Stochastic observer design for robot impact detection based on inverse dynamic model under uncertainties

Abstract : This work proposes a design methodology for an observer-based impact detection with serial robot manipulators in presence of modeling uncertainties and using only proprioceptive sensors. After expressing modeling errors as the contribution of both dynamic parameters uncertainties and numerical differentiation errors, a Kalman filter is designed based on the inverse dynamic model with process and measurement power spectral densities explicitly depending on characterized uncertainties. The influence of the design parameters on the quality of the external torque estimation is studied in simulation and guidelines for tuning the Kalman filter are provided.
Type de document :
Communication dans un congrès
IFAC 2017 - 20th World Congress of the International Federation of Automatic Control, Jul 2017, Toulouse, France
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal-centralesupelec.archives-ouvertes.fr/hal-01621689
Contributeur : Maria Makarov <>
Soumis le : lundi 23 octobre 2017 - 17:09:54
Dernière modification le : lundi 24 septembre 2018 - 11:34:03

Fichier

Briquet 2017 - Stochastic obse...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01621689, version 1

Citation

Nolwenn Briquet-Kerestedjian, Maria Makarov, Mathieu Grossard, Pedro Rodriguez-Ayerbe. Stochastic observer design for robot impact detection based on inverse dynamic model under uncertainties. IFAC 2017 - 20th World Congress of the International Federation of Automatic Control, Jul 2017, Toulouse, France. 〈hal-01621689〉

Partager

Métriques

Consultations de la notice

179

Téléchargements de fichiers

62