AUDASCITY: AUdio Denoising by Adaptive Social CosparsITY

Abstract : This work aims at introducing a new algorithm, AUDASCITY, and comparing its performance to the time-frequency block thresholding algorithm for the ill-posed problem of audio denoising. We propose a heuristics which combines time-frequency structure, cosparsity, and an adaptive scheme to denoise audio signals corrupted with white noise. We report that AUDASCITY outperforms state-of-the-art for each numerical comparison. While there is still room for some perceptual improvements, AUDASCITY's usefulness is shown when used as a front-end for a classification task.
Type de document :
Communication dans un congrès
25th European Signal Processing Conference (EUSIPCO), Aug 2017, Kos, Greece. 2017
Liste complète des métadonnées


https://hal.inria.fr/hal-01540945
Contributeur : Clément Gaultier <>
Soumis le : vendredi 16 juin 2017 - 17:39:44
Dernière modification le : dimanche 18 juin 2017 - 01:06:57

Fichier

AudascityEUSIPCO_CR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01540945, version 1

Citation

Clément Gaultier, Srđan Kitić, Nancy Bertin, Rémi Gribonval. AUDASCITY: AUdio Denoising by Adaptive Social CosparsITY. 25th European Signal Processing Conference (EUSIPCO), Aug 2017, Kos, Greece. 2017. <hal-01540945>

Partager

Métriques

Consultations de
la notice

225

Téléchargements du document

154