Performance Enhancement of Parameter Estimators via Dynamic Regressor Extension and Mixing*

Abstract : A new procedure to design parameter estimators with enhanced performance is proposed in the technical note. For classical linear regression forms, it yields a new parameter estimator whose convergence is established without the usual requirement of regressor persistency of excitation. The technique is also applied to nonlinear regressions with “partially” monotonic parameter dependence-giving rise again to estimators with enhanced performance. Simulation results illustrate the advantages of the proposed procedure in both scenarios.
Type de document :
Article dans une revue
IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2017, 62 (7), pp.3546 - 3550. 〈10.1109/TAC.2016.2614889〉
Liste complète des métadonnées

https://hal-centralesupelec.archives-ouvertes.fr/hal-01612256
Contributeur : Stanislav Aranovskiy <>
Soumis le : vendredi 6 octobre 2017 - 16:01:10
Dernière modification le : jeudi 5 avril 2018 - 12:30:06

Lien texte intégral

Identifiants

Citation

Stanislav Aranovskiy, Alexey Bobtsov, Romeo Ortega, Anton Pyrkin. Performance Enhancement of Parameter Estimators via Dynamic Regressor Extension and Mixing*. IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2017, 62 (7), pp.3546 - 3550. 〈10.1109/TAC.2016.2614889〉. 〈hal-01612256〉

Partager

Métriques

Consultations de la notice

253