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Abstract

Consider a multi-agent system where agents perform a given task with different levels of ability. Agents are initially not
aware of how well they perform in comparison with their peers, and are willing to self-assess. This scenario is relevant, e.g.,
in wireless sensor networks, or in crowdsensing applications, where devices with embedded sensing capabilities collaboratively
collect data to characterize the environment: the global performance is very sensitive to the measurement accuracy, and agents
providing outliers should restrain to participate.

This paper presents a distributed algorithm enabling each agent to self-assess its own ability. The algorithm tracks the
outcomes of a local comparison test performed by pairs of agents when they randomly meet, and able to gauge their relative
level of ability. The dynamics of the proportions of agents with similar assessments are described using continuous-time state
equations. The existence of an equilibrium is shown. Closed-form expressions for the various proportions of agents with similar
assessments are provided at equilibrium. In simulations, a community of agents equipped with sensors, and trying to determine
the performance of their equipment is considered. Simulation results show a good fitting with theoretical predictions.
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1 Introduction

Consider a community of agents collaborating to execute
some task, e.g., sensing, detection, classification (see Ang
et al., 2009; Luo et al., 2007; Shah et al., 2016). Agents
are expected to have different levels of ability (LoAs) in
carrying out atomic operations 1 . Initially, each one ig-
nores how well it performs in comparison with the oth-
ers, and is willing to assess its own LoA. This paper
assumes that agents have only pairwise, sporadic inter-
actions, as in delay tolerant networks (Khabbaz et al.,
2012), or in networks where exchanges are performed
via gossiping (Dimakis et al., 2010). This paper consid-
ers this distributed Peer-Assisted Individual Assessment

Email addresses: weli@l2s.centralesupelec.fr (Wenjie
Li), bassi@l2s.centralesupelec.fr (Francesca Bassi),
laura.galluccio@dieei.unict.it (Laura Galluccio),
kieffer@l2s.centralesupelec.fr (Michel Kieffer).
1 LOAs may be represented by positive integers or real num-
bers; here they are assumed discrete-valued.

(PAIA) problem, in which each agent of a community
aims at learning its own LoA, in absence of any central
ranking authority, only with the help of sporadic peer-
to-peer information exchanges.

algorithm to enable each agent to learn its own LoA in
absence of a central ranking authority.

The PAIA algorithm is of interest in several scenarios.
In a wireless sensor network (WSN) (Yick et al., 2008),
for instance, devices with embedded sensors collabora-
tively collect data to characterize the surrounding envi-
ronment. Agents who have only incomplete knowledge
of the characteristics of the sensing noise (e.g., either bi-
ased or unbiased, as in (Chiuso et al., 2011)), may use
the PAIA algorithm to estimate it. Similarly, in crowd-
sensing applications (Guo et al., 2015) data generated
by personal mobile devices are collected in order to es-
timate some process. Since the reliability of the service
depends on the accuracy of the measurements, the server
prefers to pull data from the devices with the most accu-
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rate sensors. The problem of device selection is usually
addressed by centralized reputation-based mechanisms,
(see, e.g., Kantarci and Mouftah, 2014; Ren et al., 2015;
Yu and Van der Schaar, 2012), where the devices apply
via an auction system and the server selects on the ba-
sis of their established reputation level. Using the PAIA
algorithm to assess their own accuracy, agents aware to
be temporarily producing outliers may decide to restrain
from an auction, to preserve their reputation at the cen-
tral authority; agents aware that their accuracy is above
the average may negotiate a better reward.

The PAIA problem can be viewed as a generalization of
distributed faulty node detection (DFD). In DFD part of
the nodes of a network are equipped with defective sen-
sors producing measurement outliers (Mahapatro and
Khilar, 2013; Zhang et al., 2010). Each node is willing
to estimate the status of of its own sensor (good or de-
fective) (Chen et al., 2006; Lee and Choi, 2008; Li et al.,
2016a). DFD can thus be seen as a PAIA problem for two
LoAs. This paper extends to PAIA the ideas introduced
for DFD in (Li et al., 2016b) by considering more than
two possible LoAs for each agent. In the proposed PAIA
algorithm a pairwise interaction results in a local com-
parison test (LCT) able to gauge the relative strength of
the participants. Each agent observes only the outcomes
of the LCTs it has been involved in. Based on the pro-
portion of interactions during which it has been deemed
better, the agent is able to iteratively determine its own
LoA. The algorithm parameters depend on the propor-
tions of agents with the same LoA and on the probabil-
ities of error of the LCT.

Ranking or classification by pairwise comparisons has
been of interest for a long time. In this work we presup-
pose, as in classical models (Bradley and Terry, 1952;
Luce, 1959; Thurstone, 1927), that an inherent parti-
tion of the agents according to their LoA exists, and
that the outcomes of the comparisons are probabilistic.
Unlike in parametric models, however, we limit the as-
sumptions made on the matrix of the outcome probabil-
ities. Besides classical win or lose pairwise comparisons,
we account also for weaker LCTs, where the outcome
only indicates whether the participants have compara-
ble strength. Recent years are seeing renewed interest in
ranking by pairwise comparisons (see, e.g. Heckel et al.,
2016; Jamieson and Nowak, 2011; Negahban et al., 2012;
Wauthier et al., 2013, and references therein). In these
works a central authority observes the whole collection
of outcomes, and usually directs the measurement pro-
cess. In the PAIA problem, on the contrary, no agent
centralizes all the data, and the agents cannot select the
peers they interact with. Since distributed classification
usually refers to agents cooperating to rate a set of ob-
jects, as in (Ang et al., 2009; Luo et al., 2007), whereas
PAIA refers to agents rating themselves, PAIA can be
defined as a distributed self-classification problem from
pairwise comparisons.

The paper is organized as follows. Section 1.1 reviews
additional related work. Section 2 introduces the sys-
tem model and the LCT. Section 3 describes and ana-
lyzes the proposed PAIA algorithm. Its effectiveness is
measured by the proportions of agents who assess their
LoAs correctly. The analysis is performed by assum-
ing a well-mixed population of agents, with intercontact
delay following an exponential distribution (Galluccio
et al., 2016; Hernandez-Orallo et al., 2015; Zhu et al.,
2010).This communication model allows one to derive
continuous-time state equations approximating the evo-
lution in time of the proportions of agents with simi-
lar self-assessments. The existence of an equilibrium is
shown in Section 4, and closed-form expressions for the
proportions of agents with similar assessments at equi-
librium are provided. The dependence of the correct de-
cision rate and of the false decision rate on the character-
istics of the LCT provides insights on the way the PAIA
algorithm should be tuned to trade-off between them.
Section 5 reports simulation results for a population of
agents aiming to determine the LoA of their embedded
sensors. The numerical results show and excellent match
with the theoretical predictions. Finally, conclusions are
drawn in Section 6.

1.1 Related work

In (Chiuso et al., 2011; Fagnani et al., 2014a,b) each
node of a WSN estimates the value of some constant pa-
rameter from noisy measurements, jointly with the bias
(Chiuso et al., 2011; Fagnani et al., 2014a) or the level
of the variance (Fagnani et al., 2014b) of the noise. The
bias or the variance determines the LoA of the agent.
These works involve at least partially instances of the
PAIA problem. In (Chiuso et al., 2011) the nodes belong
to one of two classes, defined by the absence or presence
of the bias. The algorithm involves a gossip consensus,
robust against node mobility, and a distributed ranking
of the agents (Fagnani and Zampieri, 2008) according
to their measured value. The signal model is extended
to vector measurements and to multiple values of the
bias in (Fagnani et al., 2014a). Each node uses consen-
sus (Huang and Manton, 2009) to achieve cooperation
with the neighbors for the estimation of the constant pa-
rameter, while iteratively estimating its own local bias.
Consensus algorithms are used also in (Fagnani et al.,
2014b), where the two classes depend on the possible val-
ues of the noise variance. Notice that in (Chiuso et al.,
2011; Fagnani et al., 2014a,b) the PAIA problem is solved
by estimation and is thus bound to the considered signal
model. The PAIA algorithm does not make assumptions
on the nature of the measurements, but only presup-
poses a generic LCT, characterized by its probabilities
of error. For example, the LCT may be based on taking
a noisy measurement of some constant parameter as in
(Chiuso et al., 2011), or on comparing the results of the
same supervised image classification performed by two
agents, or on a blitz-game when agents have to assess
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their level in a game.

When the number of possible LoAs equals the number
of agents, the PAIA problem is equivalent to the dis-
tributed self-ranking problem addressed in a centralized
way in (Heckel et al., 2016) and with a distributed ap-
proach as in (Fagnani and Zampieri, 2008).

2 System Model and Local Comparison Test

Consider a set A of NA moving agents. Let θi ∈ Θ =
{1 . . .K} be the LoA of Agent i. A is partitioned into K
groups denoted A1 . . .AK , with Aθ = {i ∈ A : θi = θ}.
Denote pθ the proportion of the agents belonging to Aθ.
Without loss of generality, we assume that the groups
are sorted in decreasing LoA: thus, the agents in A1

are the best-performing and those in AK are the worst-
performing. The following assumption is made:

• A1 ) θi(t) = θi, i.e., the LoA of Agent i does not change
during the experiment.

Agent i is not aware of the actual value of θi but is willing
to estimate it as fast as possible. To accomplish this
it exploits information obtained during meetings with
other agents. As in (Li et al., 2016b), one considers the
following assumptions:

• A2 ) only pairwise meetings are considered;
• A3 ) the agents form a well-mixed population, i.e. the

probability that the next meeting of Agent i will be
with an agent belonging toAθ is proportional to |Aθ| ;
• A4 ) the time interval between two successive meetings

of Agent i with any other agent follows an exponential
distribution with an inter-contact rate λ (Galluccio
et al., 2016; Zhu et al., 2010).

During a meeting two agents may engage in an interac-
tion. Interactions take different forms depending on the
application scenario, for example, the exchange of noisy
measurements mi and mj of the same physical quantity
when the agents are nodes of a WSN, or a blitz-game
between humans, willing, e.g., to assess their playing
level. It is assumed that a meeting does not necessar-

ily entail interaction. Define α(θ̂i, θ̂j) as the probability
of interaction of Agents i and j meeting at instant t. It

is a function of the current estimates θ̂i(t) and θ̂j(t) of
the agents. When Agents i and j meet, they exchange
their estimated LoA. Agent i will request an interaction

with probability α(θ̂i, θ̂j) and Agent j with a probabil-

ity α(θ̂j , θ̂i). Interaction occurs when at least one of the
agents requests it. Only the agent requesting an interac-
tion acquires the resulting information.

The LCT is a procedure that Agent i performs on the
data exchanged during an interaction with Agent j. It
allows Agent i to gather some knowledge on its own LoA

in comparison to the LoA of Agent j, but is unable to
determine the absolute LoA of Agent i. The output yi,j
of the LCT performed by Agent i is binary, and yields
yi,j = 1 when it is likely that Agent i is not worse than
Agent j, or when they have a similar LoA, depending on
the application. The LCT may provide erroneous con-
clusions and is characterized by its statistical properties

q (θi, θj) = P {Yi,j = 1|θi, θj} , (1)

where P(E) denotes the probability of the event E . One
has not necessarily q (θi, θj) = 1− q (θj , θi). One consid-
ers the following assumptions on the LCT probabilities:

• A5 ) θi 6 θj implies q (θi, 1) > q (θj , 1);
• A6 ) for all (θi, θj) ∈ Θ2, one has q (θi, θj) > 0.

A5 ) appears reasonable, since 1 is the highest LoA, and
an agent with a very low LoA has less probability to con-
clude positively a LCT with the best-performing agents
than an agent with intermediate expertise. A6 ) implies
that even if θi is the worst LoA, the LCT has a non-
zero probability to conclude that an agent in Ai is bet-
ter than an agent in Aj . This probability can be made
arbitrarily small, but it is required positive to show the
existence of an equilibrium of the dynamics describing
the evolution of the proportions of agents with a given
assessment, as discussed in Section 4.

An example of pairwise interaction and LCT is provided
in Section 5 in the context of WSNs.

3 PAIA Algorithm

In a community of mobile agents able to interact and
perform LCTs satisfying the assumptions in Section 2,
a PAIA algorithm is the mechanism that enables each
agent to estimate its own LoA. In the proposed al-
gorithm, each agent manages two counters ct,i(t) and
cb,i(t) initialized at 0 at t = 0. The number of LCTs
performed by Agent i following an interaction it has
requested is stored in ct,i(t). The number of tests con-
cluding that Agent i is not worse than the agent met
is stored in cb,i(t). As indicated in Section 2, an agent
involved in an interaction that it has not requested
does not update ct,i(t) and cb,i(t). If the agents are
randomly spread and move (Assumption A3), the ratio
cb,i(t)/ct,i(t) will only depend on the proportions of
agents in each group, on the interaction probabilities,
and on the statistical properties of the LCT.

Intuitively, an agent with LoA θi is likely to have a larger
ratio cb,i(t)/ct,i(t) than an agent with LoA θ′j when θi <
θ′j . One may thus introduce a partition of the interval
[0, 1] intoK decision intervals [νk, νk−1) with ν0 = 1 and
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νK = 0 and consider the decision rule

θ̂i (t) = k if cb,i(t)/ct,i(t) ∈ [νk, νk−1) , k = 1 . . .K.
(2)

The aim of this work is to determine conditions on
p1, . . . , pK (proportion of agents in each group), and
q(θi, θj) (probability that the outcome of the LCT per-
formed by i is one) to show that the decision rule (2)
leads to a satisfying assessment of the LoA of the agents,
for all k = 1 . . .K.

3.1 Practical PAIA Algorithm

Let xi(t) = (θi, ct,i(t), cb,i(t)) represent the state of each
Agent i. If all the LCT outcomes obtained in the past
are considered, then ct,i(t) can go unbounded, resulting
in an infinite number of possible values for xi(t). The
global behavior of the algorithm is in this case difficult
to analyze. To limit the number of possible states, one
considers the evolution of ct,i(t) and cb,i(t) over a slid-
ing variable-length time interval containing the time in-
stants of the last M meetings during which Agent i has
performed a LCT. Algorithm 1 summarizes the proposed
PAIA algorithm for an arbitrary reference Agent i.

Algorithm 1 PAIA algorithm for Agent i

(1) Initialize t0i = 0, θ̂i (0) = 1, ct,i (0) = cb,i (0) = 0,
κ = 1, and µ = 0.

(2) Do θ̂i (t) = θ̂i
(
tκ−1
i

)
, ct,i (t) = ct,i

(
tκ−1
i

)
, cb,i (t) =

cb,i
(
tκ−1
i

)
, and t = t + δt, until the κ-th meeting

occurs at time tκi with Agent j ∈ A.

(3) Transmit θ̂i (tκi ) to Agent jκ and receive θ̂j (tκi ) from
Agent jκ.

(4) With probability α
(
θ̂i (tκi ) , θ̂j (tκi )

)
, perform a

LCT with outcome yµi , then
(a) µ = µ+ 1. Update ct,i and cb,i as{

ct,i(t
κ
i ) = min {µ,M}

cb,i(t
κ
i ) =

∑µ
m=max{1,µ−M+1} y

m
i

(4)

(b) Update θ̂i according to (2)
(5) κ = κ+ 1.
(6) Go to 2.

The behavior of the algorithm in accordance with the
chosen performance criteria depends on the appropriate
tuning of the thresholds νk, as detailed in Section 4.3.
These in general depend on the proportions pθ of agents
in each group, on the probabilities of interaction and on
the statistical characteristics of the LCT. We assume this
a priori information to be known at least to some agent
management unit, responsible of setting up the network
and of the diffusion of the values of the thresholds, during
a short initialization phase.

The values of α(θ̂i, θ̂j) can be considered as design pa-
rameters that can be adjusted to optimize the perfor-
mance of the PAIA algorithm. Since interaction is as-
sumed to be associated to some cost for the agents, e.g.,
energy, in case of battery-powered devices, or time, in
case of human players, they can also be tuned in order to
restrain the total number of interactions per agent. In-

tuitively, keeping α(θ̂i, θ̂j) high if θ̂i and θ̂j are close and
the outcome of the LCT is very uncertain, and keeping

it low if θ̂i and θ̂j are far apart and the outcome of the
LCT is easily foreseeable, restrains the number of inter-
actions, while circulating the most relevant information.

3.2 Macroscopic evolution

At time t, among the agents with LoA θ, let Xτ,β
θ (t) be

the proportion of agents in state xi(t) = (θ, τ, β), i.e.,
with ct,i (t) = τ , cb,i (t) = β, and 0 6 β 6 τ 6 M .
The evolution of the state of Agent i with LoA θi, fol-
lows a Markov model with state transition diagram sim-
ilar to the one shown in Figure 1 for M = 4. There are
K parallel chains conditioned by the value of θ ∈ Θ.
This diagram is similar to that considered in (Li et al.,

2016b). With the initial conditions X0,0
θ (0) = 1 and

Xτ,β
θ (0) = 0, ∀τ, β 6= 0, the evolution of expected value

of the various proportions Xτ,β
θ (t) of agents in the corre-

sponding states, with θ = 1 . . .K and 0 < β 6 τ < M ,
are described by (3) at the top of the page, see also (Li

et al., 2016b). In (3), πδt,δbθ denotes the transition prob-
ability from State (θ, τ, β) to State (θ, τ + δt, β + δb).
Although the state equations (3) are the same as those

in (Li et al., 2016b), πδt,δbθ differs due to the increased
number of groups and to the interaction probability α.

0

0

1

2

3

4

1 2 3 4

cb

ct

Fig. 1. Example of Markov model for the evolution of the
state of a agent when M = 4.

Note that πδt,δbθ depends on the current state (θ, τ, β) of
some reference agent, but also on the current proportion

of agents with estimated LoA θ̂ (t). One has first to eval-
uate the probability that some agent with state (θ, τ, β),

i.e., estimated LoA θ̂ (τ, β) performs a LCT during a
meeting with a random agent, which index is described
by the random variable J . This probability may be eval-
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dX0,0
θ

dt

(a)
= −λX0,0

θ ·
(
π1,0
θ (0, 0) + π1,1

θ (0, 0)
)
,

dXτ,0
θ

dt

(b)
= λ

(
−Xτ,0

θ ·
(
π1,0
θ (τ, 0) + π1,1

θ (τ, 0)
)

+Xτ−1,0
θ ·π1,0

θ (τ − 1, 0)
)
,

dXτ,τ
θ

dt

(c)
= λ

(
−Xτ,τ

θ ·
(
π1,0
θ (τ, τ) + π1,1

θ (τ, τ)
)

+Xτ−1,τ−1
θ ·π1,1

θ (τ − 1, τ − 1)
)
,

dXM,0
θ

dt

(d)
= λ

(
−XM,0

θ ·π0,1
θ (M, 0) +XM−1,0

θ ·π1,0
θ (M − 1, 0) +XM,1

θ ·π0,−1
θ (M, 1)

)
,

dXM,M
θ

dt

(e)
= λ

(
−XM,M

θ ·π0,−1
θ (M,M)+XM,M−1

θ ·π0,1
θ (M,M−1) +XM−1,M−1

θ ·π1,1
θ (M − 1,M − 1)

)
,

dXτ,β
θ

dt

(f)
= λ

(
−Xτ,β

θ ·
(
π1,0
θ (τ, β) + π1,1

θ (τ, β)
)

+Xτ−1,β
θ ·π1,0

θ (τ − 1, β) +Xτ−1,β−1
θ ·π1,1

θ (τ − 1, β − 1)
)

dXM,β
θ

dt

(g)
= λ

(
−XM,β

θ ·
(
π0,1
θ (M,β) + π0,−1

θ (M,β)
)

+XM−1,β−1
θ ·π1,1

θ (M − 1, β − 1)

+XM−1,β
θ ·π1,0

θ (M − 1, β) + XM,β−1
θ ·π0,1

θ (M,β − 1) +XM,β+1
θ ·π0,−1

θ (M,β + 1)
)
,

(3)

uated as γ (τ, β) = E(α(θ̂(τ, β), θ̂J(t))), where E(·) de-

notes the expectation, taken over θ̂J (t). Then

γ(τ, β) =
∑

k1,k2∈Θ

α(θ̂ (τ, β) , k2)P{θ̂J (t) = k2, θJ = k1}

=
∑

k1,k2∈Θ

α(θ̂(τ, β), k2)P{θ̂J(t) = k2|θJ =k1}P{θJ =k1}

=
∑

k1,k2∈Θ

α(θ̂ (τ, β) , k2)pk1p
k1k2(t) , (5)

where pk1k2 (t) = P{θ̂J (t) = k2|θJ = k1} is the propor-
tion of agents with LoA k1 believing their LoA is k2.
Using (2), one deduces that

pk1k2 (t) = P
{
θ̂J (t) = k2|θJ = k1

}
=

{
X0,0
k1

(t) +
∑
τ,β,β/τ∈[νk2

,νk2−1)X
τ,β
k1

(t) , if k2 = 1,∑
τ,β,β/τ∈[νk2

,νk2−1)X
τ,β
k1

(t) , else.

(6)

For each agent, two phases have to be considered in Al-
gorithm 1, depending on the value of ct,i(t). In the tran-
sient regime, for states with ct,i(t) = τ < M , one has
(δt, δb) ∈ {(0, 0) , (1, 0) , (1, 1)}, since τ may either in-
crease or remain constant and δb 6 δt. The only possi-
bility leading to δt = 0 is that Agent i, once it has met
a random Agent J , decides not to interact. Then

π0,0
θ (t, τ, β) = 1− γ (τ, β) . (7)

A state transition occurs with (δt, δb) = (1, 1) when,
once Agent i has met Agent J , they continue interact-
ing and the LCT yields yi,J (t) = 1. Since α only de-
pends on the estimates of the LoA, these two events can
be assumed as independent and one has to consider all

possible values taken by θ̂J (t) to get

π1,1
θ (t, τ, β)

=
∑
k2∈Θ

α(θ̂(τ, β), θ̂J(t) = k2)P{Yi = 1, θ̂J (t) = k2|θi = θ}

=
∑

k1,k2∈Θ

α(θ̂ (τ, β) , k2)P{Yi = 1|θi = θ, θJ = k1}

· P{θ̂J (t) = k2|θJ = k1}P {θJ = k1}
=

∑
k1,k2∈Θ

α(θ̂ (τ, β) , k2)pk1p
k1k2 (t) q (θ, k1) . (8)

Then, π1,0
θ (t, τ, β) is obtained similarly:

π1,0
θ (t, τ, β)

=
∑

k1,k2∈Θ

α(θ̂(τ, β), k2)pk1
pk1k2(t)(1− q(θ, k1)). (9)

In the permanent regime, ct,i(t) = M and remains con-
stant, thus δt = 0. In Algorithm 1, µ is the number of
LCTs performed by Agent i till time t. When µ > M ,
only the last M LCT outcomes are considered. To de-
termine the value taken by δb ∈ {−1, 0, 1} after the µ-th
LODT, consider an arbitrary y ∈ {0, 1} and the random

event Ey (t) = {Y µ−Mi = y|
∑µ−1
m=µ−M Y mi = β} which

corresponds to a situation where one knows that β LCTs

yield 1 among the lastM tests and Y µ−Mi = y will be ig-
nored once the new LCT outcome is available. P {E1 (t)}
is relatively complex to evaluate, since P {Y ni = y} de-
pends on the actual LoA of the encountered agent. In
what follows, we assume that LCT outcomes with Y mi =
y are independently distributed over the time horizon
corresponding to m = µ−M . . . µ−1. One obtains then
P {E1 (t)} = β/M and P {E0 (t)} = 1− β/M .

Assume that the (µ−M)-th LCT performed by Agent i

occurred at time t̃, then yµ−Mi can also be denoted as
yi
(
t̃
)

and the transition related to cb,i is such that δb =

yi (t)−yi
(
t̃
)
∈ {−1, 0, 1} .To have (δt, δb) = (0, 1), three

independent events have to occur: 1) interaction has to

5



continue once Agent J has been met; 2) yi,J (t) = 1; 3)
yi
(
t̃
)

= 0, i.e., E0 (t) occurred. The transition probabil-
ity is then deduced using derivations similar to (8):

π0,1
θ (t,M, β) =

M − β
M

∑
k1,k2∈Θ

α(θ̂ (M,β) , k2)

· pk1p
k1k2 (t) q (θ, k1) . (10)

Consider now (δt, δb) = (0,−1). Using a similar ap-
proach one deduces

π0,−1
θ (t,M, β) =

β

M

∑
k1,k2∈Θ

α(θ̂ (M,β) , k2)

· pk1
pk1k2 (t) (1− q (θ, k1)) . (11)

Applying (10-11), π0,0
θ (t,M, β) can be obtained from

π0,0
θ (t,M, β) = 1− π0,1

θ (t,M, β)− π0,−1
θ (t,M, β).

4 Analysis of Equilibrium

In this section, the asymptotic behavior of the state

equations (3) is characterized. Let X
τ,β

θ be the value at

equilibrium of Xτ,β
θ . The proportion of agents with LoA

θ estimating their LoA as θ̂ depends on the partition of
the interval [0, 1] introduced in (2):

pθθ̂ =

M∑
τ=1

∑
β:β/τ∈[νθ̂,νθ̂−1)

X
τ,β

θ . (12)

This analysis for general α is challenging, one thus con-
siders the following two special cases.

Case I, where a meeting always leads to an interaction,

α(k1, k2) = 1, ∀k1, k2. (13)

Case II, where an interaction is only performed when an

Agent i meets an Agent j estimating its LoA as θ̂j = 1,

α (k1, k2) =

{
1 if k2 = 1

0 else.
(14)

4.1 Case I

To lighten the notations, introduce

sθ =
∑
k∈Θ

pkq (θ, k) , (15)

then πδt,δbθ introduced in Section 3.2 may be rewritten as{
π1,1
θ (t, τ, β) = sθ, π0,1

θ (t,M, β) = M−β
M sθ,

π1,0
θ (t, τ, β) = 1− sθ, π0,−1

θ (t,M, β) = β
M (1− sθ) .

(16)

The transition probabilities are now time-invariant.

Proposition 1 In Case I, the dynamic system (3) ad-

mits an equilibrium X
τ,β

θ , for all θ ∈ Θ and β 6 τ , with

X
τ,β

θ =

{
0, ∀τ < M,(
M
β

)
(sθ)

β
(1− sθ)M−β , τ = M.

(17)

Proof See (Li et al., 2017), Section 7.1.

With the expression ofX
τ,β

θ introduced in Proposition 1,
one gets the correct decision rate (CDR) of agents with
LoA θ ∈ Θ,

pθθ =
∑

β:β/M∈[νθ,νθ−1)

(
M

β

)
(sθ)

β
(1− sθ)M−β . (18)

The next proposition introduces a sufficient condition
on the decision thresholds to get pθθ → 1 as M →∞.

Proposition 2 If s1 > s2 > . . . > sK and for all θ ∈
Θ \ {K}, νθ < sθ < νθ−1, then for all θ ∈ Θ,

lim
M→∞

pθθ = 1. (19)

Proof See (Li et al., 2017), Section 7.2

4.2 Case II

To perform the analysis of the equilibrium, one investi-

gates first the evolution of Xτ,k
θ (t) when τ < M in the

following proposition.

Proposition 3 For any β 6 τ < M , lim
t→∞

Xτ,β
θ (t) = 0.

One can prove Proposition 3 by a simple extension of the
proof of Proposition 2 in (Li et al., 2016b), in which θ
takes a binary value. As a consequence, the only possible

value at equilibrium ofXτ,β
θ (t) with τ < M is 0. In what

follows, the analysis focuses on the agents performing

an estimate θ̂ = 1. The analysis for the other estimated
values is similar.

Let p1 =
(
p11, . . . , pK1

)
and consider the functions

hθ
(
p1
)

=

∑
k∈Θ pkp

k1q (θ, k)∑
k∈Θ pkp

k1
, (20)
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Fθ
(
p1
)

=

M∑
β=dν1Me

(
M

β

)(
hθ
(
p1
))β (

1− hθ
(
p1
))M−β

,

(21)
and F

(
p1
)

=
(
F1

(
p1
)
. . . FK

(
p1
))

. The following
proposition provides a non-linear equation that has to
be satisfied by p1. Once this equation is solved, one can

easily deduce the various X
M,β

θ at equilibrium.

Proposition 4 If the dynamic system (3) admits some

equilibrium X
τ,β

θ , then for any θ ∈ Θ and β 6 τ ,

X
τ,β

θ =

{
0,∀τ < M,(
M
β

) (
hθ
(
p1
))β (

1− hθ
(
p1
))M−β

, τ = M,

(22)
where p1 is the solution of

p1 = F
(
p1
)
. (23)

Proof See (Li et al., 2017), Section 7.3.

The existence of X
M,β

θ mainly depends on whether (23)
has a solution p1. For that purpose, one shows the exis-
tence of an equilibrium in Proposition 5 using Brouwer’s
fixed-point theorem.

Proposition 5 For any 0 = νK < · · · < ν1 < ν0 = 1,
(23) always admits a solution, and the dynamical system
(3) has an equilibrium.

Proof See (Li et al., 2017), Section 7.4.

Similar to Proposition 2, a sufficient condition to have
limM→∞ pθθ = 1 is stated in the following proposition.

Proposition 6 If q (1, 1) > q (2, 1) . . . > q (K, 1) and

max
θ∈Θ\{1},k∈Θ

q (θ, k) < ν1 < q(1, 1), (24)

q(θ + 1, 1) < νθ < q(θ, 1), ∀θ ∈ Θ \ {1} , (25)

then limM→∞ pθθ = 1, ∀θ ∈ Θ.

Proof See (Li et al., 2017), Section 7.5.

Explicit expressions for pθ1 are difficult to obtain from
(23). Since pθ1 with θ 6= 1 represents the proportions
of agents that have wrongly estimated their group, the
vector p1 =

(
p11, . . . , pK1

)
should be close to p̃1 =(

p̃11, . . . , p̃K1
)
. One has lim

p1→p̃1 hθ
(
p1
)

= q (θ, 1). As-

suming that at equilibrium, hθ
(
p1
)
' q (θ, 1), using

(22), X
M,β

θ can be approximated as

X̃M,β
θ =

(
M

β

)
(q (θ, 1))

β
(1− q (θ, 1))

M−β
, (26)

and follows thus a binomial distribution.

4.3 Choice of ν

Using X
M,β

θ (in Case I) or X̃M,β
θ (in Case II), one is

able to optimize the decision thresholds introduced in
(2). The value of the νθs may for example be adjusted
to maximize the CDR under some cumulated false deci-
sion rate (FDR) constraint evaluated using (26), but al-
ternative performance requirements may be considered.
The following proposition provides the values of νθs that
maximize the sum of CDR, i.e.,

∑
θ∈Θ p

θθ or
∑
θ∈Θ p̃

θθ.

Proposition 7 In Case I, if ∀θ = 1 . . . (K − 1),

νθ =
log
(

1−sθ
1−sθ+1

)
log
(
sθ+1

sθ
1−sθ

1−sθ+1

) , (27)

where sθ is introduced in (15), then
∑
θ∈Θ p

θθ takes its
maximum value.

In Case II, if ∀θ = 1 . . . (K − 1),

νθ =
log
(

1−q(θ,1)
1−q(θ+1,1)

)
log
(
q(θ+1,1)
q(θ,1)

1−q(θ,1)
1−q(θ+1,1)

) , (28)

then
∑
θ∈Θ p̃

θθ takes its maximum value.

Proof See (Li et al., 2017), Section 7.6.

One sees that the values at equilibrium (17) and the
decision thresholds in Case I are functions of the values
of sθ, themselves functions of the a priori proportions
of agents in each group pθ and of the characteristics of
the LCT q (θi, θj). In Case II, the approximate values at
equilibrium (26) and the thresholds are only functions
of the characteristics of the LCT.

Under the assumption that it exists an inherent partition
of the agents according to their LoAs, it is reasonable
to assume that the set of LoAs is available as a priori
information, along with the statistical properties of the
LCT q(θi, θj). Depending on the application it may be
difficult to know the proportions of agents pθ. In this
case the designer may set α as in Case II, to make the
optimum thresholds νθ independent on pθ.

5 Simulation results

Consider a set A of NA moving agents with very lim-
ited communication range, forming a DTN such that
Hypotheses A1-A4 are satisfied. Each agent is equipped
with a sensor providing noisy observations

mi (x, t) = φ (x, t) + wi (t) , ∀i ∈ A (29)
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of some scalar field φ (x, t) at the location x and at
time t. The components wi (t) of the measurement noise
at time t in (29) are described as realizations of indepen-
dently distributed Gaussian variables Wi ∼ N

(
ei, σ

2
)
,

where ei is some constant, agent-specific bias. The bias
terms ei, i ∈ A, are assumed to be realizations of iid
zero-mean Laplacian random variables Ei with parame-
ter γ. The sensors with small ei provide better measure-
ments. Introducing some constant parameter ε > 0, the
set of agents is partitioned intoK groups defined asAθ =
{i ∈ A : Λθ−1 6 |ei| < Λθ} , where Λθ = εθ/γ, ∀θ ∈ Θ \
{K} and Λθ = ∞ when θ = K. Therefore, the propor-
tion of agents with LoA θ is pθ = exp (−ε (θ − 1) /γ) −
exp (−εθ/γ). The LoA θ of an agent represents thus the
group to which it belongs and provides an indication of
the level of its bias. This problem is a generalization of
that introduced in (Chiuso et al., 2011), where φ (x, t)
is assumed constant with location and time, and where
the bias can only take discrete values.

The agents do not know their measurement bias and Al-
gorithm 1 is used to allow each agent to estimate it. Two
agents, when meeting at some location x and time t, per-
form two independent measurements of φ (x, t). Then,
both agents exchange the estimate of their respective θ
to determine if they want to continue interacting. If this
is the case, they exchange the measurements and run
individually the LCT introduced in Section 5.1.

5.1 LCT

Consider a measurement m, some tolerance ω, and the
interval [m] = [m− ω,m+ ω] of width 2ω centered
around m. Consider now Agents i and j meeting at time
t and exchanging the measurements mi and mj they
performed at time t and at the same location x. The set
estimate (Belforte et al., 1990) of φ (x, t) obtained from

mi and mj is defined as
[
φ̂ (mi,mj)

]
= [mi] ∩ [mj ] . If[

φ̂ (mi,mj)
]
6= ∅ it is likely that the biases ei and ej

are close. Both agents can conclude that their sensors

perform similarly. If
[
φ̂ (mi,mj)

]
= ∅, it is likely that ei

and ej differ significantly more than ω. In this case the
agent is unable to determine whether it is carrying the
best sensor. As a consequence, it cannot conclude that
its sensor is not worse than that of the other agent. One
thus obtains the following low-complexity LCT:

yi,j = yj,i =

{
1, if

[
φ̂ (mi,mj)

]
6= ∅,

0, else.
(30)

For any arbitrary pair of agents i and j, with respective
LoA θ and θ′, one is able to evaluate the probability
q (θ, θ′) = P {Yi,j = 1|i ∈ Aθ, j ∈ Aθ′} as a function of
ω, σ, and γ.
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0 500
0
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1
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1
θ=3
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0

0.5

1
θ=4

θ1

t/∆t t/∆t t/∆t t/∆t
θ2p θ3p θ4pp

Fig. 2. Case I: Evolution of pθθ̂ (t), lines are for the theoretical
values obtained solving (3), dots are simulation results using
the random displacement model.

5.2 Numerical verification of theoretical results

This section presents first the solution of the state equa-
tion (3) describing the evolution of the proportion of
nodes in various states. Algorithm 1 is analyzed first con-
sidering a random displacement of agents without con-
straint on their speed.

For the numerical example, one takes K = 4, σ2 = 0.16,
and γ = ε = 0.7, resulting in

p1 = 0.503, p2 = 0.250, p3 = 0.124, p4 = 0.123. (31)

Moreover, taking ω = 1.8, one gets

q =


0.95 0.66 0.22 0.01

0.66 0.52 0.44 0.10

0.22 0.44 0.50 0.27

0.01 0.10 0.27 0.35

 , (32)

which satisfies Assumption A5. Besides, one considers
M = 50, and a sampling period ∆t during which the
inter-contact probability is λ∆t = 0.33. The decision
thresholds are chosen using Proposition 7:

• In Case I, ν1 = 0.61, ν2 = 0.42, and ν3 = 0.19;
• In Case II, ν1 = 0.84, ν2 = 0.43, and ν3 = 0.07.

Figure 2 and 3 presents the evolution pθθ̂ (t) for θ, θ̂ ∈
Θ = {1, 2, 3, 4}, in Case I and in Case II respectively.
One observes that the proportions of agents in each state
converge. Moreover, in Case II, for any θ ∈ Θ, pθθ is

close to 1 for t sufficient large, while pθθ̂ tends to 0 for

any θ̂ 6= θ. Nevertheless, in Case I, Algorithm 1 does not
behave in a satisfying way: the values of p11 and p22 at
the equilibrium are around 0.8, which means that 20%
of the nodes with LoA θ = 1 or θ = 2 do not correctly
rate their LoA.

Consider now a set A of NA = 1000 moving agents
with initial positions uniformly distributed over a unit
square. The agents randomly move within this square.
Two agents communicate only at discrete time instants
k∆t, k = 1, 2 . . . and when their distance is less than
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Fig. 3. Case II: Evolution of pθθ̂ (t), lines are for the theoret-
ical values obtained solving (3), dots are simulation results
using the random displacement model.
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Fig. 4. Comparison of X
50,β
θ at the equilibrium in Case I:

lines are for the theoretical values obtained integrating (3)
and dotted lines are for the moving agents simulation.
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Fig. 5. Comparison of X
50,β
θ at the equilibrium in Case II:

circles are for the theoretical values obtained integrating (3),
triangles are the approximations obtained from (26), and
crosses are for the moving agents simulation.

r0. One assumes that the displacement is fast enough so
that the location of each agent at time (k + 1) ∆t is in-
dependent of its location at time k∆t. Let Ni (k∆t) =
{j ∈ A : 0 < ri,j (k∆t) 6 r0}, where ri,j (k∆t) is the dis-
tance between Agents i and j at time k∆t. Agent i com-
municates with its neighbors if and only if the cardinal
number |Ni (k∆t)| of Ni (k∆t) satisfies |Ni (k∆t)| > 1.
If |Ni (k∆t)| > 1, pairwise communications are consid-
ered. One may easily show that the average value of
|Ni (k∆t)| is ρ = πr2

0NA. |Ni (k∆t)| approximately fol-
lows a Poisson distribution provided that NA is large
enough. The inter-contact probability at k∆t is thus
λ∆t = P {|Ni| > 1} = 1− exp (−ρ) .

In the following simulations, one considers r0 = 0.014,

so that ρ ≈ 0.6 and λ∆t ≈ 0.33. The evolutions of pθθ̂ (t)
are also shown (dotted lines) in Figure 2 and 3 for Case I
and Case II respectively. They are close to those pre-
dicted by the direct integration of the state equation (3).

Figure 5 further illustrates the good match between the-

ory and simulation for the proportions of states X
50,β

θ
at equilibrium in Case I. In Case II, Figure 5 shows also
a very good match between the simulation and the ap-

proximation of X
50,β

θ obtained using (26).

5.3 Simulation with real databases

In this section, Algorithm 1 is simulated considering the
intercontact time instants provided by two databases
extracted from the MIT Reality Mining Project (Eagle
and Pentland, 2006) and the Haggle Project (Scott et al.,
2009), which have been considered in previous works,
see, e.g., (Hui et al., 2011). In this work, we use the
following databases:

• Reality, taken from (Eagle and Pentland, 2006), lasts
more than 200 days and involves NA = 97 agents with
about 111 inter-contacts per day.

• Infocom0 5, taken from (Scott et al., 2009), lasts 3 days
and involves NA = 41 agents with approximately 312
inter-contacts every hour.

The inter-contact time instants were taken from (Or-
linski, 2016), which are converted from the original
databases (Eagle and Pentland, 2006; Scott et al., 2009).

For each database, 100 independent simulations are per-
formed and results are averaged over these simulations.
As in Section 5.2, K = 4 groups are considered. The
LoA of each node is randomly chosen according to (31).
When an agent decides to continue interaction with an
other agent, instead of performing a measurement and
a test, a LCT is simulated with outcome randomly gen-
erated using (32).

5.3.1 Case I

At the top of Figure 6, for each time instant, a dot on
the line corresponding to the index of an agent repre-
sents a contact with an other agent. The bottom of Fig-
ure 6 presents the evolution with time of the proportions
pθe = 1 − pθθ of nodes erroneously assessing their LoA
for each θ, considering M = 50 and M = 200. One also
observes that the convergence speed of pθe is highly re-
lated to the inter-contact rate (reflected by the density
of points in the top sub-figures): variations are signifi-
cant at beginning of working hours.

Figure 6 as well as the values at equilibrium of X
M,β

θ re-
ported in Figure 9 show some mismatch between theory
and simulations for the agents with LoA θ = 1 and θ = 2.

Although there are many inter-contacts, some XM,β
θ s

have not reached their theoretical values, especially for
θ = 1 and θ = 2. This effect is more significant whenM is
small, which is consistent with Proposition 2: the behav-
ior of the PAIA algorithm improves when M increases.
After investigation of the trace, one observes that some
agents have only few contacts with other agents. For ex-
ample, 4 agents have less than 100 contacts with other
agents. Moreover, the variety of agents met by some
agents is limited. For example, 4 nodes have contacts
with less than 10 different other nodes. This has a sig-
nificant influence on the performance of the algorithm.
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Fig. 6. Case I: Indexes of active nodes (having met another node) at different time (top) and evolution of P θe = 1 − pθθ when
M = 50 (middle) and M = 200 (bottom) obtained using the Reality database (left) and the Infocom05 database (right).
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Fig. 7. Case I: Values of X
50,β
θ (top) and of X
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at the end of the simulation: circles are for the theoretical
values at equilibrium obtained from (3), dots are simulation
results using the Reality database, and plain lines are simu-
lation results using the Infocom05 database.

5.3.2 Case II

Figure 8 shows the evolution of pθe in Case II. For both
databases, pθe remains around 10−2 for all θ ∈ Θ after a
sufficient long time.

Figure 9 represents X
M,β

θ obtained by using the
databases Reality and Infocom05, and also by the ap-
proximation (9). In this case, there is an excellent match
between the values at equilibrium predicted by theory
and those obtained in simulation.

5.3.3 Comparison

Comparing the theoretical values ofX
50,β

θ at equilibrium
for different values of θ ∈ Θ, one observes from Figures 7
and 9 that the different curves overlap more in Case I,
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β
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50,

X3
50,β
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β

Fig. 9. Case II: Values of X
50,β
θ at the end of simulation:

circles are for the theoretical values obtained from (3), tri-
angles are simulation results using the Reality database, and
crosses are simulation results using the Infocom05 database.

especially those for θ = 1 (blue) and θ = 2 (green) and
overlap much less in Case II. As a consequence, when
considering some decision thresholds, better assessment
quality will be obtained in Case II. This illustrates the

importance of the probability of interactionα
(
θ̂i, θ̂j

)
. In

the considered application scenario, a better assessment
is obtained when agents only perform LCT with agents
believing their LoA is the best one.

5.4 Comparison with state-of-the-art solution

As discussed in Section 1.1, a few solutions for instances
of the PAIA algorithm in the context of estimation in
WSN exist in literature. The aim of this section is to
compare the proposed PAIA algorithm with the solution
proposed in (Fagnani et al., 2014a). The measurement
model considered in (Fagnani et al., 2014a) can be cap-
tured by (29), by imposing that all the agents observe
the same phenomenon independently on their location
φ (xi, t) = φ (t), and by imposing that the bias term ei
of the measurement noise Wi takes value from a finite
alphabet C, e.g., C = {0, 1, 2}. The set of agents is then
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Fig. 8. Case II: Evolution of P θe = 1 − pθθ obtained using the Reality database (left) and the Infocom05 database (right)

partitioned into |C| groups with respect to the their val-
ues of ei. In (Fagnani et al., 2014a) each agent estimates
φ and ei jointly using a Distributed Maximum Likeli-
hood (DML) algorithm. Considering the network topol-
ogy in this paper, the DML algorithm can be performed
as follows: when Agent i meets Agent j at time t, it up-
dates its estimation as

φ̂i
(
t+
)

=(1− ς) φ̂i (t)+φ̂j (t)

2
+ ς (mi (t)−êi (t)) (33)

êi
(
t+
)

= arg min
e∈C

(
mi (t)− φ̂i (t)− e

)2

, (34)

where ς ∈ (0, 1) is a balance parameter.

As a comparison, one can use the proposed PAIA algo-
rithm in order to estimate ei and simultaneously employ
(33) to estimate φ. Consider a simple numerical example
where φ = 1, σ = 0.3, and C = {0, 1}. Using the LCT
introduced in Section 5.1 with ω = 0.35 one has

q =

(
0.90 0.24

0.24 0.90

)
. (35)

The value of ν is set according to Proposition 7. Since the
entries of q in (35) violate the sufficient condition (24) in
Proposition 6, the performance of the PAIA algorithm
can be verified only numerically in Case II.

Consider the database Infocom05 with n2 = 20 ran-
domly chosen agents with e = 1 and the other n1 = 21
agents with e = 0. Results are obtained as the aver-
age of 1000 independent Monte-Carlo simulations. Fig-
ure 10 shows the results for σ = 0.3, where the classi-
fication error and the estimation error are obtained by∑
|ei − êi| /NA and

∑∣∣∣φ− φ̂i∣∣∣ /NA respectively. One

observes that the proposed PAIA algorithm performs
better than the reference method: both types of error
decrease faster and are smaller.

6 Conclusions

This paper considered the problem of helping agents as-
sessing their LoA at doing some task via the exchange of
information with peers. Using a generic LCT involving,

0 20 40 60 80
10

−2

10
−1

10
0

time (hours)

c
la

ss
if

ic
a
ti

o
n

 e
rr

o
r

0 20 40 60 80
10

−2

10
−1

10
0

time (hours)

e
st

im
a
ti

o
n

 e
rr

o
r

 

 

PAIA

reference

Fig. 10. Comparison of the reference algorithm proposed in
(Fagnani et al., 2014a) with the PAIA algorithm.

e.g., data exchanged during meetings with other agents,
each agent is able to estimate the proportion of agents it
is better at doing the considered task. With that infor-
mation, each agent may then determine to which group
of agents with similar expertise it belongs to.

The behavior of the proposed algorithm is described us-
ing dynamical state equations approximating the evo-
lution of the proportions of agents with similar beliefs
in their LoA. Sufficient conditions for the existence of
an equilibrium for these equations are established. The
equilibrium is then characterized. This gives some in-
sight in tuning the various parameters of the proposed
algorithm.

The approach is illustrated with a crowdsensing sce-
nario, where agents equipped with sensing devices of dif-
ferent performance, are willing to estimate the quality of
their sensor. Simulation results show a good match with
theory provided that the probabilities of interactions are
such that the LCTs are performed only with the agents
deeming their sensors are of the best quality.

Significant work remains to be done to analyze the be-
havior of the proposed algorithm with generic probabil-
ities of interaction. The existence and uniqueness of the
equilibrium has also to be shown in the general case.
Nevertheless, the proposed approach may be useful to
analyze other types of individual assessment problems.
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7 Proofs

7.1 Proof of Proposition 1

Consider a reference Agent i with ct,i = τ < M . In Case

I, from (16), one has π1,0
θ (t, τ, β) + π1,1

θ (t, τ, β) = 1. As
a consequence, when Agent i meets an other agent, ct,i
increases. Hence, ct,i will reach M after M meetings and
as t→∞, no node will be in a state (θ, τ, β) with τ < M .

Hence, necessarily X
τ,β

θ = 0, for all τ < M and β 6 τ .

The evaluation of X
M,β

θ is similar to that considered in
the proof of Proposition 3 in (Li et al., 2016b): the dy-

namics (3) can be simplified as ΨθX
M
θ (t) = d

dtX
M
θ (t),

where XM
θ (t) =

(
X
M,1

θ (t) , · · · , XM,M

θ (t)
)T

and

Ψθ =


−aθ (0) bθ (1)

aθ (0) −aθ(1)− bθ (1) bθ (2)

. . .
. . .

. . .

aθ (M − 1) −bθ (M)

 ,

with aθ (β) = π0,1
θ (M,β) and bθ (β) = π0,−1

θ (M,β). At

equilibrium, one has d
dtX

M
θ (t) = 0. Thus, X

M

θ satisfies

ΨθX
M

θ = 0. (36)

In (36), summing Lines 1 to β+ 1, for β = 0, . . . ,M − 1,

one obtains bθ (β + 1)X
M,β+1

θ = aθ (β)X
M,β

θ , hence

X
M,β

θ = X
M,0

θ

β−1∏
j=0

a0 (j)

b0 (j + 1)
= X

M,0

θ

β−1∏
j=0

π0,1
θ (M, j)

π0,−1
θ (M, j + 1)

= X
M,0

θ

β−1∏
j=0

(M − j) sθ
(j + 1) (1− sθ)

= X
M,0

θ

(
M

β

)(
sθ

1− sθ

)β
.

(37)

Since
∑M
β=0X

M,β

θ = 1, one obtains for all θ ∈ Θ and

β ∈ {0, . . . ,M} XM,β

θ =
(
M
β

)
(sθ)

β
(1− sθ)M−β .

7.2 Proof of Proposition 2

Consider an arbitrary θ ∈ Θ and some ε > 0 such that

ε < min
16θ<K

sθ − sθ+1

2
. (38)

Let Φθ1,Φ
θ
2, . . . be an infinite sequence of i.i.d. binary

random variables with P
{

Φθm = 1
}

= sθ. For any % ∈
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[0, 1] such that %M ∈ N+, one has

P

{∑M
m=1 Φθm
M

=%

}
=

(
M

%M

)
(sθ)

%M (1−sθ)M(1−%). (39)

According to the weak law of large numbers (Cover and
Thomas, 2012), there exists M ′, such that for all M >
M ′, one has

P

{∣∣∣∣∣
∑M
m=1 Φθm
M

− sθ

∣∣∣∣∣ < ε

}
> 1− ε. (40)

From (39) and (40), one also has

∑
β:β/M∈(sθ−ε,sθ+ε)

(
M

β

)
(sθ)

β
(1− sθ)M−β

=P

{∑M
m=1 Φθm
M

∈ (sθ − ε, sθ + ε)

}
> 1− ε. (41)

If νθ−1 and νθ are chosen such that

νθ−1 > sθ + ε and sθ − ε > νθ, (42)

then ∀θ ∈ Θ,

pθθ =
∑

β:β/M∈(νθ,νθ−1)

(
M

β

)
(sθ)

β
(1− sθ)M−β

>
∑

β:β/M∈(sθ−ε,sθ+ε)

(
M

β

)
(sθ)

β
(1− sθ)M−β > 1− ε.

The constraints (42) have to be satisfied for θ = 1 . . .K.
They may be reformulated as

sθ+1 + ε < νθ < sθ − ε (43)

for θ = 1 . . .K−1. Such values of νθ may be found, since
one imposes the constraints (38) on ε.

One concludes that ∀θ ∈ Θ and ∀ε > 0 satisfying (38),
there exists a choice of the values of νθ such that (43) is
satisfied and there exists M ′, such that for all M > M ′,
pθθ > 1 − ε. The value of ε can be chosen arbitrar-
ily close to zero, which will require M going to infin-
ity, so, provided that sθ+1 < νθ < sθ, ∀θ ∈ Θ, one has
limM→∞ pθθ = 1, if νθ < sθ < νθ−1, ∀θ ∈ Θ.

7.3 Proof of Proposition 4

According to Proposition 3, one has X
τ,β

θ = 0, for all
β 6 τ < M . Using derivations similar to (37), one gets

X
M,β

θ = X
M,0

θ

β−1∏
j=0

π0,1
θ (M, j)

π0,−1
θ (M, j + 1)

= X
M,0

θ

β−1∏
j=0

(M − j)
∑
k∈Θ pkp

k1q (θ, k)

(j + 1)
∑
k∈Θ pkp

k1 (1− q (θ, k))

= X
M,0

θ

(
M

β

)(
hθ

1− hθ

)β
, (44)

with hθ defined in (20). Since
∑M
β=0X

M,β

θ = 1, one ob-

tains for all θ ∈ Θ and β ∈ {0, . . . ,M}

X
M,β

θ =

(
M

β

)
hβθ (1− hθ)M−β . (45)

Introducing (45) in (12), one obtains (23) withFθ defined
in (21). Thus one needs to solve (23) to determine pθ1

for all θ ∈ Θ. The pθ1s are then used to deduce X
M,β

θ
applying (45).

7.4 Proof of Proposition 5

Brouwer’s fixed-point theorem (Granas and Dugundji,
2013) can be used to show the existence of a solu-
tion of (23). For that purpose, one has to show that
for any p1 (0) =

(
p11 (0) . . . pK1 (0)

)
∈ P0 = {x ∈

[0, 1]
K

and x 6= 0}, the discrete-time system

p1 (n+ 1) = F
(
p1 (n)

)
, (46)

with p1 (n) =
(
p11 (n) . . . pK1 (n)

)
∀n ∈ N∗ , converges

to a equilibrium point p1.

Each Fθ with θ ∈ Θ is a continuous function. One needs
to verify whether the value p1 (0) belongs to some com-
pact set.

Lemma 8 One always has
∑
θ∈Θ p

θ1 (t) > 0, ∀t ∈ R+.

Proof The proof is similar to that of Lemma 9 and 10
in (Li et al., 2016b).

From Lemma 8, one obtains that

p1 (0) ∈ P0 =
{
x ∈ [0, 1]

K
such that x 6= 0

}
. (47)

P0 is not compact. One then has to find a compact Pn
such that F maps Pn to Pn, in order to apply Brouwer’s
fixed-point. One starts showing some properties of some
basic functions involved in F.
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Lemma 9 If x = (x1 . . . xK) ∈ P0, then hθ (x) is
bounded as follows

0 < hθ,min 6 hθ (x) 6 hθ,max, (48)

where{
hθ,max = max {q (θ, 1) . . . q (θ,K)} ,
hθ,min = min {q (θ, 1) . . . q (θ,K)} . (49)

Proof Using Assumption A6), one has hθ,min =
min {q (θ, 1) . . . q (θ,K)} > 0. Moreover, one has

hθ,max − hθ (x) = hθ,max −
∑
k∈Θ pkq (θ, k)xk∑

k∈Θ pkxk

=

∑
k∈Θ pk (hθ,max − q (θ, k))xk∑

k∈Θ pkxk
.

Since hθ,max > q (θ, k), ∀k ∈ Θ, one gets hθ,max −
hθ (x) > 0. In a similar way,

hθ,min − hθ (x) =

∑
k∈Θ pk (hθ,min − q (θ, k))xk∑

k∈Θ pkxk
6 0.

Then (48) is proved.

Lemma 10 If 0 < ν1 < 1, the function

g(z) =

M∑
β=dMν1e

(
M

β

)
zβ (1− z)M−β , (50)

is increasing for all z ∈ [0, 1].

Proof In (Li et al., 2016b), Lemma 13, one has shown
that 1 − g(z) is decreasing for z ∈ [0, 1], thus g(z) is
increasing.

From Lemma 9 and Lemma 10, one obtains that for any
θ ∈ Θ and x ∈ P0

0 < g (hθ,min) 6 Fθ (x) 6 g (hθ,max) . (51)

Define pθ1max (n) and pθ1min (n) as upper and lower bounds
of pθ1 (n), i.e., pθ1min (n) 6 pθ1 (n) 6 pθ1max (n). When
n = 0, pθ1min (0) = 0 and pθ0max (0) = 1. From (51), one
gets {

pθ1min (1) = g (hθ,min) > 0,

pθ1max (1) = g (hθ,max) .
(52)

Define

P1 =
[
p11

min (1) , p11
max (1)

]
× . . .×

[
pK1

min (1) , pK1
max (1)

]
,

then p1 (1) = F
(
p1 (0)

)
∈ P1. Notice that 0 /∈ P1 and

P1 is a compact set since pθ1min (1) > 0.

Consider then an arbitrary integer n ∈ N∗. Assume that
p1 (n− 1) ∈ P1, one needs to see whether p1 (n) ∈ P1

is satisfied. Since P1 ⊆ P0, one still has

hθ,min 6 hθ
(
p1 (n− 1)

)
6 hθ,max,

which leads to

g (hθ,min) 6 pθ1 (n) = Fθ
(
p1 (n− 1)

)
6 g (hθ,max) .

(53)

Therefore F maps P1 to P1. Besides, P1 is compact.
Hence one can apply Brouwer’s fixed-point theorem to
prove Proposition 5.

7.5 Proof of Proposition 6

First, one investigates the upper bound of pθ1 for θ ∈
Θ\{1} and M sufficient large. As for (41), for any ε > 0,
there exists m1, such that for all M > m1

d(sθ+ε)Me−1∑
β=b(sθ−ε)Mc+1

(
M

β

)
(hθ,max)

β
(1− hθ,max)

M−β
> 1−ε,

which leads to

M∑
β=b(hθ,max+ε)Mc+1

(
M

β

)
(hθ,max)

β
(1− hθ,max)

M−β

< 1−
d(sθ+ε)Me−1∑

β=b(sθ−ε)Mc+1

(
M

β

)
(hθ,max)

β
(1− hθ,max)

M−β

< ε. (54)

If ν1 > hθ,max + ε, then from (53) and (54), one gets

pθ1 <

M∑
β=dν1Me

(
M

β

)
(hθ,max)

β
(1− hθ,max)

M−β

<

M∑
β=b(hθ,max+ε)Mc+1

(
M

β

)
(hθ,max)

β
(1− hθ,max)

M−β
< ε.

Moreover, if

ν1 > max
θ∈Θ\{1}

(hθ,max + ε) = max
θ∈Θ\{1},k∈Θ

(q (θ, k) + ε) ,

then pθ1 < ε, ∀θ ∈ Θ \ {1}.

Second, one derives the lower bound of p11. Denote ζ =
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minθ∈Θ\{1} q (1, θ), one has

h1

(
p1
)

=
p1q (1, 1) p11 +

∑
k∈Θ\{1} pkq (1, k) pk1∑

k∈Θ pkp
k1

>
p1q (1, 1) p11 + ζ

∑
k∈Θ\{1} pkp

k1∑
k∈Θ pkp

k1

>
p1q (1, 1) p11

min (1) + ζε
∑
k∈Θ\{1} pk

p1p11
min (1) + ε

∑
k∈Θ\{1} pk

= χ.

According to Lemma 10, one has p11 > g (χ). If ν1 <
χ− ε, p11 can be further bounded as

p11 > g (χ) =

M∑
β=dν1Me

(
M

β

)
χβ (1− χ)M−β

>

M∑
β=b(χ−ε)Mc+1

(
M

β

)
χβ (1− χ)M−β

>
d(χ+ε)Me−1∑

β=b(χ−ε)Mc+1

(
M

β

)
χβ (1− χ)M−β

(a)
> 1− ε.

Again, similar to (41), there exists m2 > m1 such that
for all M > m2, (a) is true.

Notice that limε→0 χ = q(1, 1), one obtains that if

max
θ∈Θ\{1},k∈Θ

q (θ, k) < ν1 < q(1, 1),

then limM→∞ p11 = 1. Using similar derivations, if q(θ+
1, 1) < νθ < q(θ, 1), for all θ = 1 . . .K − 1, one has
limM→∞ pθθ = 1, ∀θ ∈ Θ \ {1}.

7.6 Proof of Proposition 7

One starts with Case I. To lighten the notations, let dθ =
dνθMe. From (26), one needs to find d∗ = (d∗1 . . . d

∗
K−1)

such that d∗1 > . . . > d∗K−1 and

U (d) =
∑
θ∈Θ

pθθ =

M∑
d=d1

(
M

β

)
(s1)

β
(1− s1)

M−β

+

K∑
θ=2

dθ−1∑
d=dθ

(
M

β

)
(sθ)

β
(1− sθ)M−β (55)

takes maximum value as d = d∗.

Consider an arbitrary θ ∈ Θ, one evaluates

δθ = U (d1 . . . , dθ + 1, . . . dK−1)− U (d1 . . . , dθ, . . . dK−1)

=

(
M

dθ

)(
(sθ+1)dθ (1− sθ+1)M−dθ − (sθ)

dθ (1− sθ)M−dθ
)
.

If δθ > 0, then

(sθ+1)
dθ (1− sθ+1)

M−dθ > (sθ)
dθ (1− sθ)M−dθ , (56)

leading to

dθ < M
log
(

1−sθ
1−sθ+1

)
log
(
sθ+1

sθ
1−sθ

1−sθ+1

) = d̃θ, (57)

notice that log
(
sθ+1

sθ
1−sθ

1−sθ+1

)
< 0 as sθ+1 < sθ.

In contrast, if δθ < 0, then dθ > d̃θ. As a conclusion, for
any d1 > . . . dθ . . . > dK−1, one has

U (d1 . . . , dθ, . . . dK) 6 U (d1 . . . , d
∗
θ, . . . dK) , (58)

∀θ = 1 . . . (K − 1), where

d∗θ =
⌈
d̃θ

⌉
=

M
log
(

1−sθ
1−sθ+1

)
log
(
sθ+1

sθ
1−sθ

1−sθ+1

)
 . (59)

Then one has

U (d1 . . . dK−1) 6 U (d∗1, d2 . . . dK−1)

6 U (d∗1, d
∗
2, d3 . . . dK−1) 6 · · · 6 U (d∗1 . . . d

∗
K) . (60)

Replacing sθ with q (θ, 1) and using the same derivations,
one obtains the νθs which maximize

∑
θ∈Θ p̃

θθ.
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