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Abstract

In typical Compressed Sensing operational contexts, the measurement vector y

is often partially corrupted. The estimation of a sparse vector acting on the

entire support set exhibits very poor estimation performance. It is crucial to

estimate set Iuc containing the indexes of the uncorrupted measures. As Iuc
and its cardinality |Iuc| < N are unknown, each sample of vector y follows an

i.i.d. Bernoulli prior of probability Puc, leading to a Binomial-distributed car-

dinality. In this context, we derive and analyze the performance lower bound

on the Bayesian Mean Square Error (BMSE) on a |S|-sparse vector where each

random entry is the product of a continuous variable and a Bernoulli variable

of probability P and |S|
∣∣∣|Iuc| follows a hierarchical Binomial distribution on

set {1, . . . , |Iuc| − 1}. The derived lower bounds do not belong to the family of

”oracle” or ”genie-aided” bounds since our a priori knowledge on support Iuc
and its cardinality is limited to probability Puc. In this context, very compact

and simple expressions of the Expected Cramer-Rao Bound (ECRB) are pro-

posed. Finally, the proposed lower bounds are compared to standard estimation

strategies robust to an impulsive (sparse) noise.
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Bound, statistical priors for support sets of random cardinalities, Gaussian

measurement matrix

1. Introduction

In the Compressed Sensing (CS) framework [1, 2, 3], it is assumed that the

signal of interest can be linearly decomposed into few basis vectors. By ex-

ploiting this property, CS allows for using sampling rates lower [4] than the

Shannon’s sampling rate [5]. As a result, CS methods have found a plethora of

applications in numerous areas, e.g. array processing [6, 7], wireless communi-

cations [8, 9], video processing [10] or in MIMO radar [11, 12, 13].

A fundamental problem is to derive the estimation performance of sparse signal

[14]. To reach this goal, the lower bounds on the mean-square error (MSE) are

useful as a benchmark against any estimators can be compared [15, 16]. They

have been investigated for deterministic sparse vector estimation in [17, 18, 19,

20] and for the Bayesian linear model in [21, 22, 23, 24].

In realistic contexts, the estimation accuracy in terms of the Bayesian MSE

(BMSE), of standard sparse-based estimator collapses in presence of a corrupted

measurements [25, 26, 27, 28, 29]. In this work, our aim is to study the esti-

mation performance limit in presence of corrupted measurements. CS with

corrupted measurements [30, 31, 32] plays a central role in numerous applica-

tions, such as the restoration of signals from impulse noise, strong narrowband

interference, bursts of high noise (e.g., hardware power-supply spikes), measure-

ments dropped during transmission, malfunctioning sensors in network, etc. In

practice, the indexes, i.e., the support Iuc, constituted by the uncorrupted mea-

surements and its cardinality, denoted by |Iuc|, are unknown. So, to take into

account this uncertain knowledge, the support Iuc is modelized as a collection

of i.i.d. Bernoulli-distributed random variables with a probability 1−Puc to be

corrupted. Thus, in our framework, the proposed lower bounds do not belong to

the family of ”oracle” or ”genie-aided” bounds since only the knowledge of prob-

ability Puc is assumed to be a priori known. As a consequence, the unknown
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cardinality |Iuc| follows a Binomial prior in set {1, . . . , N−1}. So, our goal is to

derive a lower bound on the BMSE for the estimation of a |S|-sparse amplitude

vector for (i) a Gaussian measurement matrix and (ii) for random support, S,

and cardinality, assuming that each entry of the vector of interest is modeled as

the product of a continuous random variable and a Bernoulli-distributed ran-

dom variable indicating that the current entry is non-zero with probability P .

To ensure the model identifiability contraint, we must have |S| < |Iuc|, mean-

ing that |S|
∣∣∣|Iuc| follows a hierarchical Binomial distribution confined in the set

{1, . . . , |Iuc| − 1}. This work proposes several new contributions regarding the

state of art on the lower bounds for the estimation of sparse signal. Contrary

to [17, 18, 20], the proposed lower bounds do not assume the knowledge of the

support and its cardinality. Regarding the references [21, 22, 23], the proposed

lower bounds remain true for any continuous prior on the non-zero entries of

interest. Our framework differs from [24] since the derived results are obtained

in the non-asymptotic scenario. We can note that to the best of our knowl-

edge the derivation of an Bayesian lower bound with corrupted measurements

has not been proposed in the literature. Finally, the proposed lower bounds

are illustrated in the context of the standard estimation strategies robust to an

impulsive (sparse) noise.

This work is composed by two main parts. The first one presents the Expected

Cramer-Rao Bound (ECRB) based on a complete measurement vector scenario

meaning that Puc = 1. This section has been partially presented during the

IEEE SSP’16 conference [33]. The second part presents the major contribution

of this work, Specifically, the more challenging corrupted measurement vector

scenario is tackled.

Notations: The symbols (·)T , (·)†, Tr(·) and (·)! denote the transpose, the

pseudo-inverse, the trace operator and the factorial, respectively. Further-

more, N (µ, σ2) stands for the real Gaussian probability density function (pdf)

with mean µ and variance σ2. Bernou(P ) stands for the Bernoulli distribution

of probability of success P . Binomial(N,P ) stands for the Binomial distribu-
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tion in {0, . . . , N} with a success probability P [34]. The binomial coefficient

is
(
a
b

)
= a!

b!(a−b)! . | · | is the cardinality of the set given as an argument. 1X (x)

is the indicator function with respect to the set X , i.e., 1X (x) = 1 if x ∈ X

and 0 otherwise. O(·) is the Big-O notation [35]. EX (resp. EX|Y ) denotes the

mathematical (resp. conditional) expectation. log is the logarithm function and

∂ is the partial derivative symbol. A function in C1 is continuously differen-

tiable. p(·) denotes a probability density function (pdf) and Pr(·) denotes the

probability mass function (pmf).

2. CS model and recovery requirements

Let y be a N×1 noisy measurement vector in the (real) Compressed Sensing

(CS) model [1, 2, 3]:

y = Ψs + n, (1)

where n is a (zero-mean) white Gaussian noise vector with component variance

σ2 and Ψ is the N ×K sensing/measurement matrix with N < K. The vector

s is given by s = Φθ, where Φ is a K×K orthonormal matrix and θ is a K× 1

amplitude vector. With this definition eq. (1) can be recast as

y = Hθ + n (2)

where the overcomplete N × K matrix H = ΨΦ is commonly referred to as

the dictionary. The amplitude vector θk are assumed to be random with an

unspecified pdf. Let P be a K × K diagonal matrix composed by K random

binary entries. This matrix modelizes the mechanism to randomly ”sparsify”

the dense random vector θ′ on the support set S. This set is composed by

the collection of indices of the non-zero θk. The cardinality of the support is

denoted by |S|. So, the K × 1 vector θ = Pθ′ is |S|-sparse, with |S| < N < K.

Under this assumption and using the property P 2 = P , we can rewrite the first

summand in eq. (2) as

Hθ = HPθ′ = HP 2θ′ = [HP ]S [Pθ′]S = HSθS
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with HS = ΨΦS and the N × |S| matrix ΦS is built up with the |S| columns

of Φ having their indices in S and the |S| × 1 vector θS is composed by the

non-zero entries in θ′ randomly selected thanks to matrix P . Fig. 1 illustrates

the considered model.

2.1. Statistical priors

2.1.1. Universal design strategy of matrix H

Determining whether the dictionary H = ΨΦ satisfies the the concentration

inequality is combinatorially complex but the so-called universal design strategy

has been introduced for instance in [3, 2]. Assume that matrix Φ is an orthonor-

mal basis and the measurement matrix Ψ is drawn from an independent and

identically distributed Gaussian entries of zero mean and variance 1/N . For

0 < ε < 1, the concentration probability for dictionary H is

Pr
(∣∣||Hθ||2 − ||θ||2∣∣ ≥ ε||θ||2) = Pr

(∣∣||Ψs||2 − ||s||2
∣∣ ≥ ε||s||2)

since ||s||2 = ||θ||2 thanks to ΦTΦ = I. So, according to the above equality,

we can see that the concentration probability for H with an orthonormal Φ is

characterized by the concentration probability for the measurement matrix Ψ.

According to [36, 37, 38, 39, 40], it is well known that Gaussian matrices satisfy

with high probability the concentration inequality:

Pr
(∣∣||Ψs||2 − ||s||2

∣∣ ≥ ε||s||2) ≤ e−cNε2
where c is a given positive constant. Note that this statistical guaranty ensures

that practical estimators can successfully recover a |S|-sparse amplitude vector

from noisy measurements with high probability for a number of measurements

N = O(|S| log(K/|S|). Note that the number of measurements is smaller than

the classical sampling theory [5].

2.1.2. Design of the selection matrix P

Definition 2.1 (Guaranty on the non-singularity of the Fisher information).

Define the deterministic set I ⊂ {1, . . . ,K} of cardinality |I| = N − 1 < K.
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Given |I| available measurements, the Fisher information associated to model of

eq. (2) is said to be non-singular if the degree of freedom satisfies |I| − |S| ≥ 0.

In the estimation point of view, considering more parameters of interest than

the number available measurements leads to a rank deficient Fisher Information

Matrix (FIM).

In the context of Definition 2.1, it cannot exist an estimator with finite

variance [41, 42, 43, 44, 24].

Random cardinalities with the FIM non-singularity guaranty. For 1 ≤ k ≤ K,

we have two possible cases: θk∈I 6= 0 with probability P ,

θk∈I = 0 with probability 1− P .

The above formulation can be compactly expressed according to

[P ]k,k = 1S(k)1I(k) (3)

where 1I(k) enforces the FIM non-singularity guaranty and

1S(k) ∼ Bernou(P )

for a probability of success given by P = L/(N − 1) and L = E|S|.

By definition the cardinality of S conditionally to a given set I is

|S|
∣∣∣ I = TrP =

K∑
k=1

1S(k)1I(k) =
∑
k∈I

1S(k)

with |I| = N − 1. So, |S|
∣∣ I is the sum of |I| i.i.d. Bernoulli-distributed

variables. As a consequence,

|S| ∼ Binomial(|I|, P ).

2.2. Bayesian lower bound on the BMSE

2.2.1. Definition of the performance criterion

We define the conditional BMSE given S and |S| to be

BMSES,|S| =
1

N
E
y,H,θ

∣∣S,|S| ∥∥∥θS − θ̂(y,HS)
∥∥∥2
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Figure 1: CS framework with random support and cardinality

where θ̂(y,HS) is an estimate of θS that knows the support S and respects

the FIM non-singularity guaranty described in the previous section. Averaging

the conditional BMSES,|S| over the random quantities, i.e., S and |S| yields:

BMSE = E
|S|
∣∣IES∣∣|S|BMSES,|S|.

Remark 2.2. • The BMSE is a natural limit performance criterion for an

estimator unaware of the support S and its cardinality |S|.

• The BMSE can easily take into account Definition 2.1.

2.2.2. Which Bayesian CRB-type bound ?

In the family of the Bayesian lower bounds [15] based on the Cramér-Rao

Bound (CRB) framework, it exists the VanTree’s lower bound and the Expected

CRB.

Remark 2.3. We focus our effort on the ECRB for the two following reasons:

• The ECRB is based on the deterministic/Bayesian connexion [45] and is

simple to derive.

• The ECRB is the tightest Bayesian lower bound in the low noise regime

regarding the considered Bayesian linear model [46]. As a price to pay, the

ECRB inherits from the regularity conditions of the deterministic CRB.
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In particular, to derive bound ECRB, the non-singularity of the Fisher

information described in Definition 2.1 cannot be violated.

The deterministic/Bayesian connexion principle is briefly recalled here. The

MSE conditioned to {H,θ,S, |S|} is defined as

MSE =
1

N
E
y
∣∣H,θ,S,|S|||θS − θ̂(y,HS)||2

and enjoys the following fundamental inequality

MSE ≥ CRB =
1

N
Tr
[
F−1

]
(4)

where CRB is the normalized trace CRB with F the FIM [16] given by

F = E
y
∣∣H,θ,S,|S| [ζζT ] (5)

where ζ is the score function defined as the first-order derivative of the log-

likelihood function p(y|H,θ,S, |S|) ∈ C1 with respect to θTS . The BMSE is

defined according to

BMSE = E
H,θ,S,|S|

∣∣IMSE.

Using eq. (4) in the above definition, we obtain the definition of the ECRB

such as

BMSE ≥ ECRB = E
|S|
∣∣I ES∣∣|S| EH,θ

∣∣S,|S|CRB︸ ︷︷ ︸
ECRBS,|S|︸ ︷︷ ︸

ECRB|S|

.

The final expression of the ECRB conditionally to set I is

ECRB = E
|S|
∣∣IECRB|S|

=

|I|∑
`=1

Pr(|S| = `) ECRB`. (6)
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Case of the Bayesian linear model with Gaussian noise. As log p(y|H,θ,S, |S|)

follows a log-normal distribution denoted by logN (HSθS , σ
2I), we use the well-

known Slepian-Bangs formula [16]. Consequently, a simple derivation based on

eq. (5) leads to

CRB =
σ2

N
Tr
[
(HT
SHS)−1

]
.

Remark 2.4. Due to the linear relation between the measurement and the am-

plitude vector, we have the following properties:

• The lower bound CRB is not a function of θ, thus

ECRBS,|S| = E
H,θ
∣∣S,|S|CRB = E

H
∣∣S,|S|CRB.

This means that the derived ECRB will be valid for any amplitude prior

p(θ).

• The amplitude prior could not be in C1 as for instance the uniform dis-

tribution. This implies relaxed constraint on the choice of p(θ).

Given the above remark, the conditional ECRB relatively to |S| is given by

ECRB|S| =
σ2

N
E
S
∣∣|S|EH

∣∣S,|S|Tr
[
(HT
SHS)−1

]
. (7)

Case of a Gaussian measurement matrix.

Lemma 2.5. For a Gaussian measurement matrix, the lower bound given in

eq. (7) reads

ECRB|S| = σ2 |S|
N − |S|

. (8)

Proof The proof is straightforward by using eq. (7) and the property of the

Wishart matrices [47] for |S| < N . Let ZS =
√
NHS . Observe that the entries

of matrix ZS have now a unit variance. Thus E
Z
∣∣S,|S|Tr

[(
ZTSZS

)−1]
is given by

eq. (8). Now, remark that the above expression is not a function of the support

S, then using the above expression in eq. (7) provides eq. (8). �
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Remark 2.6. For a Gaussian measurement matrix, the ECRB is only a func-

tion of the random cardinality |S| but not of the instantiations of S.

Result 2.1. Using Lemma 2.5, the ECRB in eq. (6) is

ECRB = σ2

|I|∑
`=1

`

N − `
Pr(|S| = `).

Case of random supports and cardinalities.

Result 2.2. For any amplitude vector prior, for L < N − 1 where L = E|S|

and for a probability of success given by P = L/(N − 1), the ECRB verifies the

following inequality:

BMSE ≥ ECRB = σ2 P

1− P
(
1− PN−1

)
. (9)

Proof See Appendix 6.1. �

Remark 2.7. For a large number of measurements, i.e., N � 11, we can give

the following approximation:

ECRB ≈ σ2 P

1− P
= σ2 L

N − L
.

3. CS with corrupted measurements scenario

3.1. Model formalism

Assume that there exists an N × N unknown random selection matrix P̄ .

The aim is to estimate the amplitudes in vector θS , based on the reduced-size

measurement vector:

yIuc = [P̄y]Iuc

where Iuc is the unknown random set of indexes of the measurements classi-

fied as uncorrupted of mean cardinality given by E|Iuc| = Nuc and the full

measurement vector y has been defined by eq. (2). An equivalent expression is

yIuc
= [P̄Hθ]{

Iuc,{1,...,K}
} + nIuc

1Note that it is assumed that L is not neglected with respect to N .
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where nIuc = [P̄n]Iuc and

[P̄Hθ]{
Iuc,{1,...,K}

} = [P̄HP 2θ′]{
Iuc,{1,...,K}

}
= [P̄HP ]{Iuc,S}θS . (10)

Remark that eq. (10) shows a double random selections acting on the rows

and columns of the dictionary H as illustrated in Fig. 2.

Figure 2: Random selections acting on the rows and columns of the dictionary

Note HP = [P̄HP ]{Iuc,S} with P = {Iuc,S}, then the CS model with

corrupted measurements is given by

yIuc = HPθS + nIuc . (11)

Remark 3.1. CS with corrupted measurements takes formally a similar formu-

lation as the used one in the previous section with the following substitutions:

S ↔ P,

y↔ yIuc

HS ↔ HP .

3.2. Characterization of the selection matrices

Definition 3.2. We recall that the the non-singularity of the Fisher informa-

tion constraint means that we cannot estimate more amplitude parameters than

the number of available measurements. So, the FIM non-singularity guaranty
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for the corrupted measurement scenario can be naturally generalized from the

definition given in Definition 2.1. Specifically, given |Iuc| the random number

of uncorrupted measurements, we must have |S| ≤ |Iuc| to ensure a positive

degree of freedom of the system.

Remark 3.3. CS with corrupted measurements has a major difference with re-

spect to the full measurements case since the number of rows, |Iuc|, and of

columns, |S|, of dictionary HP are now two dependent randoms variables. In

addition, due to the FIM non-singularity guaranty, the random cardinality |S|

has to be defined in a hierarchical framework, meaning that its pmf will be a

function of the random cardinality |Iuc|. The adopted model is illustrated in

Fig. 3.

Figure 3: Dictionary random sizes for CS with corrupted measurements

3.2.1. Selection matrix P̄

For 1 ≤ n ≤ N , a convenient choice for the diagonal selection matrix P̄ is

[P̄ ]n,n = 1Iuc(n) ∼ Bernou(Puc) with Puc =
Nuc

N − 1
.

Consequently, the cardinality |Iuc| is given by

|Iuc| = TrP̄ =

|I|∑
n=1

1Iuc(n) ∼ Binomial(N − 1, Puc). (12)
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3.2.2. New construction of the selection matrix P

Following the same formalism as eq. (3), we have

[P ]k,k = 1S(k)1Iuc(k)

where 1Iuc
(k) enforces the FIM non-singularity guaranty. The cardinality of S

is given by

|S|
∣∣∣ Iuc = TrP =

K∑
k=1

1S(k)1Iuc(k) =
∑
k∈Iuc

1S(k).

As the above expression is only a function of the random cardinality |Iuc|

and is the sum of |Iuc| − 1 i.i.d. independent Bernoulli variables, we conclude

|S|
∣∣∣ |Iuc| ∼ Binomial(|Iuc| − 1, P̄ ). (13)

Note that |S| conditionally to |Iuc| follows a hierarchical [48] Binomial dis-

tribution since |Iuc| is also random. Marginalizing over |Iuc| allows to derive

the probability P̄ . More precisely, let L̄ = E|S|,|Iuc||S| be the mean number of

non-zero amplitudes, we have

L̄ = E|Iuc|E|S|
∣∣ |Iuc||S|

= (E|Iuc|(|Iuc|)− 1)P̄

= (Nuc − 1)P̄

and thus

P̄ =
L̄

Nuc − 1
. (14)
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3.3. ECRB based on corrupted measurements

3.3.1. Definition of a new performance criterion

Let θ̂(yIuc ,HP) be an estimator of θS . The BMSE conditionally to P and

|P| = {|Iuc|, |S|} in case of the new model according to

BMSEuc
P,|P| =

1

N
E
y,H,θ

∣∣P,|P|||θS − θ̂(yIuc ,HP)||2,

BMSEuc
|P| = E

P
∣∣|P|BMSEuc

P,|P|,

BMSEuc =

|I|∑
n=1

n−1∑
`=0

Pr(|P| = {`, n}) BMSEuc
{n,`}.

3.3.2. Derivation of the ECRB

Lemma 3.4. The ECRB for the non-zero amplitudes conditionally to |Iuc|and

for |S| < |Iuc| is given by

ECRBuc
|P| = σ2 |S|

|Iuc| − |S|
.

Proof The proof is similar to Lemma 2.5 with ZP =
√

N
|Iuc|HP . �

Now, we can give the following result.

Result 3.1. Based on Lemma 3.4 and the modelization introduced in Section

3.2.1, the ECRB defined by

ECRBuc =

N−1∑
n=1

n−1∑
`=0

Pr(|P| = {`, n}) ECRBuc
n,`

is given by

ECRBuc =
σ2

1− P̄

(
P̄ + (1− P̄ )(1− Puc)

N−1 − (1− Puc(1− P̄ ))N−1
)

(15)

where Puc and P̄ are given by eq. (12) and eq. (14), respectively.

Proof See Appendix 6.2. �

Result 3.2. For large N , eq. (15) in the previous result can be approximated

according to

ECRBuc ≈ σ2 P̄

1− P̄
= σ2 L̄

Nuc − L̄
.
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Proof Using Result 3.1, the proof is straightforward by noticing that (1 −

Puc)
N−1 and (1−Puc(1− P̄ ))N−1 vanish for large N . We can neglige these two

terms as long as Nuc is not too small with respect to N , i.e., for a not too small

Puc. �

4. Application to corrupted measurements due to an impulsive (sparse)

noise

To illustrate the effect of the corrupted measurements, Fig. 4 shows the

ratio ECRBuc

ECRB with respect to, Puc, the probability of each measurement to be

uncorrupted for several values of P which is the probability for each amplitude

to be non-zero. First, we can note that the ECRBuc can be around 102 times

higher than the ECRB for small a Puc. So, we observe the drastic degradation

of the corruption of the measurement on estimation accuracy limit.
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Figure 4: ratio vs. Puc, SNR = 30 dB
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In this section, we apply the proposed lower bounds in the context of the

presence of an impulsive (sparse) noise. Specifically, the considered model is the

following [25, 26, 27, 28]:

ỹ = y + e = Hθ + e + n

where y has been defined in eq. (2), e is a impusive random noise such as

eIuc
= [P̄ e]Iuc

= 0. Each non-zero entry in e corresponds to a corrupted

measurement in vector ỹ. We have

ỹIuc
= [P̄ ỹ]Iuc

= yIuc
+ [P̄ e]Iuc = HPθS + eIuc + nIuc = HPθS + nIuc .

Remark that the model is formally equivalent to the one given by eq. (11).

We assume the two following standard strategies.

(A) In many operational contexts as for instance Radar processing [49], source

localisation [50, 51], array calibration for radio-interferometers [52, 53],

a set of measurements free from the signal of interest is available. Let

y0 = e + n be this secondary set of measurements. The estimation of the

support Iuc is described according to

A(y0, IN )→ Îuc

where A(·, ·) denotes any sparse-based estimators [54, 55, 56, 57, 58, 59].

Given this estimated support, it is possible to remove the corrupted mea-

surements to focus the estimation only on the vector of interest θS . Fi-

nally, the entire process is described according to

A

ỹÎuc , [H]{
Îuc,{1,...,K}

}→ (Ŝ, θ̂Ŝ).

(B) A second strategy is based on the principle of ”democracy policy” or

”Justice Pursuit” [27, 26]. In this context, the sparse noise eIuc is viewed

as a signal of interest and has to be estimated jointly with the vector of

interest θS . The considered model is

ỹ =
[
H IN

]θ
e

+ n.
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Note that in this strategy, a larger dictionary is constituted by the union

of dictionaries H and Ω. Specifically, we have

A(ỹ,
[
H IN

]
)→

 Ŝ
Îuc

 ,
 θ̂Ŝ

êÎuc

 .

In the conducted simulations, estimator A(·, ·) is the Orthogonal Matching

Pursuit (OMP) [56, 57]. The OMP adapted to strategy (B) follows the acronym

OMP-DS. In addition, the impulsive noise is assumed sparse in the sample

domain as usually done [27, 26]. On Fig. 5, the BMSE is drawn for a wide

range of SNR with N = 100, K = 200 and L̄ = L = 10. We first observe that

the BMSE of the OMP in presence of corrupted measurements is saturated.

This is true even for a large Nuc as in Fig. 5 or for a smaller Nuc as in Fig.

6. Another observation is that for a large Nuc, the strategies (A) and (B) show

very close estimation accuracies. In addition, we can also note the accurate

prediction proposed by the derived lower bounds. We can also remark that

bounds ECRB and ECRBuc are almost identical since only a few number of

measurements given by N −Nuc = 5 are corrupted.

On Fig. 6, the BMSE is drawn for a wide range of SNR but for a larger

number of corrupted measurements of N −Nuc = 35. This implies that P and

P̄ take different values and the two bounds ECRB and ECRBuc can clearly

be distinguished. In this difficult context, the strategy (B), through estimator

OMP-DS, seems ineffective. At the same time, the proposed bound ECRBuc

predicts with a high accuracy the estimation performance of the strategy (A).

Finally, the BMSE is drawn on Fig. 7 with respect to the probability Puc.

We recall as much Puc is small as much the number of corrupted measurements

is large. We can observe that the OMP is ineffective even for Puc close to one.

The OMP-DS corresponding to the strategy (B) reaches the bound ECRBuc for

a small number of corrupted measurements. At contrary, the strategy (A) is

able to meet the bound ECRBuc for Puc approximately larger than 0.5.
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Figure 5: BMSE vs. SNR with Nuc = 95 and P ≈ P̄ ≈ 0.1

Figure 6: BMSE vs. SNR with Nuc = 65, P ≈ 0.1 and P̄ ≈ 0.16
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Figure 7: BMSE vs. Puc with L = 5, 19 ≤ Nuc ≤ N − 1, P ≈ 0.1 and 0.05 ≤ P̄ ≤ 0.28,

SNR = 30 dB

5. Conclusion

CS with corrupted measurements is a timely and important research topic.

In practice, we have often to face to the presence of corrupted measurement

samples in a vector yIuc
extracted from the complete measurement vector y.

To take into account of an uncertain knowledge of Iuc and its cardinality, it

is assumed that each measurement sample in y has the probability 1 − Puc to

be corrupted. As a consequence, the cardinality |Iuc| follows a Binomial prior.

In this context, the Expected CRB (ECRB) which is fundamental lower bound

on the BMSE of any estimators is derived for the estimation of a |S|-sparse

amplitude vector where each of its entry is the product of a continuous random

variable of unspecified pdf and a Bernoulli random variable of probability P

to be in support S. As, we focus our effort to the Bayesian linear model with

non-singular Fisher Information Matrix, the cardinal |S|
∣∣∣|Iuc| has to follow a

hierarchical Binomial distribution on set {1, . . . , |Iuc| − 1}. In this framework

and for a Gaussian measurement matrix, very compact and simple expressions
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of the ECRB are proposed. Finally, the proposed lower bounds are illustrated in

the context of two standard estimation strategies robust to an impulsive (sparse)

noise.

6. Appendix

6.1. Proof of Result 2.2

Using in eq. (6), Lemma 2.5, Remark 2.6, the ECRB is given by

ECRB = σ2
N−1∑
`=1

`

N − `

(
N − 1

`

)
P `(1− P )N−`−1

=
σ2

N(1− P )

(
EG−NPN

)
where G ∼ Binomial(N,P ). Using the first moment of the Binomial variable G

[34] given by EG = NP , we obtain eq. (9).

6.2. Proof of Result 3.1

Using eq. (13), the ECRB for corrupted measurements is given by

ECRBuc = σ2
N−1∑
n=1

Pr(|Iuc| = n)

n−1∑
`=0

`

n− `
Pr(|S| = `

∣∣|Iuc| = n)

=
σ2

1− P̄
(
P̄ γ1 − γ2

)
(16)

where

γ1 =

N−1∑
n=1

Pr(|Iuc| = n)

= 1− Pr(|Iuc| = 0) = 1− (1− Puc)
N−1

γ2 =

N−1∑
n=1

Pr(|Iuc| = n)P̄n

=

N−1∑
n=0

Pr(|Iuc| = n)P̄n − Pr(|Iuc| = 0)

= (P̄Puc + 1− Puc)
N−1 − (1− Puc)

N−1.

Inserting the two above expressions in eq. (16) provides the desired result.
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