L. Poli, G. Oliveri, and A. Massa, Microwave Imaging Within the First-Order Born Approximation by Means of the Contrast-Field Bayesian Compressive Sensing, IEEE Transactions on Antennas and Propagation, vol.60, issue.6, pp.2865-2879, 2012.
DOI : 10.1109/TAP.2012.2194676

URL : https://hal.archives-ouvertes.fr/hal-01168943

M. Pastorino, Microwave Imaging, 2010.
DOI : 10.1002/9780470602492

URL : https://hal.archives-ouvertes.fr/hal-01170663

F. , D. Benedetto, C. Estatico, J. G. Nagy, and M. Pastorino, Numerical linear algebra for nonlinear microwave imaging, Electron. Trans. Numer. Anal, vol.33, pp.105-125, 2009.

R. Ramlau and G. Teschke, A Tikhonov-based projection iteration for nonlinear Ill-posed problems with sparsity constraints, Numerische Mathematik, vol.16, issue.9, pp.177-203, 2006.
DOI : 10.1137/1.9781611970104

I. Daubechies, M. Defrise, and C. Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communications on Pure and Applied Mathematics, vol.58, issue.11, 2003.
DOI : 10.1002/0471221317

URL : http://onlinelibrary.wiley.com/doi/10.1002/cpa.20042/pdf

B. Jin and P. Maass, Sparsity regularization for parameter identification problems, Inverse Problems, vol.28, issue.12, p.123001, 2012.
DOI : 10.1088/0266-5611/28/12/123001

M. Grasmair, M. Haltmeier, and O. Scherzer, penalty term, Inverse Problems, vol.24, issue.5, p.55020, 2008.
DOI : 10.1088/0266-5611/24/5/055020

M. Hanke, A. Neubauer, and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numerische Mathematik, vol.72, issue.1, pp.21-37, 1995.
DOI : 10.1007/s002110050158

A. Desmal and H. Bagci, SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS, Progress In Electromagnetics Research, vol.152, 2015.
DOI : 10.2528/PIER15052806

URL : http://repository.kaust.edu.sa/kaust/bitstream/10754/593268/1/06.15052806.pdf

S. Jun, Z. Xiaoling, X. Gao, and J. Jianyu, Signal Processing for Microwave Array Imaging: TDC and Sparse Recovery, IEEE Transactions on Geoscience and Remote Sensing, vol.50, issue.11, pp.4584-4598, 2012.
DOI : 10.1109/TGRS.2012.2191293

S. Wei, X. Zhang, J. Shi, and K. Liao, SPARSE ARRAY MICROWAVE 3-D IMAGING: COMPRESSED SENSING RECOVERY AND EXPERIMENTAL STUDY, Progress In Electromagnetics Research, vol.135, pp.161-181, 2013.
DOI : 10.2528/PIER12082305

E. J. Candès and M. B. Wakin, An Introduction To Compressive Sampling, IEEE Signal Processing Magazine, vol.25, issue.2, pp.21-30, 2008.
DOI : 10.1109/MSP.2007.914731

H. Zaimaga and M. Lambert, Sparsity-enforced microwave inverse scattering using soft shrinkage thresholding, 2016 24th European Signal Processing Conference (EUSIPCO), pp.350-354, 2016.
DOI : 10.1109/EUSIPCO.2016.7760268

URL : https://hal.archives-ouvertes.fr/hal-01367566

M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.58, issue.1, pp.49-67, 2006.
DOI : 10.1198/016214502753479356

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. Deng, W. Yin, and Y. Zhang, Group sparse optimization by alternating direction method, SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, pp.88-580, 2013.
DOI : 10.21236/ADA585746

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Baron, M. F. Duarte, M. B. Wakin, S. Sarvotham, and R. G. Baraniuk, Distributed compressive sensing, 2009.
DOI : 10.21236/ADA521228

J. Richmond, Scattering by a dielectric cylinder of arbitrary cross section shape, IEEE Transactions on Antennas and Propagation, vol.13, issue.3, pp.334-341, 1965.
DOI : 10.1109/TAP.1965.1138427

A. Abubakar, P. M. Van-den, and . Berg, Iterative forward and inverse algorithms based on domain integral equations for three-dimensional electric and magnetic objects, Journal of Computational Physics, vol.195, issue.1, pp.236-262, 2004.
DOI : 10.1016/j.jcp.2003.10.009

O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, Subsurface inverse scattering problems: quantifying, qualifying, and achieving the available information, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.11, pp.2527-2538, 2001.
DOI : 10.1109/36.964991

S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.7, pp.674-693, 1989.
DOI : 10.1109/34.192463