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Distributed Faulty Node Detection in
Delay Tolerant Networks: Design and Analysis

Wenjie Li, Student Member, IEEE, Laura Galluccio, Member, IEEE,
Francesca Bassi, Member, IEEE, and Michel Kieffer, Senior Member, IEEE

Abstract —Propagation of faulty data is a critical issue. In case of Delay Tolerant Networks (DTN) in particular, the rare meeting events
require that nodes are ef�cient in propagating only correct information. For that purpose, mechanisms to rapidly identify possible faulty
nodes should be developed. Distributed faulty node detection has been addressed in the literature in the context of sensor and
vehicular networks, but already proposed solutions suffer from long delays in identifying and isolating nodes producing faulty data. This
is unsuitable to DTNs where nodes meet only rarely. This paper proposes a fully distributed and easily implementable approach to
allow each DTN node to rapidly identify whether its sensors are producing faulty data. The dynamical behavior of the proposed
algorithm is approximated by some continuous-time state equations, whose equilibrium is characterized. The presence of misbehaving
nodes, trying to perturb the faulty node detection process, is also taken into account. Detection and false alarm rates are estimated by
comparing both theoretical and simulation results. Numerical results assess the effectiveness of the proposed solution and can be
used to give guidelines for the algorithm design.

Index Terms —Delay Tolerant Networks; Fault detection; Iterative algorithms; Distributed estimation; Equilibrium analysis.
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1 INTRODUCTION

Delay Tolerant Networks (DTN) are challenging networks
characterized by dynamic topology with frequent discon-
nections [1]. Examples of DTNs include Vehicular DTNs
(VDTNs) [2] where two nodes can communicate with each
other only when they are closely located. This connection is
intermittent as the nodes are moving vehicles. Due to this
sparse and intermittent connectivity, inference and learning
over DTNs is much more complicated than in traditional
networks, see,e.g., [3]–[8].

This paper considers the problem of distributed faulty
node detection (DFD) in DTNs. A node is considered as
faulty when one of its sensors frequently reports erroneous
measurements. The identi�cation of such faulty nodes is
very important to save communication resources and to
prevent erroneous measurements polluting estimates pro-
vided by the DTN. This identi�cation problem is quite
complicated in DTNs when interactions are mainly between
pairs of encountering nodes. Most of the classical DFD
algorithms are using measurements of spatially-correlated
physical quantities collected by many nodes to determine
the presence of outliers and identify the nodes producing
these outliers. In case of pairwise interactions, mismatch
between measurements provided by two different nodes
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can still be detected, but identifying directly which node
produces erroneous measurements is not possible.

This paper presents a fully distributed and easily im-
plementable algorithm to allow each node of a DTN to
determine whether its own sensors are defective. We assume
as in [9] that nodes are not aware of the status (good or
defective) of their sensors, while their computation and
communication capabilities remain �ne, even if some of
their sensors are defective. Most of the nodes of the DTN
are assumed to behave in a rational way and are willing to
know the status of their sensors. Some nodes, however, may
be misbehaving, trying to perturb the detection process.

As in [9]–[13], a Local Outlier Detection Test (LODT)
is assumed to be able to detect the presence of outliers in
a set of measurements, without necessarily being able to
determine which are the outliers. This is a typical situation
when only pairwise interactions are considered, where mea-
surements from sensors of only two nodes are compared.
The generic LODT is characterized by its probabilities of
detection and false alarm. When two nodes meet, they
exchange their local measurements and use them to perform
the same LODT. The LODT results help both nodes to
update their estimate of the status of their own sensors.
When, for a given node, the proportion of meetings during
which the LODT suggests the presence of outliers is larger
than some threshold, this node decides its sensors may be
defective. In this case, it becomes silent. Accordingly, it does
not transmit any more its measurements to its neighbors,
but keeps collecting measurements from nodes met and
updates the estimate of the status of its sensors. It may then
have the opportunity to change its estimate and communi-
cate again. Although the LODT considered here are those
of [9], this work differs signi�cantly from [9] due to the
communication conditions of DTNs, which require a totally
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different DFD algorithm. The analysis of the properties of
the algorithm is also totally different. This paper shows
that the behavior of the proposed DFD algorithm can be
described using Markov models and tools borrowed from
control theory and population dynamics.

More in depth, the belief of each node about the status
of its sensors is quantized. The evolution of these quan-
tized beliefs are then shown to follow two Markov chains.
A continuous-time approximation of the evolution of the
proportion of nodes with similar beliefs is then derived.
Suf�cient conditions on the decision parameters to ensure
the existence and uniqueness of an equilibrium of the DFD
algorithm are then provided. Given the characteristics of
the LODT, upper and lower bounds of the detection rate, i.e.,
proportion of nodes which have effectively identi�ed their
sensors as defective, and of thefalse alarm rate, i.e., propor-
tion of nodes which believe that their good sensors are in
fact defective, are also obtained. The impact of misbehaving
nodes, trying to perturb the results of the DFD algorithm, is
also taken into account. These results provide guidelines to
properly choose the parameters of the DFD algorithm.

The rest of the paper is organized as follows. Section 2
discusses some related work. Section 3 presents the system
model and basic assumptions. Section 4 details the DFD
algorithm for DTNs. Section 5 introduces the Markov model
describing the behavior of the DFD algorithm and describes
the transition probabilities between the node states. Sec-
tion 6 develops the theoretical analysis of the macroscopic
evolution of the proportion of nodes in different states.
Section 7 analyzes the properties of the equilibrium obtained
from the continuous-time state equations by approximating
the stochastic evolution of the proportions of nodes with
similar beliefs. Section 8 discusses the effect of having
misbehaving nodes in the system. Section 9 provides some
numerical results as well as a comparison with an alterna-
tive DFD algorithm and Section 10 concludes this paper.
Notations are presented in Table 1. Proofs of propositions
and lemmas are available in the Appendix.

2 RELATED WORK

DFD is a well-investigated topic when considering Wire-
less Sensor Networks (WSNs) (see [14]–[16] and references
therein). The WSNs considered in most of the papers are
dense and have a static topology. DFD in DTNs is much
less investigated. Classical DFD algorithms usually consist
of two phases. First, an LODT is performed using data
collected from neighboring nodes. LODTs (based on ma-
jority voting [10], the median [11], or the mean [12] of the
measurements, the modi�ed three-sigma edit test [13], etc.)
aim to decide which data is erroneous. Second, the outcomes
of the LODTs are disseminated to improve the decision
accuracy.

Nevertheless, when LODTs have to process measure-
ments from two or three nodes only, it becomes dif�cult
to identify the defective nodes. It may, however, still be
possible to detect inconsistencies among measurements due
to the presence of a node producing outliers. This is a
typical situation in DTNs when there are mainly pairwise
interactions: two nodes meet, take measurements, and share

these measurements. Applying directly classical DFD algo-
rithms in DTNs may thus be quite ineffective. Moreover,
usually the performance of DFD algorithms is characterized
experimentally. A theoretical analysis of the equilibrium
and convergence properties of these algorithms is seldom
performed.

In the context of distributed estimation via consensus in
a WSN, [17]–[20] have considered the simultaneous estima-
tion of a common quantity from measurements corrupted by
different levels of bias or of variance. A distributed ranking
among nodes is performed according to the performance of
their sensor. The proposed solution allows an identi�cation
of defective nodes with sensors producing measurements
of high bias or high variance. Nevertheless, the proposed
solution highly relies on the measurement models and on
the communication conditions.

A problem related to DFD in DTNs has been considered
in [21] in the context of VDTN. A large number of sensor
nodes are �xed and some vehicles, called mobile carriers
(MC) collect data from these sensors. The sensor nodes can
only communicate with the MCs in their vicinity. A MC
needs to collect enough measurements to perform a test
to decide which have been produced by defective sensors.
Once a node is deemed defective by a MC, it is added to
its blacklist. The MC provides information to sensors about
their status. MCs also exchange their blacklists to accelerate
the faulty node detection.

In [22], a related problem of distributed malware detec-
tion in DTNs is addressed. Each node evaluates after a meet-
ing with another node whether the latter has performed
suspicious actions (malware transmission trial). When after
several meetings with Node j , Node i detects for a given
number of times suspicious activities, a cut-off decision
is performed against Node j , which is ignored in next
meetings. The main drawback of this approach is the long
time required to identify and isolate misbehaving nodes.
Misbehavior detection in DTNs is also considered in [6],
[23], where the DTN is perturbed by routing misbehavior
caused by sel�sh or malicious nodes. The identi�cation
approach in [6] is not distributed, since a trusted author-
ity periodically checks the forwarding history of nodes
to identify possible misbehavior. A collaborative approach
is proposed in [23], where each node can detect whether
the encountered node is sel�sh using a local watchdog.
The detection result is disseminated over the network to
increase the detection precision and to reduce the delay.
Trust/Reputation management is another important aspect
to help DTNs to resist various potential threats. For exam-
ple, [24] provides an iterative trust management mechanism
to �ght against Byzantine attacks in which several nodes
are totally controlled by the adversary. In [25], a defense
against Sybil attacks [26] is introduced, which is based on
the physical feature of the wireless propagation channel. A
trust model in the scenario of underwater acoustic sensor
networks is presented in [27] to take into account several
trust metrics such as link trust, data trust, and node trust.

In this paper, differently from previous works in the
�eld, we consider that in a distributed way each node
performs a self-determination on whether its sensors are
producing outliers in the context of DTNs. In this case, new
issues arise, mainly related to the limited proximity time
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TABLE 1
Symbols used in this paper

S0 , S1 , S2 sets of good, defect., and misbehav. nodes
nS number of nodes
� i status of node i
b� i estimate of � i

n � number of nodes with status �
p� proportion of nodes with status �

p� b� proportion of nodes with status � and
estimating their status as b�

p� b� value of p� b� at equilibrium

ep� b� approximate value of p� b� at equilibrium
� inter-contact rate
� decision threshold
t time
yi outcome of a LODT performed by node i
qD detection probability of a LODT
qFA false alarm probability of a LODT
cm;i number of LODTs performed by node i
cd;i number of LODTs by node i resulting in a

detection of outliers
M number of previous LODT results

considered for the decision
x i state of node i , containing � i , cm;i , and cd;i

� � m ;� d
� (t; cm ; cd ) transition probability from state (�; c m ; cd )

to state (�; c m + � m ; cd + � d )
Xcm ;c d

� proportion of nodes of actual status � with
state x i = ( �; c m ; cd )

X cm ;c d
� expected value of Xcm ;c d

�
X

cm ;c d
� value of X cm ;c d

� at equilibrium
eX cm ;c d

� approximate value of X cm ;c d
� at equilibrium

of DTN nodes and the sporadic contacts which call for the
consideration of the history of contacts in the identi�cation
process. Also, we provide a mathematical characterization
of the problem and prove the convergence of the algorithm.

3 SYSTEM MODEL

Consider a setS of nS moving nodes equipped with sensors.
S can be partitioned into three subsets, S0, S1, and S2.
S0 contains all nodes with goodsensors. S1 is the subset
of nodes with defectivesensors producing outliers, i.e., mea-
surements corrupted by a noise which has characteristics
signi�cantly different from those of the noise corrupting
measurements provided by good sensors. Finally, S2 rep-
resents the set of misbehavingnodes, trying to voluntarily
perturb the behavior of the network.

The status of node i is � i (t) = 0 (good node) if all its
sensors are good,� i (t) = 1 (defective node) if at least one of
them is defective, and by convention � i (t) = 2 (misbehaving
node). The proportion and number of nodes with status �
are respectively p� and the number of nodes in status �
is n� = p� nS, with p0 + p1 + p2 = 1 . All nodes, except
misbehaving nodes, are not aware of their own status. In
what follows, we assume that over the time horizon of
the experiment, the status of sensors does not change,i.e.,
� i (t) = � i .

Misbehaving nodes aim at disrupting network opera-
tions by causing congestion along paths, unreliable packet
delivery, or erroneous data delivery [6], [24], [28]. Here, we
assume that misbehaving nodes always transmit data to

their neighbors indicating that their sensors are good. More-
over, they try to provide measurements to the encountered
nodes so that the LODTs performed by these nodes lead to
the outcome of identifying outliers.

Our aim is ( i) to design a distributed algorithm so that
each node i rapidly evaluates an accurate estimate b� i of its
own status � i despite the presence of misbehaving nodes,
(ii ) to provide a theoretical analysis of the behavior of this
algorithm.

3.1 Communication model

Nodes can exchange information only during the limited
time interval in which they are in vicinity. As in [7], [8], [23],
[29], we assume that the time interval between two succes-
sive meetings follows an exponential distribution with an
inter-contact rate � . Moreover, we assume that each meeting
involves only two nodes. When more than two nodes meet
simultaneously, processing is performed pair-by-pair.

3.2 Local outlier detection test

As in [9], we consider a family of LODTs able to detect
the presence of outliers in a set of n data measurements
M = f m1; : : : ; mn g but unable to identify which data is
an outlier. Denote y (M ) the outcome of the LODT, i.e.,
y (M ) = 1 if data corresponding to outliers are detected
within M , otherwise, y (M ) = 0 .

LODTs can take various forms (see [9] and Example 1
below). The LODT is characterized by a false alarm probability
qFA (the probability of having y (M ) = 1 under the condi-
tion that none of the data in M are produced by defective
sensors) and by adetection probabilityqD (the probability of
having y (M ) = 1 under the condition that some data in M
are really produced by defective sensors). In M , let n0 be
the number of data produced by good sensors and n1 be the
number of data coming from defective sensors. We further
assume that both qD and qFA in average depend only on the
number of data involved in the LODT. As a consequence,
we can denote qFA as qFA (n0) and qD as qD (n0; n1). Each
node performing a LODT on a set of data has not to know
n0 and n1, but the performance of the LODT will depend
on the actual values of n0 and n1, which are used in the
analysis of the DFD algorithm.

Example 1. This example introduces a LODT inspired from
bounded-error parameter estimation problem (see, e.g., [30]–
[32]). It assumes that only pairwise interactions occur. Con-
sider some sensor nodes taking temperature measurements
in the same room, e.g., with actual value t = 25 � C. For a
non-defective sensor, suppose that its measurement error
is bounded, e.g., � 1� C. Assume that two sensors provide
t1 = 25:6� C and t2 = 23:5� C respectively. Assuming
that none of the sensors is defective, and considering the
bounded measurement noise, one deduces that t 2 t 1 =
[t1 � 1; t1 + 1] = [24 :6; 26:6] and t 2 t 2 = [22:5; 24:5]. Since
t 1 \ t 2 = ; , there exists at least one outlier, but one is unable
to determine which sensor has produced an outlier.

3.3 Detection scenario

We assume that during each meeting of a pair of nodes
(i; j ) 2 S , the nodes collect data with their sensors. Each
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node may or may not transmit its data to the other node,
as detailed in the DFD algorithm description. If a node has
received data from its neighbor, it may run a LODT involv-
ing its own data and those received from its neighbor. We
assume that the spatial and temporal correlation between
data is such that only data collected during the meeting of
two nodes can be exploited by a LODT. Therefore, previ-
ously collected data are not exploited. As a consequence,
contrary to [9], where n0 and n1 may be large, in the
DTN scenario, a LODT will involve n0; n1 2 f 0; 1; 2g, with
n0 + n1 = 2 . In this paper, one furthermore assumes that
qFA (2) < qD (1; 1) 6 qD (0; 2), which is reasonable, since the
outcome of a LODT is more likely to be 1 as the number of
outliers involved increases.

4 DFD ALGORITHM

In the proposed DFD algorithm, each (good or defective)
node i manages two counters cm;i (t) and cd;i (t) initialized
at 0 at t = 0 . Using cm;i (t), node i counts the number of
meetingsduring which it has received data from its neighbor,
and has been able to perform a LODT. Using cd;i (t), it counts
the number of LODT resulting in the detectionof outliers.
When cd;i (t)=cm;i (t) > � , where � is some constant deci-
sion threshold, node i considers itself as carrying defective
sensors,i.e., it sets its own estimate b� i (t) = 1 . Otherwise, it
considers that its sensors are good,i.e., b� i (t) = 0 .

When a node with b� i (t) = 1 encounters another node, it
still takes measurements, but it does not send these data to
the other node to avoid infecting the network with outliers.
Any node, upon receiving data from another node, performs
a LODT and updates cm;i (t) and cd;i (t). As a consequence,
a node which meets another node considering itself as
defective, transmits its data, but since it does not receive
any data, it does not update cm;i (t) and cd;i (t) at the end
of the meeting. Algorithm 1 summarizes the proposed DFD
technique for an arbitrary reference node i .

The vector x i (t) = ( � i ; cm;i (t); cd;i (t)) represents the
(microscopic) state of each node i . As t ! 1 , one has
cm;i (t) ! 1 , which leads to an in�nite number of possible
values for x i (t) and the global (macroscopic) behavior of
the algorithm is dif�cult to analyze. To limit the number of
possible states, we have chosen to consider the evolution
of cm;i (t) and cd;i (t) over a sliding time window containing
the time instants of the last M meetings during which node i
has performed a LODT. Algorithm 2 is a modi�ed version of
Algorithm 1 accounting for this limited horizon. It involves
an additional counter � for the number of LODT performed
by node i . As long as � < M; (5) is equivalent to (3).

Algorithm 2 is analyzed in the next sections.

5 EVOLUTION OF THE STATE OF A NODE

In this section, to simplify the presentation, the presence of
misbehaving nodes is not taken into account. The impact of
such nodes on the behavior of Algorithm 2 will be detailed
in Section 8.

Consider the state x i (t) = ( � i ; cm;i (t) ; cd;i (t)) of node i .
Since cm;i (t) 2 f 0; : : : ; M g and cd;i (t) 2 f 0; : : : ; cm;i (t)g,
the number of values that may be taken by the state of a

Algorithm 1 DFD algorithm for node i

1) Initialize at t0
i = 0 ; b� i

�
t0
i

�
= 0 , cm;i (t0

i ) = cd;i (t0
i ) =

0, � = 1 .
2) Do

8
<

:

b� i (t) = b� i
�
t � � 1

i

�
;

cm;i (t) = cm;i
�
t � � 1

i

�
;

cd;i (t) = cd;i

�
t � � 1

i

�
;

(1)

t = t + �t (2)

until the � -th meeting occurs at time t = t �
i with

Node j � 2 S n f ig.
3) Perform local measurement of data mi (t �

i ).
4) If b� i (t �

i ) = 0 , then transmit mi (t �
i ) to node j � .

5) If data mj � have been received from node j � , then

a) Perform a LODT with outcome yi (t �
i ).

b) Update cm;i and cd;i according to
(

cm;i (t �
i ) = cm;i (t � � 1

i ) + 1
cd;i (t �

i ) = cd;i (t � � 1
i ) + yi (t �

i )
(3)

c) Update b� i as follows

b� i (t
�
i ) =

(
1 if cd;i (t �

i )=cm;i (t �
i ) > �;

0 else:
(4)

6) � = � + 1 .
7) Go to 2.

Algorithm 2 Sliding-Window DFD algorithm for node i

1) Initialize t0
i = 0 ; b� i

�
t0
i

�
= 0 , cm;i (t0

i ) = cd;i (t0
i ) = 0 ,

� = 1 , and � = 0 .
2) Do (1)-(2) until the � -th meeting occurs at time t �

i
with Node j � 2 S n f ig.

3) Perform local measurement of data mi (t �
i ).

4) If b� i (t �
i ) = 0 , then transmit mi (t �

i ) to node j � .
5) If data mj � have been received from node j � , then

a) � = � + 1 . Perform a LODT with outcome
y�

i .
b) Update cm;i and cd;i as

(
cm;i (t �

i ) = min f �; M g ;
cd;i (t �

i ) =
P �

m =max f 1;� � M +1 g ym
i :

(5)

c) Update b� i using (4).

6) � = � + 1 .
7) Go to 2.

node is (M + 1) ( M + 2) =2. The evolution of x i (t), condi-
tioned by its status � i , follows a Markov model with state
transition diagram of the kind shown in Figure 1 for M = 4 .

In particular, there are two chains, one conditioned
by � i = 0 and the other conditioned by � i = 1 . Both
are characterized by a transient phase for state values
with cm;i (t) < M ; then, a permanent regime starts when
cm;i (t) = M . With cm;i (t) = cm and cd;i (t) = cd , the tran-
sitions from State (�; c m; cd) to State (�; c 0

m; c0
d) are analyzed

in the following.
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0

0

1

2

3

4

1 2 3 4

cd

cm

Fig. 1. Example of Markov model for the evolution of the state�
�; c m;i (t ) ; cd;i (t )

�
of a node when M = 4 .

5.1 Analysis of some random events

In order to estimate the transition probability from a generic
state of the Markov chain to another, one �rst calculates
the probability a given node meets an other node believing
its status good or its status is bad. One also evaluates the
probability to perform a LODT outcome concluding in the
absence or in the presence of outliers.

5.1.1 Probability of meeting a node believing its status is
good/defective
Assume that at time t , some reference nodei meets an other
node which index is represented by the random variable J
and de�ne the random event E1(t) =

n
b� J (t) = 0

o
, repre-

senting the event that the node met believes its status is
good. As illustrated in (4), among the nodes with status � ,
the proportion of nodes that believe themselves as good is1

p� 0 (t) = X0;0
� (t) +

X

cm> 0;c d :cd =cm<�

Xcm ;c d
� (t) ; (6)

where p10 (t) is in fact the non-detection rate(NDR) of the
nodes with defective sensors at time t and Xcm ;cd

� (t) repre-
sents the proportion of nodes in state (�; c m; cd) de�ned as

Xcm ;cd
� (t) = jI cm ;cd

� (t) j=n� ; (7)

where

I cm ;cd
� (t) = f i : i 2 S� ; � i = �; c m;i (t) = cm; cd;i (t) = cdg;

and j � j denotes the cardinality of a set.
Assuming that the nodes are randomly spread, the

probability that node J believes it has only good sensors
conditioned to its true status is

p� 0 (t) = P
�

b� J (t) = 0 j� J (t) = �
�

; (8)

and then
P fE 1(t)g = p0p00 (t) + p1p10 (t) : (9)

Similarly, introduce E�
1 (t) = f b� J (t) = 1 g, representing

the event that the node met believes its status is defective.
Among the nodes with sensors in status � , the proportion of
nodes with b� j (t) = 1 is

p� 1 (t) =
X

cm> 0;c d :cd =cm> �

Xcm ;c d
� (t) ; (10)

1. For the sake of simplicity, the dependency of p� 0 (t ) in � is omitted,
as � is constant during the DFD algorithm.

where p01 (t) and p11 (t) represent the false alarm rate(FAR)
and the detection rate(DR) respectively. From (10), one gets

P fE �
1 (t)g = p0p01 (t) + p1p11 (t) : (11)

5.1.2 Probability of detecting the presence of an outlier
Since nodei performs an LODT only when it meets a node J
with b� J (t) = 0 , one introduces the random event E�

2 (t) =n
Yi (t) = 1 j � i = �; b� J (t) = 0

o
, for the reference node with

actual status � . As discussed in Section 3.2, the statistical
properties of the outcome Yi (t) of the LODT depend only
on � i and � j . For example, when node i has good sensors,
one has

P
�

E0
2 (t)

	
=

1X

' =0

P
n

Yi (t) = 1 ; � J = ' j � i = 0 ; b� J (t) = 0
o

( a )
=

1X

' =0

P f Yi (t) = 1 j � i = 0 ; � J = ' gP
n

� J = ' j b� J (t) = 0
o

( b)
=

p0qFA (2) p00 (t) + p1qD (1; 1) p10 (t)
p0p00 (t) + p1p10 (t)

: (12)

In (12-a), one uses the fact that the LODT outcome is not
in�uenced by the estimate of the status of a node and that
in P

n
� J = ' j � i = 0 ; b� J (t) = 0

o
, the status of node J , does

not depend on � i . In (12-b),
(

P f Yi (t) = 1 j � i = 0 ; � J = 0 g = qFA (2) ;
P f Yi (t) = 1 j � i = 0 ; � J = 1 g = qD (1; 1) :

(13)

Moreover,

P
n

� J = ' j b� J (t) = 0
o

=
P

n
b� J (t)=0 j� J = '

o
Pf � J = ' g

P 1
� =0 P

n
b� J (t)=0 j� J = �

o
Pf � J = � g

=
p' p' 0 (t)

p0p00 (t) + p1p10 (t)
:

If node i has defective sensors, one has

P
�

E1
2 (t)

	
=

p0qD (1; 1) p00 (t) + p1qD (0; 2) p10 (t)
p0p00 (t) + p1p10 (t)

: (14)

Similarly, one may introduce the random event E�
3 (t) =n

Yi (t) = 0 j � i = �; b� J (t) = 0
o

, and show that

P
n

E�
3 (t)

o

=

(
p0 (1 � qFA (2)) p00 ( t )+ p1 (1 � qD (1 ;1)) p10 ( t )

p0 p00 ( t )+ p1 p10 ( t ) ; if � = 0 ;
p0 (1 � qD (1 ;1)) p00 ( t )+ p1 (1 � qD (0 ;2)) p10 ( t )

p0 p00 ( t )+ p1 p10 ( t ) ; if � = 1 :
(15)

5.2 Transition probabilities

One evaluates now the transition probabilities for the
state of a node. More speci�cally, de�ne as � � m ;� d

�
the transition probability from State (�; c m; cd) to
State (�; c m + � m; cd + � d), where � 2 f 0; 1g. One has
� m 2 f 0; 1g since cm may either increase (� m = 1) in the
transient regime or remain constant (� m = 0) in the perma-
nent regime. One has � d 2 f� 1; 0; 1g, depending on the
value of the last LODT outcome and on the value of the
M + 1 -th last LODT outcome, which is no more considered
in the permanent regime.
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Thus, (� m; � d) 2 f (0; 0) ; (0; 1) ; (0; � 1) (1; 0) ; (1; 1) ; (1; � 1)g.
Note that � � m ;� d

� depends on the current state of the reference
node, but also on the current proportion of active (good
and defective) nodes. Therefore, the transition probabilities
are denoted as � � m ;� d

� (t; cm; cd), where t is the time instant,
cm;i (t) = cm , and cd;i (t) = cd . Depending on the value of
cm , two different cases are considered in Section 5.2.1 and
in Section 5.2.2, respectively corresponding to the transient
and permanent regimes.

5.2.1 Case I, cm;i (t) < M
In the transient regime, when cm;i (t) < M , cm;i (t) and
cd;i (t) are updated according to (3) whenever node J with
b� J (t) = 0 is met. The only possibility that leads to � m = 0
is the event E�

1 , i.e., node i meets nodeJ with b� J (t) = 1 . As
a consequence, no LODT is performed by node i . Therefore,
for any � 2 f 0; 1g,

� 0;0
� (t; cm ; cd) = P fE �

1 (t)g = p0p01 (t) + p1p11 (t) ; (16)

where p� 1 (t) is de�ned by (10).
A state transition occurs with (� m; � d) = (1 ; 1) when

node i with status � i = � meets node J with b� J (t) = 0
and when the LODT yields yi (t) = 1 . Since the two events
are independent, one has

� 1;1
� (t; cm ; cd) = P

n
Yi (t) = 1 ; b� J (t) = 0 j� i = �

o

= P fE 1 (t)gP
n

E�
2 (t)

o
: (17)

Depending on the value of � i , using (9), (12), and (14), one
may rewrite (17) as

� 1;1
� (t; cm ; cd)=

(
p0qFA (2) p00 (t) + p1qD (1; 1) p10 (t) ; if � = 0 ;
p0qD (1; 1) p00 (t) + p1qD (0; 2) p10 (t) ; if � = 1 :

(18)

Finally, � 1;0
� (t; cm; cd) = P

n
Yi (t) = 0 ; b� J (t) = 0 j� i = �

o
is

obtained similarly from (15)

� 1;0
� (t; cm ; cd) =
(

p0 (1 � qFA (2)) p00 (t) + p1 (1 � qD (1; 1)) p10 (t) ; if � = 0 ;
p0 (1 � qD (1; 1)) p00 (t) + p1 (1 � qD (0; 2)) p10 (t) ; if � = 1 :

(19)

5.2.2 Case II, cm;i (t) = M
In the permanent regime, cm;i (t) = M and does not increase
any more, thus � m = 0 . In Algorithm 2, � is the number of
LODTs performed by node i up to time t . When � > M , only
the last M LODT outcomes are considered: LODT outcomes
ym

i with m 6 � � M are no more considered.
To determine the value taken by � d 2 f� 1; 0; 1g after the

� -th LODT, consider the random event

E1
4 (t) =

(

Y � � M
i = 1 j

� � 1X

m = � � M

Y m
i = cd

)

; (20)

which corresponds to a situation where one knows that
cd LODTs where positive among the last M tests and the
LODT that will be ignored, once the new LODT outcome
is available, also concluded in the presence of defective
sensors. P

�
E1

4 (t)
	

is relatively complex to evaluate, since
P f Y n

i = 1g is time-varying according to (12-14). In what
follows, we assume that LODT outcomes with Y m

i = 1

are independently distributed over the time horizon corre-
sponding to m = � � M; : : : ; � � 1. One obtains then

P
�

E1
4 (t)

	
=

cd

M
: (21)

This approximation is exact in steady-state, when the Xcm ;cd
� s

do not vary any more.
Similarly, de�ne

E0
4 (t) =

(

Y � � M
i = 0 j

� � 1X

m = � � M

Y m
i = cd

)

: (22)

Considering the same assumption used to get (21), one has

P
�

E0
4 (t)

	
= 1 � P

�
E1

4 (t)
	

�
M � cd

M
: (23)

Assume that the (� � M )-th LODT performed by node i
occurred at time ~t , then y� � M

i can also be denoted asyi
�
~t
�

and the transition related to cd;i is such that � d = yi (t) �
yi

�
~t
�

2 f� 1; 0; 1g:
To have (� m; � d) = (0 ; 1), three independent events have

to occur: 1) the encountered node J believes it is good at
time t , i.e., E1 (t); 2) yi (t) = 1 , i.e., E�

3 (t) ( t); 3) yi
�
~t
�

= 0 ,
i.e., E0

4 (t). Thus the transition probability may be expressed
as

� 0;1
� (t; M; c d) = PfE 1 (t)gPfE �

3 (t)gPfE 0
4 (t)g: (24)

Using (9), (12), (14), and (21) in (24), one gets

� 0;1
� (t; M; c d)

=

( �
p0qFA(2) p00 (t) + p1qD(1; 1) p10 (t)

� M � cd
M ; if � = 0 ;�

p0qD(1; 1) p00 (t) + p1qD(0; 2) p10 (t)
� M � cd

M ; if � = 1 :
(25)

Consider now (� m; � d) = (0 ; � 1). To have such transi-
tion, the three following independent events should occur:
1) E1 (t); 2) yi (t) = 0 , i.e., E�

3 (t) ( t); 3) yi
�
~t
�

= 1 , i.e., E1
4 (t).

Thus, the transition probability is

� 0; � 1
� (t; M; c d) = PfE 1 (t)gPfE �

3 (t)gPfE 1
4 (t)g

=

( �
p0(1� qFA (2)) p00 (t) + p1(1� qD (1; 1)) p10 (t)

� cd
M ; if � = 0 ;�

p0(1� qD (1; 1)) p00 (t) + p1(1� qD (0; 2)) p10 (t)
� cd

M ; if � = 1 :
(26)

Finally, by substituting eqs. (25-26) it is possible to calcu-
late � 0;0

� (t; M; c d) which is given by

� 0;0
� (t; M; c d) = 1 � � 0;1

� (t; M; c d) � � 0; � 1
� (t; M; c d) : (27)

In this section, we have so far completely characterized
the transition probabilities between any possible pair of
states in the Markov chain. Accordingly, we are now able
to completely describe the evolution of the DTN state com-
ponents and, thus, the expected proportion of nodes in a
speci�c state.

6 MACROSCOPIC EVOLUTION OF THE DTN STATE

All node state transition probabilities evaluated in Section 5
are now used to determine the evolution of the proportion
of nodes in state � , i.e.

X � (t)=
�

X0;0
� (t) ; X1;0

� (t) ; X1;1
� (t) ; : : : ; XM; 0

� (t) ; : : : ; XM;M
� (t)

�

and the corresponding expected values

X � (t)=
�

X 0;0
� (t) ; X 1;0

� (t) ; X 1;1
� (t) ; : : : ; X M; 0

� (t) ; : : : ; X M;M
� (t)

�
:
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Proposition 2. The evolution of the DTN state components,i.e.,
the expected proportion of nodesX cm;cd

� (t) in the states(�; c m; cd),
with � 2 f 0; 1g, cm = 0 ; : : : ; M , andcd 6 cm is described by
8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

dX 0; 0
�

dt

( a)
= � �X 0;0

�

�
� 1;0

� (0; 0) + � 1;1
� (0; 0)

�
;

dX c m; 0
�
dt

( b)
= �

�
� X cm;0

�

�
� 1;0

� (cm; 0) + � 1;1
� (cm; 0)

�

+ X cm� 1;0
� � 1;0

� (cm � 1; 0)
�

;
dX c m;c m

�
dt

( c)
= �

�
� X cm;c m

�

�
� 1;0

� (cm; cm) + � 1;1
� (cm; cm)

�

+ X cm� 1;c m� 1
� � 1;1

� (cm � 1; cm � 1)
�

;
dX M; 0

�
dt

( d)
= �

�
� X M; 0

� � 0;1
� (M; 0) + X M � 1;0

� � 1;0
� (M � 1; 0)

+ X M; 1
� � 0; � 1

� (M; 1)
�

;
dX M;M

�
dt

( e)
= �

�
� X M;M

� � 0; � 1
� (M; M )+ X M;M � 1

� � 0;1
� (M; M � 1)

+ X M � 1;M � 1
� � 1;1

� (M � 1; M � 1)
�

;
(28)

for anycm = 1 ; : : : ; M � 1, with the initial conditionsX 0;0
� (0) =

1 andX cm;cd
� (0) = 0 , 8cm; cd 6= 0 .

Proof:See Appendix A
Kurtz's theorem [33], [34] can then be used to show that

for all " > 0, there exists � 1 > 0 and � 2 (" ) > 0 such that

Pr
�

max
t 2 [0;T ]

kX� (t) � X � (t)k > "
�

6 � 1 exp (� � 2 (" ) n� ) :

As a consequence,X� (t) converges in probability to X � (t)
as n� goes to in�nity. This is typically the approximation
performed in the seminal work [35] where the SIR model
was proposed. This model is the one used to characterize
most widely studied classes of epidemic models. Accord-
ingly, analogously to what was presented for example in
[7], [35]–[40], the proposed system consists of ordinary dif-
ferential equations approximating jump Markov processes.

The state equations in (28) are nonlinear, since each� � m ;� d
�

depends on X cm ;cd
� , see (6) and (10).

7 ANALYSIS OF THE DTN STATE EQUATIONS

In what follows, the asymptotic behavior of the DTN state
equations (28) is characterized. Algorithm 2 may drive
X cm ;cd

� to an equilibrium X
cm ;cd

� at which the proportions
of nodes in different states X cm ;cd

� (t) do not vary any more.
As a consequence,p� 0 (t) de�ned in (6) also tends to an
equilibrium p� 0.

7.1 Equilibrium of X cm ;cd
�

One investigates �rst the evolution of X cm ;cd
� (t) when cm <

M . As shown in the following proposition, the DTN state
always reaches the permanent regime.

Proposition 3. For anycm < M andcd 6 cm, lim
t !1

X cm;cd
� (t) =

0.

Proof:See Appendix B.
From Proposition 3, the only possible value at equilib-

rium of X cm ;cd
� (t) when cm < M is 0. Thus p� 0 may be

written as
p� 0 =

X

cd :cd =M<�

X
M;c d
� : (29)

Denote p =
�
p00; p10

�
2 P 0 with

P0 = f (x; y ) 2 [0; 1] � [0; 1] and (x; y ) 6= (0 ; 0)g (30)

and consider the functions

h0 (p) =
p0qFA (2) p00 + p1qD (1; 1) p10

p0p00 + p1p10 ; (31)

h1 (p) =
p0qD (1; 1) p00 + p1qD (0; 2) p10

p0p00 + p1p10 ; (32)

F� (p) =
dM� e� 1X

cd =0

 
M
cd

!

(h� (p)) cd (1 � h� (p)) M � cd ; (33)

and F (p) = ( F0 (p) ; F1 (p)) . The following proposition
provides a non-linear equation that has to be satis�ed by p .
The various X

M;c d

� at equilibrium are easily deduced from
the solutions of the mentioned equation.

Proposition 4. Assume that the dynamic system described by
(28) admits some equilibriumX

cm;cd

� , thenp 2 P 0 is the solution
of

p = F (p) ; (34)

and for any� 2 f 0; 1g andcd 6 cm,

X
cm;c d
� =

(
0; 8cm < M;� M

cd

�
(h� (p)) cd (1 � h� (p)) M � cd ; cm = M:

(35)

Proof:See Appendix C.

7.2 Existence and uniqueness of the equilibrium point

Now we investigate the existence and the uniqueness of the
solution of (34), which is rewritten in detail in (36) at the top
of the next page.

For that purpose, using �xed-point theorems, one may
alternatively show that for all p (0) =

�
p00 (0) ; p10 (0)

�
2

P0, the discrete-time system
�

p00 (n + 1) = F0
�
p00 (n) ; p10 (n)

�
;

p10 (n + 1) = F1
�
p00 (n) ; p10 (n)

�
:

(39)

converges to a unique equilibrium point
�
p00; p10

�
, which is

then solution of (36).
One �rst shows the existence of an equilibrium using

Brouwer's �xed-point theorem [41] in the following propo-
sition.

Proposition 5. For any� 2 [0; 1], (36)always admits a solution,
which is an equilibrium point of the dynamical system (28).

Before proving Proposition 5, one �rst shows that p00 (n)
and p10 (n) are contained in intervals with lower (and
upper) bounds increasing (resp. decreasing) with n.

Lemma 6. For anyn 2 N� and � 2 f 0; 1g, one has

p� 0
min (n) 6 p� 0 (n) 6 p� 0

max (n) ;

with p� 0
min (0) = 0 , p� 0

max (0) = 1 , and
(

p� 0
min (n + 1) = F�

�
p00

min (n) ; p10
max (n)

�
; 8n 2 N+ ;

p� 0
max (n + 1) = F�

�
p00

max (n) ; p10
min (n)

�
; 8n 2 N+ :

(40)

Moreover,

p00
min (n + 1) > p 00

min (n) ; p00
max (n + 1) < p 00

max (n) : (41)

Proof:See Appendix D.
Using Lemma 6, one can now prove Proposition 5.

Proof:F0 and F1 are both continuous functions. For
some n > 0, consider the set Pn =

�
p00

min (n) ; p00
max (n)

�
��

p10
min (n) ; p10

max (n)
�
, where p� 0

min (n) and p� 0
max (n) are de�ned
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>:

p00 = F0
�
p00; p10

�
=

P
cd :cd=M<�

� M
cd

� �
p0 qFA (2) p00 + p1 qD (1 ;1)p10

p0 p00 + p1 p10

� cd
�

p0 (1 � qFA (2)) p00 + p1 (1 � qD (1 ;1)) p10

p0 p00 + p1 p10

� M � cd

;

p10 = F1
�
p00; p10

�
=

P
cd :cd=M<�

� M
cd

� �
p0 qD (1 ;1)p00 + p1 qD (0 ;2)p10

p0 p00 + p1 p10

� cd
�

p0 (1 � qD (1 ;1)) p00 + p1 (1 � qD (0 ;2)) p10

p0 p00 + p1 p10

� M � cd

:
(36)

c0(qFA (2); qD (0;2);qD (1;1); p1;M; �; n )=
M (qD (1;1) � qFA (2)) p0p1p00

max (n) p10
max (n)

(p0p00
min (n)+ p1p10

min (n))((1 � qFA (2)) p0p00
min (n)+(1 � qD (1;1))p1p10

min (n))
; (37)

c1(qFA (2); qD (0;2);qD (1;1); p1;M; �; n )=
M (qD (0;2) � qD (1;1)) p0p1p00

max (n) p10
max (n)

(p0p00
min (n)+ p1p10

min (n))((1 � qD (1;1))p0p00
min (n)+(1 � qD (0;2))p1p10

min (n))
; (38)
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Fig. 2. Upper bounds of � to satisfy (42), with qFA (2) = 0 :05, qD (0; 2) =
0:9, qD (1; 1) 2 f 0:5; 0:8g, M 2 f 4; 10g, and p1 2 [0:05; 0:5].

in (40). For any p =
�
p00; p10

�
2 P n , one can prove using

Lemma 6 that F (p) 2 P n . Thus F maps Pn to Pn . Applying
Brouwer's �xed-point theorem, F admits a �xed point and
Proposition 5 is proved.

Suf�cient conditions on p0, p1, qD , qFA ; M and � are then
provided to ensure the uniqueness of this equilibrium by
applying Banach's �xed-point theorem [42].

Proposition 7. If there exists someN 0, such that8� 2 f 0; 1g
and8n > N 0, one has

c� (qFA (2); qD (0; 2);qD (1; 1); p1 ;M; �; n ) < 1; (42)

wherec0 and c1 are de�ned in (37-38), then the discrete-time
system(39) converges to a unique equilibrium point and the
solution of (36) is unique.

Proof:See Appendix E.
Due to the monotonicity of p� 0

min (n) and p� 0
max (n) shown

in Lemma 6, c� decreases withn. Hence, if a given � satis�es
(42) for some N 0, then � will satisfy (42) for all n > N 0

and the equilibrium is unique. If the values of p1, qD , qFA ,
and M are �xed, then one may deduce suf�cient conditions
on the value of � to have a unique equilibrium point. See
Example 8.

Example 8. Consider qFA (2) = 0 :05, qD (0; 2) = 0 :9,
qD (1; 1) 2 f 0:5; 0:8g, M 2 f 4; 10g, and p1 2 [0:05; 0:5].
One veri�es whether (42) is satis�ed considering n = 10
for different values of � . One obtains that (42) holds if
0 < � 6 � max , where � max depends on the values of p1,
qD , qFA , and M . See Figure 2 for the numerical values of
� max in each case.

7.3 Equilibrium point as M ! 1

Both p00 and p10 can be seen as functions ofM . As M ! 1 ;
Algorithm 2 turns into Algorithm 1. In this situation, if � is

properly chosen, the probabilities of false alarm and non-
detection tend to zero, as shown in Proposition 9.

Proposition 9. If qFA (2) < � < q D (1; 1), then (36) has a
unique solution and

lim
M !1

p00 = 1 ; lim
M !1

p10 = 0 : (43)

Proof:See Appendix F.

7.4 Approximations of the Equilibrium

Closed-form expressions for p00 and p10 are dif�cult to
obtain from (36). This section introduces an approximation
of (36) from which some insights may be obtained on the
way � should be chosen.

Since p10 represents the expected proportion of nodes
with defective sensors that have not detected their status,
the value of p10 should be small. From (31-32) one sees that
limp10 ! 0 h0 = qFA (2) and limp10 ! 0 h1 = qD (1; 1), thus one
may consider the following approximations

h0 � eh0 = qFA (2) ; h1 � eh1 = qD (1; 1) : (44)

Therefore, (36) may be rewritten as
(

ep00 =
P

cd :cd =M<�

� M
cd

�
(qFA (2)) cd (1 � qFA (2)) M � cd ;

ep10 =
P

cd :cd =M<�

� M
cd

�
(qD (1; 1))cd (1 � qD (1; 1))M � cd :

(45)
from which one deduces approximate values eX M;c d

0 of
X M;c d

0 at equilibrium from eq. (35)
(

eX M;c d
0 =

� M
cd

�
(qFA (2)) cd (1 � qFA (2)) M � cd ;

eX M;c d
1 =

� M
cd

�
(qD (1; 1))cd (1 � qD (1; 1))M � cd :

(46)

For any �xed value of M , qFA (2), and qD (1; 1), the
values of detection rate(p11) and false alarm rate(p01) at equi-
librium can be predicted using (45), since p01 = 1 � p00 and
p11 = 1 � p10. Consider for example M = 10 , qFA (2) = 0 :05,
and qD (1; 1) = 0 :8. Figure 3 presents ep11 as a function of ep01

for different values of � . This �gure is helpful to choose the
value of � to meet different performance requirements. The
actual values of p11 and p01 are also shown in Figure 3,
which are very close to ep11 and ep01, in the region where p11

is close to 1.

8 INFLUENCE OF MISBEHAVING NODES

A LODT involving data coming from a misbehaving node
will always result in the detection of an outlier. Thus, when
a node i with state x i (t) = ( �; c m;i (t) ; cd;i (t)) meets a
misbehaving node, the possible transitions are such that

� (� m; � d) = (1 ; 0) or (� m; � d) = (1 ; 1) if cm;i (t) < M
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Fig. 3. Approximate p11 as a function of approximate p01 , for various �
and �xed M = 10 .

� (� m; � d) = (0 ; 0) or (� m; � d) = (0 ; 1) if cm;i (t) = M
and 0 < c d;i (t) < M

� (� m; � d) = (0 ; 0) if cm;i (t) = cd;i (t) = M .

Then, in the evaluation of the probability of the events
E�

1 (t), E�
2 (t), and E�

3 (t) introduced in Section 5, one has to
account for the probability of meeting a misbehaving node.
For example, (11) can be rewritten as

P fE �
1 (t)g = p0p01 (t) + p1p11 (t) + p2: (47)

The transition probabilities introduced in Sections 5.2.1
and 5.2.2 have to be updated accordingly. The form of the
DTN state equations (28) remains the same.

Finally, the effect misbehaving nodes can be taken into
account in (45) for the computation of the approximate
expressions of ep00 and ep10. More speci�cally,
8
<

:

ep00 =
P

cd :cd =M<�

� M
cd

� �
p0 qFA (2)+ p2

p0 + p2

� cd
�

1 � p0 qFA (2)+ p2
p0 + p2

� M � cd

;

ep10 =
P

cd :cd =M<�

� M
cd

� �
p0 qD (1 ;1)+ p2

p0 + p2

� cd
�

1 � p0 qD (1 ;1)+ p2
p0 + p2

� M � cd

:
(49)

9 NUMERICAL RESULTS

In this Section we provide results aimed at assessing the
convergence of the theoretical framework (Section 10.1),
the appropriateness and accuracy of the framework also
in case of speci�c mobility models such as the Brownian
motion (Section 10.2) or other more realistic mobility models
derived from user traces (Section 10.3), as well as to compare
the proposed DFD methodology to other state-of-the-art so-
lutions (Section 10.4). Finally, in Section 10.5 we investigate
on the stability and accuracy of the Algorithm upon varying
some key parameters.

9.1 Numerical veri�cation of theoretical results

This section presents �rst the solution of the state equation
(28) describing the evolution of the proportion of nodes
in various states. Algorithm 2 is simulated considering a
random displacement of nodes without any constraint on
their speed. This allows to verify the correctness of the
theoretical results presented in this paper.

Consider a LODT where qFA (0; 2) = 0 :05; qD (1; 1) =
0:8, and qD (0; 2) = 0 :9. Besidesp0 = 0 :9, p1 = 0 :1, p2 = 0 ,
M = 4 , � = 0 :4, and � = 1 . Figure 4 presents the evolution
of the proportion of nodes with good sensors (left part) and
defective sensors (right part) in different states, obtained

Fig. 4. Evolution of X cm;c d
0 (t ) (left) and X cm;c d

1 (t ) (right) obtained from
(28), when qFA (0; 2) = 0 :05; qD (1; 1) = 0 :8, qD (0; 2) = 0 :9, M = 4 ,
� = 0 :4, and � = 1 .

by solving (28). Note that � t represents the duration of a
unit time slot used in the simulation. One observes that the
proportion of nodes in each state becomes almost constant
as t=� t > 15. For the nodes with � = 0 , only X 4;0

0 and
X 4;1

0 are larger than 0:05, while the others are very close to
0. For the nodes with � = 1 , only X 4;4

1 , X 4;3
1 , and X 4;2

1 are
relatively large as compared to the other states. Consider
the two sets of cds for which X M;c d

0 and X M;c d
1 are large.

These sets have no commoncd and it is thus easy to choose
a decision threshold to distinguish both sets. The accuracy
of the algorithm is then very good. With � = 0 :4, one has
p00 = 0 :985and p10 = 0 :027. Only 1:5% of the good nodes
believe they are carrying defective sensors. Less than3% of
the nodes with defective sensors have not been detected.

Consider now a set S of nS = 1000 moving nodes
uniformly distributed over a square of unit area. In the
�rst displacement model (jump motion model): node i
randomly chooses its location at time instant (k + 1) � t ,
independently from its previous location at time k� t . Two
nodes communicate only at discrete time instants k� t when
their distance is less than r 0. Node i has its neighbors in the
set N i = f j 2 S : 0 < r i;j � r 0g, where r i;j is the distance
between Nodes i and j . Furthermore, if jN i j > 1, we assume
that node i communicates only with its closest neighbor. De-
note � = �r 2

0nS as the average value of jN i j. The cardinality
of N i approximately follows a Poisson distribution as nS is
large enough, the inter-contact probability is thus

� � t = P fjN i j = 1g = � exp (� � ) :

In the Monte-Carlo simulations, we set r 0 = 0 :014, so
that � � 0:6 and � � t � 0:33. Using the same values of p� ,
M , � , qD , and qFA as in Figure 4, the simulation results for
this jump motion model are shown in Figure 5. Comparing
Figure 4 and Figure 5, one remarks that the state evolution
in the transient phase has similar shape but with different
convergence speed, which depends mainly on � . Figure 6
shows a good match between theory and simulation for the
proportions of states at equilibrium. The approximation of
X

4;cd

� using (46) is also presented in Figure 6, which is very
close to its actual value. Note that the difference between
the approximated value and those obtained through theory
and simulation is less than 0.1%.

9.2 Simulations with Brownian motion model

Consider now a Brownian motion model where each node
is moving with a random speed. Each node changes its
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8
><

>:

p00 =
P

cd :cd=M<�

� M
cd

� �
p0 qFA (2) p00 + p1 qD (1 ;1)p10 + p2

p0 p00 + p1 p10 + p2

� cd
�

p0 (1 � qFA (2)) p00 + p1 (1 � qD (1 ;1)) p10

p0 p00 + p1 p10 + p2

� M � cd

;

p10 =
P

cd :cd=M<�

� M
cd

� �
p0 qD (1 ;1)p00 + p1 qD (0 ;2)p10 + p2

p0 p00 + p1 p10 + p2

� cd
�

p0 (1 � qD (1 ;1)) p00 + p1 (1 � qD (0 ;2)) p10

p0 p00 + p1 p10 + p2

� M � cd

:
(48)

Fig. 5. Evolution of X cm;c d
0 (t ) (left) and X cm;c d

1 (t ) (right) by simulations
with the jump model, when qFA (0; 2) = 0 :05; qD (1; 1) = 0 :8, qD (0; 2) =
0:9, M = 4 , � = 0 :4, and � � t = 0 :33.
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1
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Fig. 6. Comparison of X
4;c d
� at the equilibrium.

orientation when it reaches the boundary of the unit square.
Let � i =

�
� i

1; � i
2

�
be the location of Agent i . Consider a

�rst-order Brownian mobility model

� i
1 ((k + 1) � t) = � i

1 (k� t) + � i
1 (k� t)

� i
2 ((k + 1) � t) = � i

2 (k� t) + � i
2 (k� t)

where � i
1 (k� t) � N

�
0; (�r 0)2

�
and � i

2 (k� t) �

N
�

0; (�r 0)2
�

.

Consider � 2 f 0:1; 1g, qFA (2) = 0 :05, qD (1; 1) = 0 :8,
qD (0; 2) = 0 :9, M = 10 , and � = 0 :4. Figure 7 compares
the evolution of p01 and p10 as functions of time for the
jump motion model and the Brownian motion model, with
�xed � � 0:6. At equilibrium, the performance obtained
for both models is quite close. However, the convergence
speed depends on the inter-contact rate � . When � = 0 :1,
the algorithm converges slowly in the Brownian motion
model. When � = 1 , which results in a larger value of � , the
evolution of p01 and p10 with the Brownian motion model
are close to the jump motion model.

At the beginning of the algorithm, each node believes
that its sensors are good, thus p01(0) = 0 and p10(0) = 1 .
During the algorithm, p10(t) decreases in the transient phase
until it reaches the equilibrium. Whereas, p01(t) increases at
�rst and then decreases to the equilibrium. This comes from
the fact that p10(t) is large at the beginning and the LODT
performed on a good node often detects outliers.

p01, Jump Model 

p10, Brownian, 

p10, Jump Model 

Fig. 7. Evolution of p01 and p10 for the two moving models, with � 2
f 0:1; 1g, qFA (2) = 0 :05, qD (1; 1) = 0 :8, qD (0; 2) = 0 :9, M = 10 and
� = 0 :4.

9.3 Simulations with real databases

In this section, Algorithm 2 is executed using some ex-
perimental databases instead of motion models. These
databases, provided by the MIT Reality Mining Project [43]
and the Haggle Project [44], have been used in several
previous works, e.g., [4]. In this work, we use the following
databases:

� Reality, where nS = 97 , lasts more than 200days with
about 111 inter-contacts per day.

� Infocom05, where nS = 41 , lasts 3 days with approxi-
mately 312 inter-contacts every hour.

More speci�cally, one is interested in the inter-contact trace,
i.e., which pair of nodes have a meeting at which time. The
traces were taken from [45], which are converted from the
original databases [43], [44].

Consider again the following parameters: qFA (2) = 0 :05,
qD (1; 1) = 0 :8, qD (0; 2) = 0 :9, M = 10 , and � = 0 :4.
Monte-Carlo simulations are performed 500 times for each
database. In each test,n1 nodes with random index are
chosen to be defective. One setsn1 = 10 in Infocom05and
n1 = 20 in Reality. Two cases are considered. First, no
misbehaving node is introduced, i.e., n2 = 0 . In a second
case, n2 = 1 in Infocom05and n2 = 2 in Reality. At the
top of Figure 8, the index of the active nodes (which have
contact with the others) are presented at each time to show
the frequency of the inter-contacts at different epochs. The
evolution of p10 and p01 is plotted at the bottom of Figure 8.
Interestingly, in absence of misbehaving nodes, both p10 and
p01, obtained with both databases, decrease to10� 3 after a
suf�ciently long time. One also observes that the conver-
gence speed of p10 and p01 is highly related to the inter-
contact rate (re�ected by the density of points in the sub-
�gures at the top). Considering Infocom05, Table 2 further
shows the in�uence of misbehaving nodes for various n2.
In presence of misbehaving nodes, the performance of the
DFD algorithms worsens, but remains satisfying if the value
of � is properly chosen.

When n2 = 0 , Figure 9 represents the states at equilib-
rium X

M;c d

� obtained with the databases Reality and Info-
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TABLE 2
Values of p01 and p10 at the end of simulations for different number of

misbehaving nodes

n2 1 2 3 4 5 6
� 0:5 0:5 0:5 0:5 0:6 0:6

p01 (%) 0:3 1:4 2:7 8:0 3:4 7:2
p10 (%) 0:7 0:5 0:3 0:3 1:3 1:4

Fig. 9. Comparison of X
10;c d

� at the equilibrium obtained using the
Reality database, the Infocom05 database, and predicted by the ap-
proximation (46).

com05, and also considering the approximation (46). There
is an excellent match between the values at equilibrium
predicted by theory and those obtained in practice. Note
that the difference between the approximated value and
those obtained through theory and simulation is less than
0.05%.

9.4 Comparison with state-of-the-art solutions

This section compares the proposed DFD algorithm to some
closely related scheme in the literature. As mentioned in
Section 2, classical DFD algorithms are dif�cult to apply in
the context of DTN and no solutions have been presented
so far in the literature for this speci�c scenario. Accordingly,
in order to perform a meaningful comparison between
our algorithm and a state-of-the-art approach, we have
considered the gossip algorithm discussed in [18] which
represents the most robust and ef�cient methodology in
the context of classi�cation and distributed estimation in
dynamic scenarios like DTNs.

In [18] , nS nodes are assumed to get a measurement

mi = c + � i + vi ; 8i 2 S; (50)

of a common quantity c, where vi: are realizations of
independent zero-mean Gaussian random variables with
variance � 2 and � i: 2 f 0; 1g denotes the bias of each node.
Each node is interested in the joint estimation of c and � i .
Since the measurements produced by the sensors with non-
zero bias are more likely to have larger values, [18] proposes
a estimator of � i based on a distributed ranking of the nodes
according to their measurement mi . Nodes with a large
rank get an estimate b� i = 1 ; while nodes with a small rank
have b� i = 0 .

In order to apply the proposed DFD algorithm to this
problem, consider the following LODT

yi;j = yj;i =

(
1 if jmi � mj j > �
0 else

;
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Fig. 10. Comparison of the DFD part of the estimation algorithm pro-
posed in [18] with the proposed DFD algorithm, when � = 0 :2 (top) and
� = 0 :3 (bottom)

where � is a threshold that results in different values of
probabilities qFA(2), qD(1; 1), and qD(0; 2); then the proper
value of � can be set accordingly.

Consider again Infocom05for the simulation with n1 =
10 nodes chosen randomly with � = 1 and without misbe-
having node. Two scenarios are considered. In the �rst case,
all nodes take a single measurement of c at initialization. In
the second case, nodes take measurements at each meeting.
Results are obtained as the average of 200 independent
Monte-Carlo simulations. Figure 10 compares the results
when � = 0 :2 and � = 0 :3. The classi�cation error and
the estimation error are de�ned as Ec =

P �
�
� � i � b� i

�
�
� =nS and

Ee =
P

jc � bci j =nS. If nodes take a single measurement,
the performance of the proposed algorithm is close to the
reference method in terms of Ec and Ee. When nodes take
new measurements at each meeting, the proposed DFD
algorithm performs better than the reference method: the
value of Ec decreases faster and turns to be much smaller.
This is mainly due to the node ranking algorithm used
in [18], which becomes less ef�cient when nodes update
at each meeting the quantity according to which they are
ranked.

9.5 In�uence of the parameters

This section characterizes the in�uence of the parameters,
such as p1; qD (1; 1) ; and M , on the performance of Algo-
rithm 2. The jump motion model is used throughout this
section to describe the displacement of the nodes.

Consider �xed qFA (2) = 0 :05, qD (1; 1) = 0 :8, qD (0; 2) =
0:9, and p2 = 0 . The evolution of p10 and p01 for various
p1 2 f 0:1; 0:5g and M 2 f 4; 10; 20g is shown in Figure 11.
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Fig. 8. Indexes of active nodes (having met another node) at different time (top) and evolution of p01 and p10 (bottom) obtained by using the Reality
database (left) and the Infocom05 database (right), with qFA (2) = 0 :05, qD (1; 1) = 0 :8, qD (0; 2) = 0 :9, M = 10 , and � = 0 :4.

Fig. 11. Evolution of p10 and p01 for various M 2 f 4; 10; 20g and p1 2
f 0:1; 0:5g, with qFA (2) = 0 :05, qD (1; 1) = 0 :8, qD (0; 2) = 0 :9.

For each case, the value of� is chosen such that it minimizes
ep01 + ep10. One observes that a large M leads to a better
performance at equilibrium. The price to be paid is a longer
time required to reach equilibrium. When M = 10 , both p10

and p01 are around 10� 3. The proportion of the nodes with
defective sensors has also an impact on the convergence
speed of the algorithm. For example, when p1 is large, more
time is needed to achieve a given level of performance (in
terms of p10 and p01).

To show the effectiveness of the proposed DFD algo-
rithm, consider now qD (0; 2) = 0 :9 and M = 10 . For
p1 = 0 :1 and p1 = 0 :5, one is interested in the achievablep10

and p01 for 0 6 qFA (2) < qD (0; 2) and qFA (2) < qD (1; 1) 6
qD (0; 2). Four areas are considered:

� Area 3: both p10 and p01 are less than10� 3 ;
� Area 2: both p10 and p01 are less than10� 2 ;
� Area 1: both p10 and p01 are less than10� 1;
� Area 0: either p10 or p01 cannot be less than10� 1.

Figure 12 shows partition of the (qD (1; 1) ; qFA (2)) triangle
in four areas, represented in different colors. The ratio of
defective nodes in the network has not a signi�cant impact

Fig. 12. Achievable p10 or p01 for different values of the pair
(qD (1; 1) ; qFA (2)) when p1 = 0 :1 (left) and for p1 = 0 :5 (right) and
p2 = 0 .

on the performance at the equilibrium, even when 50% of
nodes are defective.

This assesses the robustness of the approach.

10 CONCLUSION

This paper presents a fully distributed algorithm allowing
each node of a DTN to estimate the status of its own sensors
using LODT performed during the meeting of nodes. The
DFD algorithm is analyzed considering a Markov model
of the evolution of the proportion of nodes with a given
belief in their status. This model is then used to derive
a system of ordinary differential equations approximating
the evolution of the proportions of the nodes in different
states. The existence and uniqueness of an equilibrium is
discussed. Interestingly, the proportions at the equilibrium
follow a binomial distribution. The approximations of these
proportions of nodes at equilibrium provide insight to prop-
erly choose the decision parameter of the DFD algorithm. In
the simulations, a jump motion model, a Brownian motion
model, as well as databases containing traces of inter-contact
time instants are considered. The results show a good match



13

with theory. The convergence speed of the DFD algorithm
depends on the inter-contact rate and on the proportion of
nodes with defective sensors p1. Nevertheless, p1 has not
a signi�cant impact on the non-detection and false alarm
rates at equilibrium, showing the robustness of the approach
also in case of a large number of defective nodes. The
impact of the presence of misbehaving nodes has also been
considered, showing the robustness of the proposed DFD
algorithm.
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Fig. 13. Transient regime: Possible state transitions from and to state
(�; c m; cd) when 0 < c m < M and 0 < c d < c m

APPENDIX A
PROOF OF PROPOSITION 2
At time t , remind that Xcm ;cd

� (t) is the proportion of nodes
in state (�; c m; cd). For � 2 f 0; 1g; the process

X � (t)=
�

X0;0
� (t) ; X1;0

� (t) ; X1;1
� (t) ; : : : ; XM; 0

� (t) ; : : : ; XM;M
� (t)

�

is a jump Markov process with random jump time in-
stants and with a jump size 1=n� . In order to get the
expected proportions of nodes X cm ;cd

� (t), one will consider
an inter-contact rate � and a well-mixed population of
nodes. During a short time interval [t; t + �t ] the number
of nodes with state (�; c m; cd) that will meet another node is
�p � nSXcm ;cd

� (t)�t .
When 0 6 cm < M , and thus also cd 6 cm <

M , nodes with state (�; c m; cd) will switch to the states
(�; c m + � m; cd + � d), with (� m; � d) 2 f (0; 0) ; (1; 0) ; (1; 1)g
with a probability � � m ;� d

� (t; cm; cd), see Figure 13.
As a consequence, at timet + �t , the number of nodes in

State(�; c m; cd) may be expressed as follows

p� nSXcm ;c d
� (t + �t ) = p� nSXcm ;c d

� (t)

+ ��tp � nS
�
� Xcm ;c d

� (t)
�
� 1;0

� (t; cm ; cd)+ � 1;1
� (t; cm ; cd)

�

+ Xcm � 1;c d � 1
� (t)� 1;1

� (t; cm � 1;cd � 1)+ Xcm � 1;c d
� (t)� 1;0

� (t;cm � 1;cd)
�
:

(51)

The evolution of the expected value X cm ;cd
� (t) of Xcm ;cd

� (t) is
then described by the following differential equation 2

dX cm ;c d
�

dt
= � �X cm ;c d

�

�
� 1;0

� (cm ; cd) + � 1;1
� (cm ; cd)

�

+ �X cm � 1;c d � 1
� � 1;1

� (cm � 1;cd � 1) + �X cm � 1;c d
� � 1;0

� (cm � 1;cd) :
(52)

When cm = M and 0 < c d < M , nodes in
state (�; M; c d) will switch to the states (�; M; c d + � d),
� d 2 f� 1; 0; 1g with a probability � 0;� d

� (t; M; c d). Nodes
in the states (�; M � 1; cd � 1) and (�; M � 1; cd) that
have met an other node in the time interval [t; t + �t ]
may reach state (�; M; c d), respectively with a probability
� 1;1

� (t; M � 1; cd � 1) and � 1;0
� (t; M � 1; cd), see Figure 14.

As a consequence, the evolution of the expected value
X M;c d

� (t) of XM;c d
� (t) can be described by

dX M;c d
�

dt
= � �X M;c d

�

�
� 0;1

� (M; cd) + � 0; � 1
� (M; cd)

�

+ �X M � 1;c d � 1
� � 1;1

� (M � 1; cd � 1) + �X M � 1;c d
� � 1;0

� (M � 1; cd)

+ �X M;c d � 1
� � 0;1

� (M; cd � 1) + �X M;c d +1
� � 0; � 1

� (M; cd + 1) :
(53)

2. Notice that to lighten notations, time dependency is omitted.
Moreover, � � m ;� d

� (cm ; cd ) and p� b� in the rest of the paper represent the
expected values, as they can be represented as functions ofXcm ;c d

� (t ) or
X cm ;c d

� (t ).

Fig. 14. Permanent regime: Possible state transitions from and to State
(�; M; c d) when 0 < c d < M

Similar derivations can be made for the remaining DTN
state components to obtain (28).

APPENDIX B
PROOF OF PROPOSITION 3
For the proof, one considers �rst the following lemmas.

Lemma 10. If

lim
t !1

� t

0

�
p0p00 (� ) + p1p10 (� )

�
d� = 1 (54)

thenp0p00 (t) + p1p10 (t) > 0 for all t 2 R+ .

Proof:Since p0 > 0, p1 > 0, p00 > 0, and p10 > 0, it
suf�ces to prove that

p00 (t) + p10 (t) 6= 0 8t > 0: (55)

Assume that there exists a time instant t � > 0, such that
p00 (t � )+ p10 (t � ) = 0 . As a consequence, at timet � , all nodes
in the network believe themselves as carrying defective
sensors. As a consequence, no node will transmit its data
to its neighbors. No LODTs will be performed after time
t � and the state of nodes will remain constant. Hence, if
p00 (t � ) + p10 (t � ) = 0 for some t � , then p00 (t) + p10 (t) = 0
for all t > t � . Consequently,

lim
t !1

� t

0

�
p0p00 (� )+ p1p10 (� )

�
d� =

� t �

0

�
p0p00 (� )+ p1p10 (� )

�
d�;

which contradicts (54).

Lemma 11. The property(54) is always satis�ed.

Proof:From (28-a), one has

X 0;0
� (t) = exp

�
� �

� t

0

�
p0p00 (� ) + p1p10 (� )

�
d�

�
: (56)

Assume that there exists C � > 0 such that

lim
t !1

� t

0

�
p0p00 (� ) + p1p10 (� )

�
d� 6 C � (57)

then 8t > 0, one has
� t

0

�
p0p00 (� ) + p1p10 (� )

�
d� 6 C � : (58)

Combining (56) and (58), one gets

X 0;0
� (t) > exp (� �C � ) > 0: (59)

Moreover, from (6), one has p00 (� ) > X 0;0
� (� ), leading to

� t

0

�
p0p00 (� )+ p1p10 (� )

�
d� >

� t

0
p0X 0;0

� (� )d� >p 0 exp (� �C � ) t:

(60)

Sinceexp (� �C � ) t ! 1 as t ! 1 , (60) leads to a violation
of the hypothesis (57). Hence, one always has (54).
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The proof of Proposition 3 is then by induction. Starting
with (28- a), one has (56). Since (54) is satis�ed according to
Lemma 11, for any � > 0; there exists t00 > 0 such that
t > t 00 implies X 0;0

� (t) < � and lim t !1 X 0;0
� (t) = 0 .

Then, assume that for any cm 6 M � 1, and � > 0; there
exists t (cm � 1)0 > � � � > t 00 such that t > t (cm � 1)0 implies
X j; 0

� (t) < � for j = 0 ; : : : ; cm � 1. One has to show now that
there exists tcm0 > t (cm � 1)0 such that X cm ;0

� (t) < � for all
t > t cm0.

De�ne Z cm ;0
� (t) =

P cm
j =0 X j; 0

� (t). From (28a) and (28b),
one has

dZ cm ;0
�

dt
= � �

�
v (t) Z cm � 1;0

� (t) +
�
p0p00 (t) + p1p10 (t)

�
X cm ;0

� (t)
�

;

where v(t) = � 1;1
� (t; cm; cd), since � 1;0

� and � 1;1
� do not

depend on cm and cd when cm < M . Using (55) one has
dZ cm ;0

� =dt < 0 for any X cm0
� > 0. As a consequence,Z cm ;0

� (t)
decreases until X cm ;0

� (t) reaches 0. Hence, for any � > 0;
there exists tcm ;0 > t (cm � 1)0 , such that X cm ;0

� < � and
lim t !1 X cm ;0

� (t) = 0 .
In the same way, using (28c) and the previous results

that X cmcd
� (t) ! 0 with cd = 1 ; : : : ; M � 2 and cm =

cd ; : : : ; M � 2, one can prove that for any cd = 1 ; : : : ; M � 1,

X c0
m ;(cd+1)

� (t) tends to zero as t ! 1 , with any c0
m =

cd + 1 ; : : : ; M � 1.

APPENDIX C
PROOF OF PROPOSITION 4
According to Proposition 3, one has X

cm ;cd

� = 0 , for all cm <
M and cd 6 cm . To evaluate X

M;c d

� , one thus considers the
following simpli�ed dynamics derived from (28) for � 2
f 0; 1g,
8
>>>>>>><

>>>>>>>:

dX M; 0
�
dt = �

�
� X M; 0

� � 0;1
� (M; 0)+ X M; 1

� � 0; � 1
� (M; 1)

�
;

dX M;M
�
dt = �

�
� X M;M

� � 0; � 1
� (M; M )+ X M;M � 1

� � 0;1
� (M; M � 1)

�
;

dX
M;c d
�
dt = �

�
� X M;c d

�

�
� 0; � 1

� (M; cd) + � 0;1
� (M; cd)

�

+ X M;c d +1
� � 0; � 1

� (M; cd + 1) + X M;c d � 1
� � 0;1

� (M; cd � 1)
�

:
(61)

At equilibrium, one has dX M;c d
� (t)=dt = 0 for all cd 6 M .

Moreover, the transition probabilities do not vary any more.

Let X
M
� =

�
X

M; 1
� ; : : : ; X

M;M
�

� T
, a� (cd) = � 0;1

� (M; cd),

and b� (cd) = � 0;� 1
� (M; cd). From (61), one deduces that

the vector X
M
� should satisfy 	 � � X

M
� = 0 where

	 � =

0

B
B
B
@

� a� (0) b� (1)
a� (0) � a� (1) � b� (1) b� (2)

. . .
. . .

. . .
a� (M � 1) � b� (M )

1

C
C
C
A

:

Summing Lines 1 to cd + 1 , for all cd = 0 ; : : : ; M � 1, one
obtains a� (cd) X

M;c d

� = b� (cd + 1) X
M;c d+1
� ; which leads to

X
M;c d
� = X

M; 0
�

cd � 1Y

j =0

a0 (j )
b0 (j + 1)

: (62)

One evaluates

a� (j )
b� (j + 1)

=
� 0;1

� (M; j )

� 0; � 1
� (M; j + 1)

= � �
M � j
j + 1

; (63)

where using (25) and (26), one has
8
<

:

� 0 = p0 qFA (2) p00 + p1 qD (1 ;1)p10

p0 (1 � qFA (2)) p00 + p1 (1 � qD (1 ;1)) p10 ;

� 1 = p0 qD (1 ;1)p00 + p1 qD (0 ;2)p10

p0 (1 � qD (1 ;1)) p00 + p1 (1 � qD (0 ;2)) p10 :
(64)

with p00 and p10 de�ned in (29).
From (62) and (63), one deduces

X
M;c d
� = X

M; 0
�

cd � 1Y

j =0

�
� �

M � j
j + 1

�

= X
M; 0
� � cd

�
M � (M � 1) � (M � cd + 1)

1 � 2 � � � � cd
=

 
M
cd

!

� cd
� X

M; 0
� :

(65)

Since
P M

cd=0 X
M;c d

� = 1 , one has

1 =
MX

cd =0

 
M
cd

!

� cd
� X

M; 0
� = ( � � + 1) M X

M; 0
� : (66)

From (65) and (66),8cd = 0 ; : : : ; M ,

X
M;c d
� =

 
M
cd

! �
� �

� � + 1

� cd
�

1
� � + 1

� M � cd

=

 
M
cd

!

(h� )cd (1 � h� )M � cd

(67)

with h� = � �
� � +1 . Introducing (67) into (29), one obtains (34)

with F� de�ned in (33). Thus one needs to solve (34) to
determine p , which is then used to deduce X

M;d
� using (67).

APPENDIX D
PROOF OF LEMMA 6
To prove Lemma 6, one needs �rst to investigate the mono-
tonicity of F� . To lighten the notations, let � = qFA (2),
� = qD (1; 1) and  = qD (0; 2). Then h0 and h1 de�ned
in (31-32) can be rewritten as

h0 (x; y ) =
�p 0x + �p 1y

p0x + p1y
; h1 (x; y ) =

�p 0x + p 1y
p0x + p1y

; (68)

with (x; y) 2 P 0. One starts showing some monotonicity
properties.

Lemma 12. If � < � <  , thenh0 and h1 are decreasing with
x and increasing withy, for all (x; y) 2 P 0. If � =  , then
h1 = � =  is a constant.

Proof:Since � < � 6  , one has

@h0
@x

=
(� � � ) p0p1y

(p0x + p1y)2 6 0;
@h0
@y

=
(� � � ) p0p1x

(p0x + p1y)2 > 0;

@h1
@x

=
(� �  ) p0p1y

(p0x + p1y)2 6 0;
@h1
@y

=
( � � ) p0p1x

(p0x + p1y)2 > 0:

then Lemma 12 can be proved.

Lemma 13. For z 2 [0; 1], the family of functions

f i (z) = zi (1 � z) M � i ; i = 0 ; : : : ; M: (69)

are increasing over[0; i
M ] and decreasing over[ i

M ; 1].

Proof:Consider three possible situations: 1) If i = 0 ,
f 0 (z) = (1 � z)M is decreasing over [0; 1]. 2) If i = M ,
f M (z) = zM is increasing over [0; 1]. 3) If 1 6 i 6 M � 1,

df i

dz
= zi � 1 (1 � z) M � i � 1 (i � Mz ) ; (70)
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and df i =dz > 0 when z 2 [0; i
M ] and df i =dz 6 0 when

z 2 [ i
M ; 1]. Therefore, Lemma 13 holds 8i = 0 ; : : : ; M:

Lemma 14. If 0 < � < 1, the function

g(z) =
X

i : i=M<�

 
M
i

!

f i (z) =
X

i : i=M<�

 
M
i

!

zi (1 � z) M � i ; (71)

is decreasing for allz 2 [0; 1].

Proof:First, consider z 2 [�; 1]. In (71), each i in the
sum is such that i

M < � 6 z. From Lemma 13, f i (z) is
a decreasing function for any i

M < z , thus g(z) is also
decreasing with z.

Now, consider z 2 [0; � ], one rewrites (71) as

g(z) = 1 �
X

i : i=M > �

 
M
i

!

f i (z) ; (72)

in which each i in the sum is such that z < � 6 i
M . Applying

again Lemma 13, since f i (z) is an increasing function for
any z 6 i

M , the sum in (72) is also increasing with z and
g(z) is decreasing. Thusg(z) decreases over[0; 1].

Considering the functions h� and g, then one may
rewrite F� as F� (x; y) = g(h� (x; y)) , 8� 2 f 0; 1g. The
monotonicity of F0 and F1 is shown in the following lemma.

Lemma 15. If � < � <  , then F0 and F1 are increasing
functions ofx and decreasing functions ofy, for all (x; y) 2 P 0.
If � =  , thenF1 = g(� ) = g( ) is a constant.

Proof: The proof of obtained by combining
Lemma 12 and Lemma 14.

The proof of Lemma 6 is by induction. At the beginning,
one has0 6 p� 0(0) 6 1, thus p� 0

min (0) = 0 and p� 0
max (0) = 1 .

Using Lemma 15, one hasF� (0; 1) 6 F�
�
p00 (0) ; p10 (0)

�
6

F� (1; 0), thus
8
>>><

>>>:

p00
min (1) = F0 (0; 1) = g (� ) > 0 = p00

min (0) ;
p00

max (1) = F0 (1; 0) = g (� ) < 1 = p00
max (0) ;

p10
min (1) = F1 (0; 1) = g ( ) > 0 = p10

min (0) ;
p10

max (1) = F1 (1; 0) = g (� ) < 1 = p10
max (0) ;

(73)

thus (40) and (41) are true for n = 1 .
Consider then an arbitrary n 2 N� and n > 1. Assume

that (40) and (41) are satis�ed for any n0 < n and n0 2 N� ,
one needs to see whether (40) and (41) are still satis�ed for
n. Applying Lemma 15 again, one obtains

p� 0
min (n) = F�

�
p00

min (n � 1) ; p10
max (n � 1)

�

> F �
�
p00

min (n � 2) ; p10
max (n � 2)

�
= p� 0

min (n � 1) ;

and

p� 0
max (n) = F�

�
p00

max (n � 1) ; p10
min (n � 1)

�

< F �
�
p00

max (n � 2) ; p10
min (n � 2)

�
= p� 0

max (n � 1) ;

Similarly, one gets p10
min (n) > p 10

min (n � 1) and p� 0
max (n) <

p� 0
max (n � 1) :
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As seen in the proof of Proposition 5, 8n 2 N� ;
F (p) maps Pn to Pn , with Pn =

�
p00

min (n) ; p00
max (n)

�
��

p10
min (n) ; p10

max (n)
�
. In order to apply Banach's �xed-point

theorem [42] to prove Proposition 7, it suf�ces to show that

F is contracting, i.e., that for any pairs p = ( x; y) 2 P n and
p + � = ( x + � x ; y + � y ) 2 P n , one has

jF (p + � ) � F (p)j < j� j : (74)

A suf�cient condition to have (74) is that the eigenvalues
of the matrix

A =

 
@F0 ( x;y )

@x
@F0 ( x;y )

@y
@F1 ( x;y )

@x
@F1 ( x;y )

@y

!

have module less than 1. The eigenvalues of A are the
solutions of

z2 �
�

@F0
@x

+
@F1
@y

�
z +

�
@F0
@x

@F1
@y

�
@F0
@y

@F1
@x

�
= 0 : (75)

As in Appendix D, denote � = qFA (2), � = qD (1; 1) and
 = qD (0; 2). First, one evaluates

@F0
@x

@F1
@y

�
@F0
@y

@F1
@x

=
@g
@h0

@g
@h1

�
@h0
@x

@h1
@y

�
@h0
@y

@h1
@x

�
( a )
= 0 ;

where (a) comes from @h0
@x

@h1
@y = @h0

@y
@h1
@x , using the partial

derivatives calculated in the proof of Lemma 12. Then, the
solutions of (75) are z1 = @F0

@x + @F1
@y and z2 = 0 . Hence, it

suf�ces to prove that jz1j < 1.
We begin with the evaluation of an upper bound of the

partial derivative of F0 (x; y) with respect to x

@F0 (x; y )
@x

=
@g(h0 (x; y ))

@x
=

@g
@h0

�
@h0
@x

( a )
=

(� � � ) p0p1y

(p0x + p1y)2

X

i : i=M<�

 
M
i

!

hi
0 (1 � h0)M � i h0M � i

h0 (1 � h0)

( b)
6

(� � � ) p0p1y

(p0x + p1y)2 F0 (x; y )
M

1 � h0
6 c0 (�; �; ; M; �; n ) ; (76)

where (a) is obtained using (70), (b) comes from i > 0, and
c0 is de�ned in (37). Meanwhile, from Lemma 15, one has
@F0 (x; y) =@x> 0, asF0 is an increasing function of x.

Similarly,

@F1 (x; y )
@y

=
@g(h1 (x; y ))

@y
=

@g
@h1

�
@h1
@y

=
( � � ) p0p1x

(p0x + p1y)2

X

i : i=M<�

 
M
i

!

hi
1 (1 � h1)M � i i � h1M

h1 (1 � h1)

>
( � � ) p0p1x

(p0x + p1y)2 F1 (x; y )
� M

1 � h1
> � c1 (�; �; ; M; �; n ) ; (77)

and @F1 (x; y) =@y6 0 asF1 is a non-decreasing function of
y. One concludes that

� c1 6
@F0 (x; y )

@x
+

@F1 (x; y )
@y

6 c0 ;

thus c0 < 1 and c1 < 1 lead to jz1j < 1, which ensures the
uniqueness of the equilibrium.
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First, one shows that if � < q D (1; 1), then for any " > 0,
there exists M > M 0, such that p10 < " .
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From Lemma 6, p10 can be bounded as

p10 = F1
�
p00; p10�

<
X

cd :cd=M<�

 
M
cd

!

(qD (1; 1))cd (1 � qD (1; 1))M � cd

(78)

Consider � 1; � 2; : : : an in�nite sequence of i.i.d. binary
random variables with P f � m = 1g = qD (1; 1). For any
%2 [0; 1] such that %M 2 N+ , one has

P

( P M
m =1 � m

M
= %

)

=

 
M
%M

!

(qD (1;1)) %M (1� qD (1;1))M (1 � %) :

According to the weak law of large numbers [46], for " > 0,
there exists M 0, such that for any M > M 0, one has

P

( �
�
�
�
�

P M
m =1 � m

M
� qD (1; 1)

�
�
�
�
�

> qD (1; 1)

)

< ": (79)

From (79), one also has
X

cd :cd =M< ( qD (1 ;1) � " )

(qD (1; 1))cd (1 � qD (1; 1))M � cd

= P

( P M
m =1 � m

M
� qD(1;1)< � "

)

6 P

( �
�
�
�
�

P M
m =1 � m

M
� qD(1;1)

�
�
�
�
�
>"

)

< ": (80)

If � < q D (1; 1) � " , then using (80), the bound of p10 in (78)
may be further written as

p10 <
X

cd :cd =M<�

 
M
cd

!

(qD (1; 1))cd (1� qD (1; 1))M � cd

6
X

cd :cd =M< ( qD (1 ;1) � " )

(qD (1; 1))cd (1� qD (1; 1))M � cd<": (81)

From Lemma 12 and the fact that qFA (2) 6 p10 6
qD (1; 1) and 0 6 p10 < " , one has h0

�
p00; p10

�
2

[qFA (2) ; � (" )], with

� (" ) =
p0 (qFA (2)) 2 + p1qD (1; 1) "

p0qFA (2) + p1"
: (82)

Thus, according to Lemma 14,

p00 = F0
�
p00 ; p10 �

= g
�
h0

�
p00 ; p10 ��

> g (� (" )) =
X

cd :cd =M<�

 
M
cd

!

(� (" )) cd (1 � � (" )) M � cd : (83)

Using derivations similar to those leading to (80), one gets

X

cd :cd =M> ( � ( " )+ " )

 
M
cd

!

(� (" )) cd (1 � � (" )) M � cd < "; (84)

which leads to

X

cd :cd =M 6 ( � ( " )+ " )

 
M
cd

!

(� (" )) cd (1 � � (" )) M � cd > 1 � ": (85)

If � > � (" ) + " , then

p00 >
X

cd :cd =M<�

 
M
cd

!

(� (" )) cd (1 � � (" )) M � cd

>
X

cd :cd =M 6 ( � ( " )+ " )

(� (" )) cd (1 � � (" )) M � cd > 1 � ": (86)

As a conclusion, for any " > 0, if � (" ) + " < � <
qD (1; 1) � "; then p00 > 1 � " and p10 < " . Since
lim " ! 0 � (" ) = qFA (2), one concludes that if qFA (2) < � <
qD (1; 1), one obtains (43).


