simulation

phenomena or moving away from the basic principle of . i L
equation-based modeling. PCs. Of course to achieve this, we attempt to minimize the

Offering both a large number of computing cores afobal exgcution time as the sum of all th_e pfarallel FMU
a large amount of distributed memory, multi-core peomputation substeps, the FMU communication substeps,
clusters can address this key issue in order to achi@id the graph control substeps.
huge multi-simulations in acceptable time. This paper in-In 2014 we designed a distributed and parallel
troduces all our efforts to parallelize and distribute ofiM! based multi-simulation environment, named DAC-
co-simulation environment based on the FMI for C&OSIM" (Galtier et al., 2015), integrating a hierarchi-
Simulation standard (FMI-CS). At the end of 2016 we syeal and distributed Master Algorithm. Available under
ceeded to scale beyond 1000 FMUs and 1000 computffgPL for both Windows and Linux operating systems,

cores on different PC-clusters, including the most recddhCCOSIM? achieves a multi-threaded execution of lo-
HPC In niband-cluster available at EDF. cal FMUs on each node with concurrent run of different

o . . . FMUs on cluster nodes, and frequent data exchange be-
Keywords: Multi-Simulation, FMI, Scaling, Multl—core,tWeen nodes (see section 2). Then, we decided to opti-
PC Cluster mize and facilitate the execution of our environment on
1 Introduction and Objectives multi-core PC clusters, which are our typical computing
platforms. Unfortunately, FMUs are kind of opague com-
A multi-simulation based on the FMI for Co-Simulatiorputing tasks frequently exchanging small messages. They
standard is a graph of communicating components (nanagd very different from optimized High Performance Com-
FMUs) achieving a time stepped integration, under supputing tasks, and we faced different dif culties. In 2016
vision of a global control unit (name®laster Algorithm we succeeded to exhibit scaling on a co-simulation of heat
in the standard), as illustrated in Fig. 1. During a timeansfers in a set of three- oor buildings, and we ef -
step, all FMU inputs remain constant and all FMUs can b&ntly run up to 81 FMUs on a 12-node PC cluster with a
run concurrently. When all FMU computations of a timg0 Gbit/s Ethernet interconnect and 6 cores per node (Dad
step are nished, the FMU outputs are routed to connectedal., 2016). However, we needed to identify the op-
FMU inputs, and all FMUs communicate with the Mastaimal distribution of one building on a minimum set of
Algorithm. When using adaptive time steps or managi@fuster nodes after running several benchmarks, and we
events inside the time steps, the Master Algorithm hase@aled our co-simulation replicating our initial building
complex role to decide on the next time step to executeand its optimal distribution. This approach has proven it is
In order to run wide multi-simulations requiring larg@ossible to achieve scaling on distributed FMI based co-
memory and heavy CPU resource consumption, we rsiimulations, despite the unusual features of an FMU task
need to distribute and process a co-simulation graph g@aph, from a classic parallel computing point of view. We
several PCs. Second, to achiesealingwe need (1) to have carried on with this work, in order to automate the ef-
speedup a co-simulation using more computing resources
(cores and PCs), and (2) to strive to maintain the same eX:htips://daccosim.foundry.supelec.fr
ecution time when running larger co-simulations on more 2Partially supported by Region Lorraine (France)

) = A : .
‘; £ = Dfferentinds of ¥

https://daccosim.foundry.supelec.fr

cient distribution of wide co-simulations on large multi-
core PC clusters, aiming to distributed thousands of FMU:
on thousands of computing cores.

The paper is organized as follow. Next section de-
scribes the features of an FMU graph execution, the prin
ciples of its execution, and the choices done when de
signing the DACCOSIM architecture. Section 3 lists all
sources of parallelism and also performance losses in ¢
FMU grap_h running on a multi-core P_C cluster, in or- simulation block (FMU and its wrapper)
der to design an ef cient software architecture of multi- T/) step control hierarchical architecture
simulation. Section 4 investigates the distribution of the (local masters and global master)

FMU graph on a multi-core PC cluster, with poor or rich |:| computation node
meta-data on the FMU graph, in order to maximize perr < direct FMU-to-FMU simulation data exchange
formance. Then, section 5 introduces our new large scal. < —* step controlinformation

benchmark detailing reached numerical results, perfor- Figure 2. DACCOSIM software architecture
mance and scalability. Finally, section 6 lists our current]))
results and remaining challenges. library being either a self-contained executable compo-

nent or a call to a third-party tool at run-time (tool cou-
2 FMI-CS based Multi-Simulations pling). FMI-CS is focused on the slave side (FMU) and

remains very discreet on the master side (Master Algo-
2.1 FMI-CS Strengths and Limitations rithm). The way a simulation tool utilizes the functional-

Modern electric systems are made of numerous intera{t Pprovided by FMUs is strongly related to the simulation

.) . radigm on which the tool relies:
ing subsystems: power grid, automated meter manaBe-
ment, centralized and decentralized production, demandome co-simulation middleware use the Agent & Ar-
side management (including smart charging for electrictifact paradigm (Ricci et al., 2007) to describe an het-
vehicle), storage, ICT resources. .. Beyond a consensus o@fogeneous multi-model, and they rely on the Dis-
the language to use, modeling wide and complex systemé§rete EVent System Speci cation (DEVS) formal-
in one universal modeling tool implies to make some sim-ism (Zeigler et al., 2000) to conceive a decentralized
pli cations that may lead to minimize important phenom- €xecution algorithm respecting causality constraints.
ena. As historic and domain-speci c tools validated their But conservative algorithms, such as Chandy-Misra-
business libraries since a long time, the most rational apBryant (Chandy and Misra, 1979) used in some A&A
proach to simulate wide Cyber Physical Systems (CPSsjools like MECSYCGJ, do not integrate the concept of
consists in recycling specialized simulation tools in a co-rollback. They must be adapted to restore FMUs to a
simulation approach. previous state and adjust the step size in case of events
The Functional Mock-up Interface for Co-Simulation Or fast system dynamics (Camus et al., 2016).

(FMI-CS) speci cation can now be considered as a well- Another class of tools is based on the synchronization
established standard for co-simulation thanks to numerof the communication points of all the FMUs involved
ous developments done by industrial parties (Blochwitzin g calculation graph. Unfortunately these tools often
et al, 2011). A growing number of business tools - like stick to the master pseudo codes given as examples in
EMTP-RV2 for electromagnetic transient modeling - have the FMI standard with a centralized algorithm acting as

adopted the standard and added FMI connectors to theig hottleneck for all the communication (data exchanges
products. FMI-CS allows to obtain a fairly realistic repre- and control information).

sentation of the whole system behavior since all the sub- . .
systems are equally taken into account without the ple2 DACCOSIM Architecture Choices

eminence of adomain (e.g. ICT) on another (e.g. physias).our attempts to design, distribute and co-simulate on
It allows the building of stand-alone active componengfuster nodes very wide systems composed of thousands
(FMUs) that can be executed independently of each othgflFMUSs, we need both to synchronize all the communi-
FMUs exchange data (with other FMUs or with externghtion points (for accuracy purpose) and decentralize the
components) only at some discrete communication poinigual control function of the Master Algorithm (for per-
In the time interval between two communication pointgrmance purpose). First versions of these features were
each FMU model is simulated by its own numerical solvejyailable within DACCOSIM in 2014.
and aMaster Algorithmcontrols the FMU graph at each pACCOSIM 2017 emphasizes a complete and user-
communication point (see Fig. 1). friendly Graphical User Interface (GUI) to con gure and
An FMU for Co-Simulation consists of a ZIP le con-perform local or distributed co-simulations with poten-
taining an XML-based model description and a dynamigilly many heterogeneous FMUs compliant with the co-

Shttp://emtp-software.com/ 4http://mecsyco.com/

 http://emtp-software.com/
http://mecsyco.com/

simulation part of the FMI 2.0 standard (FMI-CS 2.0). A
DACCOSIM calculation graph consists of blocks (mainly
FMUSs) that are connected by data- ow links and poten-
tially distributed on different computation nodes. The
graph is then translated into Java master codes in confor-
mance with the features described in the FMI-CS 2.0 stan-
dard. More precisely, DACCOSIM notably offers for the
co-initialization of its calculation graph:

Automatic construction of the global causal depen-

dency graph, built both from the FMUs internal de-

pendencies and the calculation graph external depen- rigure 3. Concurrent run times on a 2x4-core node
dencies. An acyclic view of the graph is generated by

aggregating each cycle as a super-node composed of

Strongly Connected Components (SCCs);

Generalized distributed co-initialization algorithm,
mixing a sequential propagation method applied to
the acyclic dependency graph, and a Newton-Raphson
method solving its SCCs.

And for co-simulation, it offers among others:

Implementation of each FMU wrapper as two threads
allowing to concurrently run computations and send

messages (FMU & control) while receiving incoming Figure 4. Slow down of concurrent runs on a 2x4-core node

messages; _ . . o '
middleware, allowing direct communications between dif-

Overlapped (optimistic) or ordered (pessimistic) dajgent threads located on the same or on different PC clus-

synchronization inside distributed masters (see sectan nodes. For intra-node communications, a mechanism
3.3), that can operate with constant time steps or Withgp4req message queue is also available’
adaptive time steps controlled by one-step methods

(Euler or Richardson) or a multi-step method (Adam& Parallelism Sources and Limitations

Bashforth); _
Approximate event detection while waiting for a nev%':L FMU Computations

version of the FMI standard able to correctly handle hizach computing substep is a high source of parallelism,
brid co-simulations (Tavella et al., 2016). as all FMUs can concurrently achieve their computations.
However, runninghy FMUs onn; cores of the same com-

DACCOSIM generated master codes follow a centrgyuting node can lead to imperfect concurrency: (1) when
ized hierarchical approach (see Fig. 2) A unique glolfkre are less cores than FMUs € ny), and (2) when the
master located on one cluster node is in charge of h@iy computations access the node memory and saturate
dling the control data coming from several local mastejge memory bandwith. Taking into account this FMU con-
located on other cluster nodes and taking step by step ggrency imperfection, we will deduce the optimal number
cisions based on this information. Every master, whethg'=muUs to run on each computing node, and so the total

global or local, aggregates these control data that are cofimper of nodes to use (see section 4).
ing from each FMU wrapper present on its cluster node.

This is done before communicating synthesized informard-1 FMU Concurrency Experiment
tion to the global master. The control data exchanged Wée concurrently run HPC computing kernelsdeihse ma-
tween masters and between FMUs and masters are caliedporoduct(C= A B, a reference HPC benchmark) on
vertical data. Of course when the co-simulation is run @me of our cluster computing node. We use@aenBLAS
a single machine, only one master code is generated. dgemnkernel, and a NUMA dual-haswell node with 24

An original feature of the DACCOSIM architecture liephysical cores at:3 GHz, and 2 15 MB of cache mem-
in the fact that the FMU variable values to be exchangedoay. Fig. 3 shows the execution times measured on dif-
each communication step are directly transmitted from tfegent problem sizes, with optimizedpenBLASernels
senders to receivers without passing by a master. The nidseking data in cache to minimize the memory bandwidth
ters, the wrapped blocks (mainly FMUs with wrappers) asnsumption. For each problem size, we concurrently run
well as the communication channels between them are tam 1 up to 64 threads, each thread executing one com-
tomatically generated by DACCOSIM by translating thelete call to the kernel on locally allocated data structures.
calculation graph de ned by the user via its GUI. All comWe considered (1) two large matrix sizes: 2042048
munications are implemented using ZeroMQ (or ZMQhatrices of 32 MB and 4096 4096 matrices of 128 MB,

tions (a new FMU could enter its computation substep
only when a previous one nished its substep).

But performance measured when limiting the concur-
rency of many FMUs on a same node were disappointing:
the total computation time still increased. We have not
succeeded to improve the execution of many concurrent
FMUs per node with a basic scheduling mechanism.

3.2 FMU Communications
Figure 5. Size up experiments on 1 Gb/s and 10 Gb/s clusters
. _ _ 3.2.1 Main Features of Inter-FMU Communications
each matrix being Iarggr than the entire r_10de cache, ”'ndere is no order in the inter-FMU communications of a
(2) a smaller problem with 10241024 matrices of 8 MB, . . :
. . . time step, they can all be routed in parallel, fully exploit-
allowing to store the three matrices of the problem mEo . .

. Ing the cluster interconnect bandwidth. Moreover, FMU
one node cache. Each curve illustrates the global execl inications inside a computing node can be achieved
tion time evolution when running more concurrent conj- . puting .
putations. aster (no crossing of network connections no network

Fig. 4 shows the slow down observed when increzatssqftware layer). But data exchanged between two FMUs

. . _ ~are usually small (like one or a few oating point values).
ing the number of concurrent computationSD(n) = o "
T ... Each FMU communication is sensitive to the network and
t(n)=t(1). Our optimized OpenBLAS kernel exhibits__". . -
. . applicative latency: time to transfer a byte from one JVM
good concurrent performance, with a very limited slo :
: running FMUSs) on one node to another JVM on another
down up to the 8 physical cores, followed by a rst slo : . .
. : " node, in current DACCOSIM implementation. Moreover,
down increase up to the 16 logical cores (exploiting hyper- . .
: . : . an FMU graph has many connections generating commu-
threading), and a linear increase when running more con-_.. .
. nications at the end of each time step.
current tasks serially processed by the node cores. The

: réo, communication features of multi-simulations are
we concurrently run several threads executing the sad?i
a

FMUS, modeling heat transfers and achieving signi ca fferent from classic HPC application ones, which always

computations with thevodesolvef. We can observe tempt to group data and e_xch.ange large messages not too
frequently. FMU communications are small, numerous

in Fig. 4 that these concurrent FMU executions (1) and frequent, however their implementation can be par-
hibit a limited slow down, up tgn; 2) FMU computing clized '

threads, similar to the behavior of concurrent OpenBLA)

kernels, and (2) then quickly increase their slow down b&2.2 Sensitivity to Latency and Bandwidth

yond (nc 2) FMU computing threads per node, goingegpective weights of FMU computations and commu-
away from OpenBLAS kernel curves. nications depend on the FMU graph and the multi-
In fact some extra tasks are running in parall_el_ of the&nulation. We have run some size up experiments on
FMU computation threads in DACCOSIM, and it is Nogy,r myjti-simulation of heat transfer inside buildings. We
surprising the slow down starts to increase a little bit bgzye implemented larger simulations using greater num-
fore deploying one FMU per physical core. But the Slogg; of computing nodes, replicating buildings on new
down increase appears stronger than with OpenBLAS kfjes. Theoretically, the execution time of the multi-
nels, and is militantly in favour of running only{ 2) simylation should have remain almost constant (FMU
FMUs per computing node and using additive nodes. Q¥mpytation time remained constant on each node, and
course, this experimental study will need to be conductgfymunications were routed in parallel). Experimentally,
on different cluster nodes with different FMUs in the ne@rig_ 5 shows the execution time increase on PC clusters
future to conrm the de nition of the ideal number of\ith 1 Gb/s and 10 Gb/s Ethernet interconnects. This time
FMUs to deploy and run on a multi-core cluster node. ncrease is more limited on the 10 Gb/s Ethernet intercon-
3.1.2 Unsuccessful Performance Improvement nect. These experiments of heat transfer multi-simulations

. _ ... have pointed out the importance of the communications
When the number of available computing nodes is |Imlteg,]d the sensitivity to the interconnect speed

it leads to run many FMUs on a same node, many more _ _
than(n. 2). Then, we attempted to reduce the computd-2.3 Dif culty to Fully Use In niband Interconnect

tion time limiting the number of FMUs simultaneously rufh, order to reduce cost of these intensive and short com-
in parallel on a same computing node. We implemente@@nications, an interesting issue consists in using low la-
semaphore-based synchronization-mechanism, authqgfcy and high bandwidth interconnects of standard HPC
ing only nmax FMUs to concurrently run their computag|ysters, like some In niband networks. However, it re-
SFMUs were designed at EDF Lab Les Renardiéres usis uires to use some constrained middleware or communi-
BuildSysPro models, and generated with Dymola 2016 C _t|on I|brar|es from H_PC technologles (like MPI library),
8Sundials suite of nonlinear and differential/algebraic equatidMith native In niband interface. Using modern and con-
solvers, of the LLNL's Center for Applied Scienti ¢ Computing fortable middleware (like ZMQ in DACCOSIM environ-

Figure 6. Relaxed synchronization of time step subparts Figure 7. Overlapped orchestration mode

ment) leads to use In niband networks over TCP/IP adap-when it has updated all its inputs, it enters its next com-
tors and to loose their very low latency (Secco et al., 2014) putation substep.
We attempted to use the MPI library to implement .
our multi-simulation communications, but MPI has been I an FMU receves thg Com”.‘a”d to roll back (bottom
of Fig. 6), it restores its previous statetadnd reruns

designed for process-to-process communications and ap: computation step, but progresses fipop tot0 ; =
-to- - ’ i+1™
peared not adapted to DACCOSIM thread-to-thread com + H0 with h9< h the new time step broadcasted by the

munications, where each thread manages an FMU. W¢ A
have currently suspended this investigation, and we use ™
In niband networks over TCP/IP adaptors. So, the only global synchronization barrier is the M.A.
decision broadcast, that all FMUs are waiting for. Oth-
ers synchronization points arglaxed onesthat stop only
Current communication mechanisms of DACCOSIM semuhe task (the M.A. or one FMU). Then, each task going
FMU output data as strings, and send input name strimyer a relaxed synchronization point carries on with its
instead of short input identi ers (like input indexes). Fuwork independently of others tasks. Relaxed synchroniza-
ture versions of DACCOSIM will implement shorter datéion allows to increase performance, avoiding time con-
encoding in order to reduce message sizes and bandwaltiming synchronization barriers and avoiding to synchro-
consumption. nize all FMUs on the current slowest ones (the ones with
.) longest computations or communications at current time
3.3 Time Step Subparts Orchestration step). Algorithms with relaxed synchronization schemes
3.3.1 Ordered Orchestration with Relaxed Synchro- &€ usually more complex to implement and to debug, but
nization ZMQ middleware has allowed an easy and ef cient imple-

mentation of these communication and synchronization

Basic orchestration of a time Step is illustrated on F|g @echanisms between threads across a PC cluster.
and follows arelaxed synchronizatiomechanism. All

FMU computations are run in parallel to progress frpm3.3.2 Overlapping Strategy

up toti+1 = ti+ h, and as soon as an FMU has nisheg, il reduce the communication cost, a solution consists
its computation substep it sends its requirements to fHeoverIapping some of the communications with some
Master Algorithm (M.A.): to roll back and rerun with agp\ g computations, and with thelaster Algorithmdeci-
smaller time step (to increase accuracy), to continue Wi, pending. Fig. 7 illustrates these mechanisms. When
the same time step, or to continue with a greater time St§R.EMU has nished its computation substep, it sends its
Then, the M.A. processes each received requirement ll%tuirements to the M.A. and, not waiting for M.A. de-
awaits all requirements (synchronization pdi} before ision proadcast, enters its communication substep. So,
taking a global decision, and broadcasting its decisiongys update their input values while the M.A. collects
all FMUs. All FMUs wait for the M.A. global decision, iheir requirements and broadcasts its global decision.
anq as soon as an FMU receves t'he MA decision (SynCBut, depending on the pending time of the M.A decison
pointS), it rolls back or continues its time step. and on the number of inter-FMU communications, each
If an FMU receives the command to continue (top &MU can cross its synchronization poir8s (M.A. deci-
Fig. 6), it enters its communication substep, sending g®n broadcast) ang, (all input update received) in any
output results to connected FMUs and waiting for theder (see FMU1 and FMU2 examples on Fig. 7). So,
update of all its input values (sync. poit). Finally, when bothS and S synchronization points have been

3.2.4 Minimizing Message Sizes

crossed, each FMU considers the M.A. decision: CS standard improvement leads to execute a maximum of

If the M.A. has broadcasted a command to continude rollback per FMU each time an unpredictable event

then each FMU enters its new computation subst@Bpears during a time step. In t_he gnd, we do not know
(see top of Fig. 7), and has saved some executfer?dvance how much the execution time will decrease but

time achieving its inter-FMU communications whild/€ are sure FO achieve higher accuracy while improving
the M.A. decision was pending. the computation performance.

If the M.A. has broadcasted a command to rolbach, FMU Placement Strategies

then each FMU waits for the end of its communications,

restores its state at the beginning of the time step, #hd Not a Dependence Graph Problem

reruns its computation from up totS ;. In this case, A DACCOSIM program running a total afr FMUs is
the overlapping mechanism has a little bit increased th@mposed ofnfe FMU wrapper tasksne data receiver
execution time, achieving unnecessary inter-FMU comasks, plus a local or global control task per computing
munications. node (implementing our hierarchical M.A., see section

From a theoretical point of view, our overlapping mectf-2). Of course, a DACCOSIM program can be consid-
anism reduces the execution time when there are few r&fied as a dependency task graph, and some strategies exist
backs, or when using constant time steps. But fromi@distribute such a graph on a PC cluster (Sadayappan and
technical point of view, some threads will work to sen@ircal, 1988; Kaci et al., 2016). However, a DACCOSIM
and receive messages while some threads will achieve@fk graph has some speci c task dependencies. During
end of long FMU computations (M.A. decision broadca8f€ time step in ordered orchestration mode, all FMUs
is no longer a synchronization barrier). The communic@¥€cute three substeps as illustrated on Fig. 8:
tion threads could disturb the ongoing computations andThe computation substep (Fig. 8 payt all FMU wrap-
slow down the multi-simulation, especially when running per tasks run concurrently and autonomously, achiev-
more threads than available physical cores (see sectiofhg the FMU computations. There is no dependence
3.1). Nevertheless, our overlapped orchestration mode hasetween these tasks during this substep. The only opti-
appeared ef cient on our multi-simulation of heat transfer mizations consist in load balancing the FMU computa-
inside three oor building, run on a 6-core node cluster tions among the computing nodes, and to set agly 2
with a 10 Gb/s Ethernet interconnect. Section 5 will show FMU per nodes when there are enough available com-
the performance achieved on our benchmark of power grichuting nodes, according to section 3.1.

multi-simulation. The control substep (Fig. 8 pd): each FMU wrapper

3.4 Event Handling Impact task sends its wish to the control task for the next op-
eration (rollback or continuation, and size of the future
fime step) and waits for its global decision. There is a
total dependence of the control task to all the wrapper
tasks, followed by a total dependence of all the wrap-

To increase their genericity, it seems necessary for CPSs t
handle more signal kinds especiatlgntinuous & piece-
wise differentiablesignals, piecewise continuous & dif-
ferentiablesignals angiecewise constargignals, which per tasks to the control task, close teymchronization
are sources ofevents The current FMI-CS 2.0 re-

) . barrier for the FMU wrapper tasks (see section 3.3).
lease (Blochwitz et al., 2011) can theoretically approag:h.l.here is no optimization to achieve when distributing

Yhe FMU graph, excepted to implement a local control

variable step size integration (Camus et al., 2016). BUtio<k on each node to manage its FMU wrapper tasks.
only events due to piecewise constant signal changes can

be detected. And the solution involves bad performancel N® communication substep (Fig. 8 pajt it is only

as it is based on rollbacks and nally some inaccuracies@chieved when no rollback is ordered by the control

appear due to the last non zero integration step size. ~ t@sk. Each FMU wrapper task sends its new outputs
We proposed to add new primitives in the FMI-CS stan- {0 connected FMU inputs, while each FMU receiving

dard (Tavella et al., 2016) in order to integrate hybrid co- [2Sk ensures the reception of the new input values of the

simulation in a pure FMI-CS environment. Our solution FMU. These communication operations are not CPU

does not require any model adaptation and allows to cou£ONSUMIng. So, we run in parallel up to 2 tasks on

ple physics model with continuous variability and con- €ach computing node hostimg FMUs, in order to op-
trollers with discrete variability. Moreover, parallelism is timize the communications (see section 3.3). All these

not reduced by our approach, as all FMUs continue to runf@Sks run without any synchronization nor dependence
concurrently either when processing shorter time stepsduring the communication substep, and the only opti-
or when executing rollbacks. So, event handling by theMization when distributing the FMU graph consists in
FMI-CS evolution we have proposed does not require to9r0UPING on the same node the most strongly connected
change our parallel and distribution strategy of FMU co- FMUS (ghting with the load balancing objective).
simulation graph. In fact, we can classify our DACCOSIM task graph as a
From a computing performance point of view, this FMIperiodic task graph Its period is equal to one time step,

When the best distribution of a one-building problem
(using np nodes) was identi ed, we enlarged the prob-
lem with k buildings, replicating our best distribution (us-
ing k ng nodes). We successfulscaled ugDad et al.,
2016): processing larger problem on larger cluster in
similar time. But this approach takes too long develop-
ment times, and replicating the best elementary distribu-
tion leads to use too many nodes, some cores remaining
unused. This approach cannot be a generic solution.

4.2.2 Approach function of the User Knowledge

Figure 8. Multi-task synchronization overview(deredmode) From our point of view, distributing a totally unknown
FMU graph or a fully characterized FMU graph should
be infrequent DACCOSIM use cases. Users build co-

o . . 4 simulations based on their expertise and have an initial
hization barrler_ (with only the control ta_sk Worklng). S nowledge about computation loads and communication
we do not consider the task dependencies to distribute Guf, o<'in their FMU graphs, allowing to use basic dis-

grap ' anCiNGyution mechanisms. When testing and improving their
on grouping the most connected FMUs, and on limiti

the number of FMU per nodes (when there are enou| -simulations they accumulate knowledge on their FMU
. P 8 phs, and can use more complex heuristics. However, it
available nodes).

. is not obvious to design an ef cient heuristic.
IFP EN and INRIA succeeded to parallelize compu- During the development phase of a co-simulation many

tation inside wide FMUs thanks to a ne scheduling %MU graphs are only run a few times and the FMU graph

basic operation executions on one multi-core node (Satfjétribution has to be computed quickly, without long cali-

etal, 20.16)' T_he practlc_:al Sp?ed'“p obser_/ed by our Hation steps. But when a co-simulation design is nished
leagues is achieved by imposing a constrained allocat successful, it can enter a long exploitation phase, re-

of a}l the opera.'uons of a same FMU to the same cof iring frequent runs. Then, it can be pro table to make
Their ap_proach is complementary to ours as they optim tailed performance measurements and to compute a ne
the co-S|muIat|on_of FMUs on_the different PrOCESSOrS Rlsyripution of the FMU graph, in order to use less com-
the same calculation r_10de while we are optimizing the iting nodes and/or to decrease the co-simulation time.
ployment of a calculation graph composed with lots FMUs Considering current and future usage of DACCOSIM at

on a possibly wide set of multi-core nodes. EDF, for smart grid co-simulations, we identi ed 3 levels

4.2 Different Contexts and Approaches of user knowledge, and we propose 3 associated generic

FMU distributi hes.
The main trouble to establish a good distribution of the U distribution approaches

FMU graph on a PC cluster is the lack of metadata abdut ldentifying FMU Families: when users have only
FMU computations in the FMI-CS standard. There is noinimal technical and skill information about their co-
information about FMU computation time, or computesimulations, and are able just to group the FMUs in fami-
tion complexity. Dynamic load balancing is out of reackes with close computing load.

of our current implementation, and static load balancifgoposed approacheach family will form an FMU list,

of the computations on the nodes of a PC cluster remaiifi the concatenated list of all FMU families will be dis-
dif cult. This section introduces the different approachegibuted on the computing nodes according to a round-
we identi ed to distribute FMU graphs. robin algorithm. This approach requires light knowledge
4.2.1 Previous Experimental Approach on the FMUs used, and succeeded to load balance the

o o FMU computations on our benchmark (see section 5).
In the beginning of 2016 we distributed on two PC clustelr:s . L .
xtreme use caséf no information is available on some

a rst multi-simulations of heat transfers inside buildings; L . .
o external FMUs, it is possible to group these FMUs in a
Each building was a subgraph of only 10 FMUs. We ran . ; :
-) articular family to spread over the computing nodes. If
a small one-building problem setting only one FMU peér . : S . o
. . - N0 pertinent information is available on any FMUs, it is
node, so that FMUs could run the real simulation with- . . . :
; . . also possible to group all FMUs in a unique family, to
out disturbing each other (not sharing cache memory, 1nor . TR -
. achieve a random distribution and to track a statistical load
memory bandwidth, nor cores...). We measured the ¢

m-_ .
putation time of each FMU (toharacterizeour different obalancmg.

FMUs), and then we established the most load balanded Cumulating Knowledge for Heuristics: when users
FMU distributions on various number of nodes. Finallprogress in their co-simulation development they improve
some complementary experiments allowed to identify tHeeir knowledge about their FMUs and FMU graph. This
most ef cient distribution of a one-building problem orextra-knowledge can be exploited by more or less generic
each PC cluster. heuristics to improve the FMU distribution. For example:

and includes 2 phasea é&ndc) with pure concurrent task
executions, and one phad® (vhich is a kind of synchro-

running and testing different con gurations of the FMU

graph aIIO\t/vs to learn some relative computing weights
. ¢compu . compu

ex:teyyz 05 tequn)

analyzing the FMU graph allows to detect some regular

patterns strongly connected (ex: a city area connected

on one medium voltage network of a smart grid).

Proposed approachdesign and use an heuristic (1) to op-
timize load balancing in order to reduce the global compu-
tation time, and/or (2) to group on same nodes the FMLH__S

strongly interconnected in order to reduce the global comIure 9. Topology of the large scale testbed using IDEAS lib.

munication time. stead of creating a unique JVM per node managing all the

Warning our experiments have shown the load balancitffeads, can increase data locality and performance.

optimization is the most important criterion, however d% L Scale E .
signing an ef cient heuristic (improving performance o arge ocale xperlments

the previous approach) remains dif cult. 5.1 Experiment Objectives

¢ - Building Models of Computation and Communica- The co-simulation of a large scale District Energy Sys-
tion Times: when an FMU graph enters an exploitatiofem was chosen as a testbed. Co-simulation methods are
phase, it can be pro table to establish an execution timgreseen to handle several bottlenecks encountered during
model of the co-simulation, to optimize its distribution ang‘ps simulation on one single simulation tool, such as:

the computing resource usage. Multi-Physics integration (electrical, hydraulic, ther-
Proposed approach (1) run smaller but similar co- mal, etc.),

simulations, deploying only one or very few FMUs per Multiple time-scales and dynamics,

node (to avoid mutual disruption between FMUs) and Implementation of controllers,

measure each FMU computation time on the nodes ofScalability, i.e. the capability to study a growing num-
the target cluster, (2) analyse the FMU graph to computeber of buildings and the growing size of the power grid.
the volume of each inter-FMU communication, and me&he numerical experiment consists in a complex multi-
sure the experimental applicative latency and bandwidtysical district energy system. The main purpose of
on the target cluster. Then, establish a computation anidhig section is thus to propose a proof of concept of co-
communication time model of the co-simulation, to feedsémulation with lots of FMUs on a HPC cluster and to
solver looking for the best distribution of the FMU grapthighlight the advantages of such an approach for large

Warning This approach requires long experimental me'?;\(-:ale systems.

surements. 5.2 Testbed Description

The IDEAS test case described in section 5, has béerhis section, we propose to assess DACCOSIM Master
distributed on different PC clusters according to ltien- Algorithm ef ciency by co-simulating an electrical distri-
tifying FMU familiesand theCumulating knowledge forbution grid using a variable number of cluster nodes. The

heuristicsapproaches. model has been completely implemented using Modelica
o) and the OpenIDEAS librafy(Baetens et al., 2015). Nei-
4.3 FMU Distribution on Virtual Nodes ther the electrical grid, the heating systems nor the build-

When the FMU graph is de ned, the DACCOSIM softing envelops have been simpli ed. . .
ware suite distributes the FMUs and generates Java sourcEhe general structure of the use case is shown on Fig.
on the availablephysical computing nodeat runtime. @ge (LV) feeders, each of them including a thermal enve-
Then the Java source codes are compiled, a JVM is stat@R¢. ventilation and heating systems and a stochastic oc-
for each virtual node and its Java program is executédpancy behavior. The buildings are dispatched on 20 low
We de ned intermediatgirtual nodesin order to generate Voltage LV feeders, each modeled as one FMU, noted | to
Java source les independent of physical node names af§ On Fig. 9. These feeders are connected to a medium
IP addresses, and to make the deployment more exibletage (MV) network that is also simulated with a single
nodes with Non Uniform Memory Architecture (NUMA).FMU. A data-reading FMU provides real medium volt-
Modern computing nodes have several processors &§§ Mmeasurements that are imposed at the MV substation
memory banks interconnected across a small network. BYgPar. The electric grid frequency is provided to differ-
memory access time becomes function of the distance 88t FMUs (buildings and feeders) by 20 additional FMUs.

tween the core running the code and the memory banKyEFRO-SALK project, with support of the European Union, the

storing the data (NUMA principle). Creating one PrOEuropean Regional Development Fund, Flanders Innovation & En-
cess (one JVM, one virtual node) per NUMA subnode iaepreneurship and the Province of Limburg

This distributed frequency FMU implementation is meant
to reduce inter-node communications since the frequency
has to be dispatched to all the FMUs of the use case. Fi-
nally, the co-simulation holds a total of 1042 FMUs ex-
ported from Dymola 2016 FDO1 in conformance with the
FMI-CS 2.0 standard. A smaller use-case with less build-
ings and only 442 FMUs, has also been designed to eval-
uate the scalability of our solution.

The test case was run on two different clusters: (1)
Sarahat CentraleSupelec Metz, composed of dual 4-cores
Intel Xeon E5-2637 v3 at:8 GHz (Haswell) with a 10
Gb/s Ethernet communication network, and Byrthos
at EDF R&D, composed of dual 14-cores Intel Xeon E5-
2697 v3 at 260 GHz (Haswell) with In niband FDR com-
munication network. These clusters are labeled "sar" and
"por" on performance curves of section 5.4. On both clus-
ters, DacRun is used to deploy and run the DACCOSIM
co-simulation. DacRun is implemented in Python 2.7, is
compliant with OAR and SLURM cluster management
environments, and can also be used on standalone ma-
chines (for small experiments). It achieves Java source
les compilation, virtual/physical nodes mapping, JVMs
starting and can ensure to gather the results and logs. Figure 10. Current from a building of the DACCOSIM co-

. simulation and its Dymola counterpart
5.3 Numerical Results y P

. . . lability Achievement: tim rv n Fig. 11 r
The runs are done for a one-day simulation with o gcalability Achievement: time curves on Fig appea

. . ; . . ery linear on this full logarithmic scale graphic, slope is
minute constant step size. The co-simulation gives reagfdse to 1 on HPC Porthos cluster, and time curves of

tic results acco_rding to expe_rtjudgment. Moreover the lfrerent problem sizes are parallel. So, execution time
ergy consumption of the buildings follows the same tren ularly decreases when using more cores, and similar

as the one observed on a Dymola simulation limited to o Sqrformance can be achieved when running larger prob-
20-building feeder. To assess the correctness of the s on larger number of cores (from 442 to 1042 FMU
simulation on cluster, we selected a single building of t%"nenchmark curves). Of course, when using as many cores

test case and S|mulatgd it with Dymola by Injecting SaMs £\1ys the execution stops to decrease (right-hand side
pled voltage data obtained from the cluster CO'S'mUIat'O&'Porthos curves)

The power consumed by the building simulated with Dy- o o
mola and the one co-simulated on cluster should be tRErconnect and Communication Impact: time curve

same as the two selected buildings have the same envifSP€ iS smaller on Sarah cluster and its 10 G/s Ethernet
ment: same input voltage, same weather data and sdpigreonnect, _than on Porthos and |ts_h|g.h performance In-
occupancy data. The root mean square error on the C_[]Hgand FDR interconnect. Com_munlcatlons are not neg-
rent between those two simulations i48 10 2 A, with ligible, and a high performance interconnect (low latency
current mainly in the range 110A. The two currents for 21d high bandywdth) improves the sc?alab|llty.

the one-day simulation are plotted on top of Fig. 10 witiomplex Choice of the Orchestration Mode: Over-

a close-up on its bottom. The dynamic of the power col#pped mode was the fastest one on a previous use case
sumption is well reproduced thus the cluster co-simulatiésn on a cluster with smaller nodes (Dad et al., 2016). But

seems reliable. when running IDEAS use case on Sarah cluster, the over-
. lapped mode appears slower than the ordered one, and
5.4 Performance and Scaling when run on Porthos cluster, both orchestration modes

The FMUs were dispatched on the nodes following tvitve close performances up to allocate enough nodes to
different approaches introduced in section 4.2: with (8§t one core per FMU. Beyond this limit it remains free

a Cumulated knowledge for heuristapproach exploit- cores on each node to manage communications, and the
ing the prob'em topo'ogy W|th ba'anced |0ad ("KHBL" O@Xecution t|me Of the OVerIapped mOde I’OUgh|y deCreaseS
Fig. 11), and (2) according to adentifying FMU families and really becomes the smaller one. So, both orchestra-
approach associated to a round-robin mechanism ("FFHIRM modes are interesting, but strategy to foresee the right
on Fig. 11). Experimentations were conducted on o@f€ is still under investigation.

clusters in the ranges 321024 and 112 1792 cores, Dif culty to Design Ef cient Heuristics: our heuristic

with overlappedandorderedorchestration modes ("over"based on FMU graph knowledge, aiming to group con-
and "order"), on both 442 and 1042 FMUs use-cases. nected FMUs on the same node with respect to load bal-

H. Elmgvist, A. Junghanns, J. Mauss, M. Monteiro, T. Neid-
hold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf. The
Functional Mockup Interface for Tool independent Exchange
of Simulation Models. IfProceedings of the 8th International
Modelica ConferenceDresden, Germany, March 2011.

B. Camus, V. Galtier, and M. Caujolle. Hybrid Co-Simulation
of FMUs using DEV and DESS in MECSYCO. Proceed-
ings of the 2016 Spring Simulation Multiconference, Sympo-
sium on Theory of Modeling and Simulation (TMS/DEVS'16)
Pasadena, CA, USA, April 2016.

K. M. Chandy and J. Misra. Distributed Simulation: A Case
Study in Design and Veri cation of Distributed Programs.
IEEE Trans. Softw. Eng5(5), September 1979.

C. Dad, S. Vialle, M. Caujolle, J.-Ph. Tavella, and M. lan-

.) otto. Scaling of Distributed Multi-Simulations on Multi-Core
Figure 11. IDEAS benchmark with 442 FMUs run on clusters cjysters. InProceedings of 25th International Conference

n Enabling Technologies: Infrastructure for Collaborative

ancing, requires in our testbed some accurate number nterprises (WETICE 2016paris, France, June 2016.

nodes (5, 10 or 20 on our example) and does not achieve
better performance than round-robin distribution of FMM Galtier, S. Vialle, C. Dad, J.-Ph. Tavella, J.-Ph. Lam-Yee-Mui,
families. An ef cient heuristic remains hard to design and G. Plessis. FMI-Based Distributed Multi-Simulation with
and our round-robin on FMU families algorithm appears DACCOSIM. In Proceedings of the 2015 Spring Simula-

a good solution tiqn Mul_ticonference, Symposium on_Theory of Modeling and
Simulation (TMS/DEVS'15JSA, April 2015.
6 Conclusion and Perspectlves A. Kaci, H. N. Nguyen, A. Nakib, and P. Siarry. Hybrid Heuris-

With DACCOSIM generating Java les for Linux and its 1iCS for Mapping Task Problem on Large Scale Heteroge-

Pvthon add-in DacRun easilv compiling. runnina and col- neous Platforms. IProceedings of the 6th IEEE Work-
y y pring, 9 shop on Parallel Computing and Optimization (PCO 2016),

lecting the results of a DACCOSIM application on clus- |ppps Workshop 201&hicago, IL, USA, May 2016.
ters, we have illustrated in this paper the capability of

our FMI-CS based environment to manage very wide of- Ricci, M. Viroli, and A. Omicini. Give Agents Their Arti-
simulations. Our testbed is a realistic case study usingacts: The A&A Approach for Engineering Working Envi-
the OpenIDEAS library and involving the detailed model- 3%?::?:r:)tﬁfge'\r/ll?esénlzzzgaii?&g::fetr?tz 561:21 I&Lel:i?;\até%rt]asl .
ing of 1000 buildings scattered on a distribution grid. We ; > (AAMAS 07Ol HI USA(:], May 2007, ACI?/I. y
have demonstrated the feasibility of scaling-up the multi-

simulation by pushing very far the limits of the simulatior. Sadayappan and F. Ercal. Cluster-partitioning Approaches to
and taking advantage of Porthos, the EDF cluster rankedapping Parallel Programs Onto a Hypercube.Phoceed-

310th in the 48th edition of the TOP500 list published in ings of the 1st International Conference on Supercomputing
November 2016. (ICS 1988) Athens, Greece, June 1988. Springer-Verlag.

Work is currently being carried out to further improvg_ E. Saidi, N. Pernet, Y. Sorel, and A. Ben Khaled. Accel-
the capabilities of our co-simulation tools suite. Some gration of FMU Co-Simulation On Multi-core Architectures.
can be performed with the current FMI-CS 2.0 standardin Proceedings of 1st Japanese Modelica Confergefickyo,
(e.g. minimizing inter-FMU message sizes), while oth- Japan, May 2016.

ers would require an evolution of the standard (e.g. eV('eAntS L Uddin. G. P. Pezzi. and M. T i M P
handling of accurate hybrid co-simulation). - S€cco, L I, G. b. Pezzl, and M. Torquatl. Message Pass-

. g ing on In niBand RDMA for Parallel Run-Time Supports.
A collection of generic heuristics for FMU graph distri- In Proceedings of the 22nd Euromicro International Confer-

bution, when knowledge on co-simulation has been acCugnce on Parallel, Distributed, and Network-Based Processing
mulated, is also under development, to make easier larggppp 2014) Turin, Italy, February 2014.
scale deployments of more complex co-simulations.
J.-Ph. Tavella, M. Caujolle, S. Vialle, C. Dad, Ch. Tan,
References G. Plessis, M. Schumann, A. Cuccuru, and S. Revol. To-
ward an Accurate and Fast Hybrid Multi-Simulation with the
R. Baetens, R. De Coninck, F. Jorissen, D. Picard, L. HelsenFMI-CS Standard. IrProceedings of the IEEE 21st Inter-
and D. Saelens. OPENIDEAS - An Open Framework for national Conference on Emerging Technologies and Factory
Integrated District Energy Simulations. Proceedings of Automation (ETFA 2016Berlin, Germany, September 2016.

Building Simulation Conference 2015 (BS 2Q13yderabad,)]]
India, December 2015. B. P. Zeigler, T. G. Kim, and H. Praehoféfheory of Modeling

and Simulation : Integrating Discrete Event and Continuous
T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. ClauR, Complex Dynamic System&cademic Press, 2000.

	Introduction and Objectives
	FMI-CS based Multi-Simulations

