S. Au and J. L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic Engineering Mechanics, vol.16, issue.4, pp.263-277, 2001.
DOI : 10.1016/S0266-8920(01)00019-4

H. Haario, E. Saksman, and J. Tamminen, An Adaptive Metropolis Algorithm, Bernoulli, vol.7, issue.2, pp.223-242, 2001.
DOI : 10.2307/3318737

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Picheny and D. Ginsbourger, A Nonstationary Space-Time Gaussian Process Model for Partially Converged Simulations, SIAM/ASA Journal on Uncertainty Quantification, vol.1, issue.1, pp.57-78, 2013.
DOI : 10.1137/120882834

Z. G. Peter, C. F. Qian, and . Wu, Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments, Technometrics, vol.50, issue.2, pp.192-204, 2008.

T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer Experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

R. Stroh, J. Bect, S. Demeyer, N. Fischer, M. Damien et al., Assessing fire safety using complex numerical models with a Bayesian multi-fidelity approach, Fire Safety Journal, vol.91, pp.1016-1025, 2017.
DOI : 10.1016/j.firesaf.2017.03.059

URL : https://hal.archives-ouvertes.fr/hal-01568843

R. Tuo, C. F. Wu, and D. Yu, Surrogate Modeling of Computer Experiments With Different Mesh Densities, Technometrics, vol.7, issue.3, pp.372-380, 2014.
DOI : 10.1198/TECH.2011.10025