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Abstract 

Alternative solutions to network reinforcement are now being investigated in 

distribution network planning studies to reduce the costs and periods for integrating 

renewable energy sources. However, a thorough techno-economic analysis of these 

solutions requires a large number of multi-period load-flow calculations, which makes it 

hard to implement in planning tools. A non-intrusive approximation method is therefore 

proposed to obtain fast and accurate multi-period load-flows. This method builds a 

surrogate model of the load-flow solver using polynomial regression and kriging, 

combined with Latin hypercube sampling. Case studies based on real distribution 

networks show that the proposed method is more efficient for distribution network 

planning in presence of renewable energy sources than time subsampling and, in some 

cases, voltage linearization. In particular, accurate 10-minute profiles of voltages, 

currents, and network power losses are obtained in a satisfactory computation time. 
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1. Introduction 

To enable the expected intensive development of Renewable Energy Sources (RES) 

and new electrical usages (active demand, electric vehicles, etc.), distribution network 

planning needs to evolve quickly [1,2]. Today, most of the voltage/current constraints 

due to RES are removed by reinforcing the network, i.e., by replacing existing network 

infrastructures or adding new ones. As these network adaptations may be expensive and 

take time, several alternative solutions, such as Volt-VAR control and load/generation 

curtailment, are now being investigated to reduce the costs and periods for integrating 

RES while ensuring an acceptable level of risk and quality in the network. Unlike 

network reinforcement, alternative solutions may have operating limits in energy or 

duration and important operational costs depending on the voltage/current constraints 

which have been avoided. Therefore, to assess the techno-economic impacts of these 

solutions and find the best ones, network planning methods should allow, not only to 

detect any risk of constraint as it is done today, but also to characterize the constraints in 

terms of depth, duration and frequency. This implies studying multi-year profiles of 

load and generation, and thus performing multi-period load-flow calculations [2].  

The time uncertainty and power variability of intermittent RES must be taken into 

account in order to accurately assess the temporary constraints, and thus the techno-

economic performance of the solutions. It is thus essential to study a large number of 

load/generation profiles, with a time step ΔT which is as small as possible (no more than 

10 minutes, see Section 3.2). This nevertheless leads to an intensive use of a time-

consuming “load-flow solver” method for solving the nonlinear load-flow equations. 
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For instance, if p = 100 yearly load/generation profiles with a time step of ΔT = 10 

minutes are considered over a period of T = 10 years (≈ 5.3 × 106 minutes), then n = pT 

/ ΔT ≈ 5.3 × 107 load-flow calculations are required to assess the performance of 

alternative solutions for a given network. Such a computation time is not acceptable for 

Distribution System Operators (DSO), who are often responsible for the medium/long-

term development of several hundred or even thousand primary substations.  

The possible options to reduce the computation time needed for multi-period load-

flow calculations can be classified into three categories: 1) time subsampling of the 

load/generation profiles, 2) intrusive approximation of the load-flow solver, and 3) non-

intrusive approximation of the load-flow solver.  

Time subsampling consists in using only a part of the available input data, by either 

increasing the time step ΔT of the yearly load/generation profiles or, in rarer cases, 

selecting only a few daily profiles for each year. Yearly profiles averaged over a time 

step of ΔT = 30 minutes or ΔT = 1 hour are commonly used to study alternatives to 

reinforcement [3-6]. Time subsampling is easy to implement, which accounts for its 

popularity, but the results are not very accurate compared to the time savings (see 

Section 3.2.3). 

Intrusive approximation consists in simplifying the load-flow equations using 

physical assumptions and/or intrusive approximation techniques. This option is often 

used to study network stability [7] or the statistical impacts of load and generation 

power variations [8]. The most popular approaches are to linearize the load-flow 

equations at one or several operating points, to simplify the voltage equations by 

assuming voltage angles equal to zero, or to model the electrical lines by series 

resistances and reactances only. The effectiveness of this option strongly depends on the 
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assumptions and intrusive approximation techniques used. 

Non-intrusive approximation consists in building a surrogate model for the load-

flow solver using approximation techniques that treat the load-flow solver as a “black 

box”. The effectiveness of this option depends on the sampling methods used to select 

the operating points where the exact model (the load-flow solver here) is evaluated, and 

on the approximation methods used to build a surrogate model based on the evaluation 

results. To our knowledge, non-intrusive approximation has rarely been used in network 

studies and, if so, only in a simple form like nearest-neighbor interpolation [9,10]. 

Smooth approximation techniques, such as polynomial regression or kriging, seem not 

to have been investigated in network planning studies so far. 

This paper investigates the latter option, i.e., non-intrusive approximation, to obtain 

fast and accurate multi-period load-flows. The proposed method builds a surrogate 

model of the load-flow solver using polynomial regression and kriging combined with 

Latin hypercube sampling. The paper is organized as follows. Section 2 describes a 

generic approximation procedure to estimate any function, then presents the proposed 

method for multi-period load-flows. Section 3 illustrates the performance of the 

proposed method, in terms of computation time and approximation errors, through 

several case studies based on real distribution networks and 10-minute profiles of 

load/generation. The effectiveness of the proposed method is compared with two other 

methods commonly used in network planning: the use of 30-minute averaged 

load/generation profiles, and the linearization of the voltage load-flow equations. 

Finally, Section 4 discusses the validity area of the proposed method.  

2. Proposed method for the approximation of the load-flow solver 

2.1. A generic non-intrusive approximation procedure 
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Let us consider a real s-dimensional variable y = [y1 … ys], which is the result of a 

function f when applied to the real m-dimensional variable x = [x1 … xm]: y = f(x). The 

purpose is to calculate the n values of y, gathered in the matrix Y: 
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that are associated with n given values of x, gathered in the matrix X: 
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Let us assume that: 1) the number of points n and the output dimension s are very 

large, and 2) the evaluation of f is time-consuming, which makes it difficult or even 

impossible to compute Y using f and X directly. An approximation procedure is 

therefore required to estimate Y precisely in an acceptable computation time. 

Table 1 details a generic non-intrusive approximation procedure to estimate the 

output-value matrix Y. Different variants of this procedure have already been used in 

several application fields [11–13]. This procedure is based on a sampling method, a 

dimension reduction method, and an approximation method.  

The sampling method selects a small set of input points, called experimental design, 

so as to guarantee a high-quality approximation (step 2 in Table 1).  

The dimension reduction method decreases the dimension of the output variable y, 

and thus reduces the number of times the approximation method is used in the 

procedure (step 4 in Table 1). We detail here the Principal Component Analysis (PCA), 

which is one of the most commonly used dimension reduction methods [14]. This 

unsupervised linear dimension reduction method eliminates the variables that are 
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interdependent from f and keeps only q (<< s) linearly-uncorrelated non-physical 

variables, called principal components, for the approximation procedure.  

The approximation method builds a fast surrogate model for each principal 

component (step 5 in Table 1). The value of y is finally computed based on the 

approximate values of its principal components (step 7 in Table 1).  

1) Select a sampling method and an approximation method.  

2) Apply the sampling method to build an experimental design: 
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is substantially smaller than n. 

3) Compute the output Y* associated with X* using the exact model f: 
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where  syyY 1  is the empirical mean vector of Y*, 1
 
is the  n* × 1 vector of ones 

and W is the s × q matrix composed of the weighting coefficients from PCA (i.e., the 

columns of W are the orthonormal eigenvectors of the empirical covariance matrix 

corresponding to the q largest eigenvalues). 

5) Create a surrogate model for each principal component: f1*, …, fq*. For each 

principal component k, estimate the parameters of the surrogate model fk* based on the 

pair (X*, Zk*).  

6) Compute the matrix Z
~

 of approximate principal components associated with X 

using the surrogate models f1*, …, fq*: 
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7) Perform inverse PCA, i.e., compute the matrix 
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values, where 1
 
is the n × 1 vector of ones. 

Table 1. Generic non-intrusive approximation procedure to estimate any s-dimensional 

variable y = f(x). 

The generic procedure detailed in Table 1 can be tailored to different application 
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fields thanks to three degrees of freedom: the sampling method used in step 2, the 

approximation method used in step 5, and the number q of principal components from 

PCA in step 4. The choice of the sampling and approximation methods largely depends 

on the properties of the function f to approximate (e.g., if its inputs/outputs are 

continuous or discrete, if its response is smooth or not, etc.). The number of principal 

components can be chosen in different ways, e.g., to represent a certain share of the 

total variance of y. Another degree of freedom, which is less obvious, is the set of 

variables to which the PCA is applied. More precise results can sometimes be obtained 

if the approximation procedure is applied to different sets of f outputs [15]. 

2.2. Interest of a non-intrusive approximation procedure for multi-period load-flows 

in distribution network planning 

As explained in Section 1, a thorough study of the solutions to integrate RES 

requires a large number of load-flow calculations, which is time-consuming. There is 

therefore a real need to use fast surrogate models instead of the load-flow solver.  

The function to approximate f is the input-output mapping associated to the load-

flow solver. This function f provides an abstract view of the resolution of the load-flow 

equations by the load-flow solver, for a given set of input parameters x. The output y = 

f(x) depends not only on x but also, implicitly, on the definition of the network under 

study and the assumptions about power dispatching. 

A large number s of load-flow outputs is involved in the techno-economic analysis 

of alternatives to reinforcement: the voltages at the Medium-Voltage (MV) buses U, the 

real and reactive powers in the MV lines Pl and Ql, the real and reactive powers at the 

High-Voltage/Medium-Voltage (HV/MV) transformer P0 and Q0, the overall real power 

losses in the MV network Ploss. A dimension reduction method like PCA is thus suitable. 
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Smooth approximation methods are appropriate here since the load-flow outputs are 

relatively smooth. Moreover, the number m of load-flow inputs is generally limited in 

planning network studies, thanks to the use of a small set of load/generation profiles at 

the primary substation scale and of assumptions about power dispatching. 

Consequently, advanced smooth approximation methods, such as kriging, can be 

considered here. 

2.3. The proposed non-intrusive approximation procedure 

The proposed Non-Intrusive Approximation procedure (NIA) results from a 

thorough comparative study of different variants of the generic procedure applied to 

different distribution networks [15]. NIA includes three steps to reach a satisfactory 

trade-off between computation time and accuracy (Fig. 1).  

Step 1: surrogate models of the load-flow solver are built using a n*-point maximin 

Latin Hypercube Sample (LHS) [16,17] as an experimental design and Polynomial 

Regression of order 3 (PR3) [17] as an approximation method. To do this, the procedure 

in Table 1 is applied six times, to estimate separately U, Pl, Ql, P0, Q0, and Ploss. 

Applying the procedure to these subsets of outputs leads to more accurate results than 

on y = [U, Pl, Ql, P0, Q0, Ploss], in return for a short increase of time [15]. PCA is 

performed on the non-scalar outputs only, i.e., on U, Pl, and Ql. For each PCA, the 

number q of principal components is set so as to represent more than α percent of the 

total variance of the variable to estimate. The accuracy of the surrogate models is 

assessed on a k-point test sample. The surrogate models are considered precise if the 

errors committed on the test sample are smaller than thresholds defined for each output: 

εU, εPl, εP0, εQ0, and εPloss.  If the surrogate models are precise, they can be used instead 

of the load-flow solver to estimate the output profiles.  
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Step 2: if the surrogate models are not precise enough, new surrogate models are 

built as in step 1, but using Ordinary Kriging with a 5/2 Matérn covariance (OK52) [17-

19] instead of PR3. OK52 is used in step 2 because it is generally slower but more 

accurate than PR3 [15]. The surrogate models are assessed on the same test sample. 

Step 3: in the rare case where the surrogate models built in Step 2 are not precise 

enough, the output profiles are computed using the exact load-flow solver. 

Fig. 1. The proposed non-intrusive approximation procedure to approximate multi-period 

load-flows. 

If NIA stops at step 1 or 2, only (n* + k) exact load-flow calculations are required.  

The accuracy-time ratio for building and validating the surrogate models strongly 

depends on n*, α, and k. Increasing n* or α enhances the accuracy of the surrogate 

models but also raises the computation time required for building them. Increasing k 

improves the assessment of the models’ accuracy but, at the same time, leads to more 

exact load-flow calculations to validate the models.  

NIA can also be used to estimate other load-flow outputs, e.g., the currents in all the 

MV lines I and the apparent power at the HV/MV transformer S0. Because of power 

flow reversing, I and S0 are not smooth, which makes them difficult to approximate 

accurately using polynomial regression or kriging. In order to build precise surrogate 
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models for these outputs, it is actually better to approximate Pl, Ql, P0, and Q0 rather 

than I and S0, and then to compute approximations of I and S0 as follows:  

  line or transformer i, ,22

iii QPS   (1) 

  3,line jii USIi  , where Uj is the end bus of the line i. (2) 

3. Case studies: comparing the proposed method with time subsampling and 

voltage linearization methods 

3.1. General information about the case studies presented in Sections 3.2 and 3.3 

The purpose is to compute the 10-minute profiles of load-flow outputs quickly and 

accurately for different radial distribution networks. This means performing n = 52 560 

exact load-flow calculations per year. A Forward-Backward algorithm is used for 

solving load-flow equations [20]. This load-flow solver is especially efficient for radial 

networks. For techno-economic issues, four sets of load-flow outputs have to be 

estimated: U, I, Ploss, and S0. For the radial 400-bus networks studied in Section 3.2, this 

means estimating s = 1201 output variables (since Pl, Ql, P0, and Q0 have to be 

approximated to compute I and S0, see Eq. 1-2). The load-flow solver takes m = 4 inputs 

here: the overall wind generation Pw, the overall photovoltaic generation Ppv, the overall 

consumption Pc, and the busbar voltage Uref. Powers Pw, Ppv, and Pc are respectively 

dispatched between all the generators and loads proportionally to their rated real power 

(for producers) or peak apparent power (for consumers). Reactive powers are computed 

using power factors. 

NIA is set to reach a satisfactory trade-off between speed and accuracy: n* = 200, α 

= 99.9 and k = 200 [15]. This means that only 400 exact load-flow calculations are 

required if NIA stops at step 1 or 2. The maximal errors tolerated on the test sample are: 

εU = 150 V (i.e., < 1 % of nominal voltage at the MV buses), εI = 5 A (i.e., < 5 % of 
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rated currents of the MV lines), εS0 = 200 kVA (i.e., < 1 % of rated apparent powers of 

HV/MV transformers), and εPloss = 1 % of yearly energy losses. 

The performance of NIA is compared with two other methods commonly used in 

network planning: 1) 30-minute Subsampling (S30), which consists in performing exact 

load-flows after averaging load/generation profiles over a 30-minute range, and 2) 

Voltage Linearization (VL), which consists in linearizing the voltage equations at the 

mid-range operating point and applying the resulting approximate load-flow solver on 

the 10-minute profiles of load/generation. The case studies below have been 

implemented in MATLAB using the STK toolbox for kriging [21]. 

3.2. General performance in terms of speed and accuracy 

3.2.1. Purpose of the study 

This study aims at analyzing the general performance of S30, VL, and NIA over 100 

different scenarios. Each scenario is composed of a 20-kV 400-bus radial network and a 

set of 10-minute profiles of Pw, Ppv, and Pc, and Uref over one year. All the studied 

networks are possible evolutions of a same real network after accommodating from 0 to 

20 MW of RES (see [22] for an example). 

3.2.2. Performance indices 

Speed is assessed using the computation time, i.e., the total time of the considered 

method for building surrogate models and computing the 10-minute profiles of U, I, S0, 

and Ploss over one year. The speed index used here is the time efficiency GT of the 

method, i.e., the ratio between computation time from the exact load-flow solver and 

computation time from the method. 

Accuracy is assessed using the output errors, i.e., the absolute deviations between 

the 10-minute output profiles from the considered method and the ones from the exact 
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load-flow solver. For each set of output variables (U, I, S0, or Ploss), three error indices 

are introduced to indicate the distribution of absolute errors for each scenario: the mean 

of absolute errors errmean, the 90-percent quantile of absolute errors errQ90, and the 

maximum of absolute errors errmax over all the time steps and, for voltage/current errors, 

over all the buses/lines. 

3.2.3. Results of the study 

Fig. 2 focuses on six randomly chosen hours of the voltage at a given bus i and the 

associated absolute errors obtained by the three methods with respect to the exact load-

flow solver. This example shows clearly that the voltage profiles obtained by VL and 

NIA are closer to the exact one than that of S30.  

 

Fig. 2. Top: examples of voltage computed by the exact load-flow solver (black line on a, b 

and c), S30 (blue line on a), VL (green line on b), and NIA (red line on c). Bottom: voltage 

error from S30 (blue line on a), VL (green line on b), and NIA (red line on c) with respect 

to the exact load-flow solver. 

Table 2 depicts, for the three methods, the averages of time efficiency and of 

mean/quantile/max absolute errors over the 100 scenarios. It turns out that: 
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 S30 is the worst method. It is 2 and 16 times slower than VL and NIA respectively 

(Fig. 3.a), and it generally commits the highest errors on the load-flow outputs (Fig. 

3.b and Table 2).  

 NIA is the fastest method. It is more than 50 times faster than 10-minute exact load-

flows whereas S30 and VL are only 3 and 7 times faster respectively.  

 Both VL and NIA get high accuracy on the outputs. In particular, NIA is more 

precise on total apparent power and power losses than VL.  

This case study over 100 scenarios (with n = 52 560) highlights the high 

performance of the proposed method to approximate multi-period load-flows. Although 

commonly used in network planning studies, time subsampling is not efficient to 

estimate 10-minute profiles of load-flow outputs.  

  S30 VL NIA 

Time efficiency  GT [-] 2.9 7.4 52.8 

Voltage errors [V] errmean(U) 26.9 1.7 3.5 

 errQ90(U) 64.9 4.4 8.6 

 errmax(U) 274.6 29.6 36.2 
Current errors [A] errmean(I) 0.4 < 0.1 < 0.1 
 errQ90(I) 0.7 < 0.1 0.2 
 errmax(I) 110.8 0.2 1.2 
App. power errors [kVA] errmean(S0) 224.3 0.4 < 0.1 
 errQ90(S0) 530.5 0.9 < 0.1 

 errmax(S0) 4 860.4 4.7 < 0.1 
Power loss errors [kW] errmean(Ploss) 4.3 0.4 < 0.1 
 errQ90(Ploss) 11.6 0.9 < 0.1 
 errmax(Ploss) 131.2 4.0 < 0.1 

Table 2. Average performance of S30, VL, and NIA over 100 scenarios with n = 52 560. 
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Fig. 3. Average of time efficiency (a) and mean voltage error (b) over 100 scenarios with n 

= 52 560 for S30, VL, and NIA with respect to the exact load-flow solver. 

3.3. Illustration of approximation-error impacts on a generation curtailment case 

Contrary to common beliefs, a good accuracy of load-flow outputs at a time step of 

ΔT = 10 minutes is necessary to estimate the techno-economic performance of the 

alternatives to reinforcement, regardless of the network study duration. This case study 

aims to support this statement and to show the interest of using a precise approximation 

method for load-flow calculations through a simple example. 

In this case study, we suppose that a 5-MW wind producer requests to be connected 

to a 20-kV 126-bus feeder (part of one of the networks studied in Section 3.2). This 

feeder has already hosted 3.39 MVA of loads, a 1-MW MV wind producer and 0.15 

MW of Low-Voltage (LV) photovoltaic producers. The study of the worst-case scenario 

“low consumption and high production” shows that the new producer may cause 

overvoltage on the existing feeder. Consequently, the DSO proposes two connection 

solutions to remove this voltage problem: 1) a firm-connection solution, which consists 

in reinforcing the feeder to totally remove the overvoltage risk (Fig. 4.a), and 2) a non-

firm connection solution, which consists in curtailing the producer’s real power to avoid 

overvoltage in real-time if need be (Fig. 4.b). For the latter solution, the DSO is 

assumed to contract with the producer a maximal annual curtailed energy (or 

curtailment duration). It is essential to assess accurately the contractual value of 

curtailment since, on the one hand, the producer uses it to carry out his cost-benefit 

analysis and to find the cheapest connection solution, and, on the other hand, the DSO 

has to compensate the producer for any extra curtailment. That is why the annual 

curtailed energy (or curtailment duration) should be sized on several profiles of load and 

generation. We assume here that the DSO studies 100 sets of 10-minute profiles of 
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load/generation over one year (n = 52 560) and chooses, as a contractual value, the 

annual curtailed energy (or curtailment duration) that removes overvoltage for 90 % of 

the profiles.  

To illustrate the interest of a precise approximation method, the contractual 

curtailment energy/duration is computed using the exact load-flow solver and the three 

approximation methods presented above: S30, VL, and NIA.  

 

Fig. 4. Studied MV feeder with the new producer connected through: a) a firm connection 

(with network reinforcement), b) a non-firm connection (with generation curtailment). 

The results of the study clearly show that the more accurate the approximation 

method is, the more precise the generation curtailment is on a 10-minute scale. Indeed, 

as depicted in Fig. 5, a voltage error may lead to under/overestimating the violations of 

high voltage limit (fixed to 21 kV here) and thus the curtailment duration/energy 

required to remove these violations.  

As shown in Table 3, S30 obtains a good estimation of the mean annual constraint 

rate but also gets high positive and negative constraint detection errors. VL tends to 

overestimate the risk of overvoltage; it detects overvoltage periods very well but also 

finds overvoltage when there is no one. The proposed method, NIA, is effective to 

detect whether overvoltage occurs or not. 

(a) Firm connection (b) Non-firm connection

Primary substation

Secondary substation

S MV consumer

MV producer

Upgraded MV line

New MV line

Network 

reinforcement

Generation 

curtailment

Pprod Pprod

t t
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Fig. 5. Examples of voltage (top), generation power (middle) and curtailed power (bottom) 

computed by the exact load-flow solver (black lines on a, b and c), S30 (blue lines on a), 

VL (green lines on b), and NIA (red lines on c) before/after generation curtailment 

(dashed/solid lines).  

 

 Ref. S30 VL NIA 

Mean constraint rate over the year [%] 8.5 8.2 10.2 8.3 

Mean share of true constraints [%] - 86.5 100 97.9 

Mean share of false constraints [%] - 10.4 19.9 < 0.1 

Table 3. Average overvoltage detection performance of S30, VL, and NIA over 100 

load/generation profiles with n = 52 560. 

Tables 4 and 5 show the curtailment values obtained from the three methods. “Error 

cost” refers to the share of curtailment cost due to the error on the contractual 

curtailment energy/duration. The closer to zero the error costs are, the more effective 

the approximation method is. Indeed, on the one hand, positive error costs mean that the 
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DSO is more likely to compensate the producer at the end of each year due to unplanned 

extra curtailed energy. On the other hand, negative error costs mean that the producer is 

more likely to refuse a non-firm connection, which is actually cheaper than a firm one.  

The error costs depicted in Tables 4 and 5 result from just one connection study and 

should be appreciated with respect to the increasing total number of RES connections 

required year by year. Given the expected intensive development of RES, it is therefore 

crucial to use an approached load-flow solver that is as fast and as accurate as possible. 

In this case study, NIA has proven to be more efficient than S30 and VL. 

 Ref. S30 VL NIA 

Contractual curtailed energy [MWh] 510.3 461.5 732.5 492.9 

Curtailed energy error [%] - −9.7 +43.6 −3.4 

Error cost [€ with ccurt = 40 €/MWh] - 1953 −8888 695 

Error cost [€ with ccurt = 80 €/MWh] - 3907 −17777 1389 

Table 4. Curtailed energy errors and associated error costs obtained by S30, VL, and NIA 

to remove all the constraints for 90 % of cases, with respect to the exact load-flow solver. 

 

 Ref. S30 VL NIA 

Contractual curtailment duration [h] 809 779 973 793 

Curtailment duration error [%] - −3.7 +20.2 −2.0 

Error cost [€ with ccurt = 40 €/MWh] - 2910 −3057 1379 

Error cost [€ with ccurt = 80 €/MWh] - 5821 −6113 2758 

Table 5. Curtailment duration errors and associated error costs obtained by S30, VL, and 

NIA to remove all the constraints for 90 % of cases, with respect to the exact load-flow 

solver. 

4. Discussion 

4.1. Influence of the number of load-flows to approximate 

As shown in Fig. 6, the interest of using a specific method to approximate the load-

flow solver depends on the number of load-flows n to compute.  

Firstly, it is better to perform exact load-flow calculations when n is small. Methods 

for approximating the load-flow solver are appropriate when building the surrogate 

models and computing them n times are faster than performing n exact load-flow 
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calculations (i.e., when GT > 100). For instance, for the 400-bus radial networks studied 

in Section 3.2, NIA with n* = 200 becomes time-effective from n = 600 to 3 000 load-

flows, depending on the need to use OK52 for accuracy (Fig. 6).  

Secondly, the time-efficiency GT of the methods depends on n. This stems from the 

allocation of computation time between the building and computing phases of the 

surrogate models. This allocation of time is specific to the methods. For instance, NIA 

certainly needs a greater investment in the model building phase than VL, but its 

surrogate models are faster. As a result, NIA is a suitable option when a large number n 

of load-flows has to be computed (Fig. 6). 

 

Fig. 6. Time efficiency of VL (green line), NIA with n* = 200 and 500 using PR3 models 

only (dashed red lines), and NIA with n* = 200 and 500 using both PR3 and OK52 models 

(solid red lines) depending on the number of load-flows to approximate, for the networks 

studied in Section 3.2. 

4.2. Influence of the number of load-flow inputs 

As power variations are generally measured at the primary substations, assumptions 

about power dispatching are made for distribution network planning studies. Thus the 

load-flow solver takes only a small number of inputs (m = 4 in Section 3), which makes 

the building of the surrogate models easier.  
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Considering a large number of load-flow inputs (m ≥ 20) may strongly impact:  

- the number n* of exact load-flow calculations required for building the surrogate 

models (see Fig. 6 to compare time efficiencies obtained by NIA with n* = 200 

and n* = 500);  

- the number q of principal components from PCA, which is equal to the number 

of surrogate models to be built;  

- computation time needed to fit the parameters of the surrogate models.  

Therefore, NIA may take much more time and/or commit higher approximation errors. 

4.3.Parallel computing 

Parallel computing is a common practice to reduce computation time. It consists in 

carrying out independent tasks simultaneously after dispatching them over several 

cores, processors or computers. The two most expensive tasks of NIA, which are the n* 

exact load-flow calculations on the experimental design and the building of the q 

surrogate models of the principal components, can easily be parallelized. As a result, if 

only a moderate number of parallel computers are available (typically smaller than n* 

and q), NIA remains faster than the parallelization of the n exact load-flow calculations. 

5. Conclusion 

Alternative solutions to network reinforcement are now being investigated in 

distribution network planning studies to reduce the costs and periods for the integration 

of RES. However, a thorough techno-economic analysis of these solutions requires a 

large number of multi-period load-flow calculations, which makes it hard to implement 

in DSO’s planning tools.  

A non-intrusive approximation method has therefore been proposed to obtain fast 

and accurate multi-period load-flows. This method builds a surrogate model of the load-
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flow solver using polynomial regression and kriging, combined with Latin hypercube 

sampling. The case studies presented in Section 3 highlight the fact that the proposed 

method is more efficient for distribution network planning in presence of RES than time 

subsampling and, in some cases, voltage linearization. In particular, accurate 10-minute 

profiles of load-flow outputs are obtained in a satisfactory computation time. 

In addition to the results presented in this paper, the proposed method has also 

proven to be effective for the techno-economic analysis of some alternatives to 

reinforcement over several hundred 10-year scenarios of RES integration [15,22].  

It is worth noting that some alternatives to reinforcement, such as Volt-VAR control 

and load/generation curtailment, make some load-flow outputs non-smooth. Indeed, the 

(de)activation of these solutions to remove constraints may cause a cusp of the load-

flow outputs. Smooth approximation methods have difficulty in estimating such cusps. 

Further work will focus on the extension of the proposed method to consider the non-

smooth effects of these solutions from the design of the surrogate models. 
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