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Abstract: This work proposes a design methodology for an observer-based impact detec-
tion with serial robot manipulators in presence of modeling uncertainties and using only
proprioceptive sensors. After expressing modeling errors as the contribution of both dynamic
parameters uncertainties and numerical differentiation errors, a Kalman filter is designed based
on the inverse dynamic model with process and measurement power spectral densities explicitly
depending on characterized uncertainties. The influence of the design parameters on the quality
of the external torque estimation is studied in simulation and guidelines for tuning the Kalman
filter are provided.
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1. INTRODUCTION

Whether for industrial or service applications, impact de-
tection between a robot manipulator and its environment
is of crucial importance, both to ensure the safety of the
robot or the operator in case of unexpected collision and
to ensure an efficient operation with fast switching from
one operation to another for expected contacts with a
fixture or part. When the safety of installation must be
guaranteed at a high level, proprioceptive methods can be
envisaged in addition with external sensing. Depending on
the sensors installed in the robot manipulators, artificial
skins, base/end-effector force sensors or joint torque sen-
sors can provide information about the impact. In other
cases, when only motor or joint position sensors are avail-
able as in Makarov et al. (2014), detection is still possible
by exploiting the system dynamics by means of observers.

Quantitative model-based fault diagnostic methods devel-
oped in Venkatasubramanian et al. (2003); Ding (2008)
offer a relevant framework for robot collision detection
techniques without using any additional sensors since an
impact can be related to a faulty behavior. In absence
of redundant sensors, observer-based fault diagnosis pre-
sented in Frank and Ding (1997) are widely used to re-
construct measurements of the process with an observer
using a quantitative mathematical model of the process.
For instance, De Luca and Mattone (2004); Wahrburg
et al. (2015a) propose a fault detection and isolation
observer based on the generalized momentum for robot
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collision detection. However, these approaches rely on a
model that can be affected by modeling errors. Then
the external torque estimation reconstructs in the same
structural way both the external disturbances and the
modeling uncertainties, and no structural decoupling is
reachable between both if the uncertainties are unstruc-
tured. Nevertheless, different frequency properties allow
to discriminate collision from modeling uncertainties. This
is why the previously proposed impact detection methods
very often amount to some extent to bandpass filtering,
either with fixed parameters in Jung et al. (2012) or with
adaptive filters as in Makarov et al. (2014). In Wahrburg
et al. (2015b), a Kalman filter for external force estimation
is designed using the generalized momentum and consid-
ering friction model uncertainties to tune the filter pa-
rameters. Nonetheless, these approaches do not explicitly
and systematically analyze the different uncertainties and
estimation error sources, as well as their dependence on
the robot trajectory, to characterize the filter parameters.

This work proposes an observer-based impact detection
method for robot manipulators considering characterized
uncertainties and provides high-level tuning guidelines. As
previously in Briquet-Kerestedjian et al. (2016), uncertain-
ties are expressed as a contribution of dynamic parameters
and numerical differentiation errors, both determined for
a given robot trajectory. A Kalman filter is derived based
on the inverse dynamic model with process and measure-
ment power spectral densities induced by the uncertainties
characterization step. Finally, the influence of the design
parameters on the detection is studied in simulation.



Notations Description Units (SI)

j Unit imaginary number s.t. j2 = −1 -
s Laplace-domain variable -
Ts Sampling time s
0i,k ∈ Ri×k Matrix of zeros of dimension i× k -
Ii ∈ Ri×i Identity matrix of dimension i -
χ ∈ Rnb Rigid base parameters of the robot -
q ∈ Rn Joint angular position vector rad
M ∈ Rn×n Robot inertia matrix kg.m2

Jm ∈ Rn×n Constant diagonal motor inertia ma-
trix after reduction stage

kg.m2

Mrig ∈ Rn×n Rigid robot inertia matrix with
Mrig(q)=M(q)+Jm

kg.m2

Cq̇ ∈ Rn Coriolis and centrifugal torques Nm
G ∈ Rn Gravity torque Nm
τf ∈ Rn Friction torque Nm
τm ∈ Rn Applied motor torque after reduc-

tion stage
Nm

τext ∈ Rn External torque Nm
Rred ∈ Rn×n Reduction matrix -
Kem ∈ Rn×n Diagonal matrix of torque constants Nm/A
a Any exact matrix or vector -
a? Measured or estimated value of any

exact matrix or vector a
-

δa Error defined by δa = a? − a -
a ∼ N (µ,σ2) a follows a normal distribution with

µ-mean and σ-standard deviation
-

Table 1. Notations

After stating the problem in Section 2, a Kalman filter
in presence of uncertainties is designed in Section 3. The
influence of the Kalman settings is analyzed in simulation
in Section 4. Section 5 draws a conclusion of this approach.
Notations in Table 1 will be used throughout this study.

2. PROBLEM STATEMENT

This section briefly recalls the dynamic model of a rigid
serial robot manipulator and reformulates it under a state-
space form for further observer design. The uncertainties
affecting these models are investigated.

2.1 Dynamic model and equivalent state-space
representation

For a n-degrees of freedom (DOFs) rigid serial robot,
its inverse dynamic model can be obtained from the
Lagrangian formalism and is given by

Mrig(q)q̈ +C(q, q̇)q̇ +G(q) + τf = τm + τext (1)

In the following, without loss of generality and for the
sake of simplicity only viscous friction will be considered
but a more detailed friction model for collision detec-
tion can be found in Lee et al. (2015); Wahrburg et al.
(2015b). The friction torque is expressed as τf = Fvq̇
with Fv ∈ Rn the diagonal matrix of viscous friction
coefficients. For rigid robots with DC motors, the motor
torque τm can be obtained from the motor currents im
by τm = RT

redKemim. Robots with low friction levels and
good backdrivable properties present a certain advantage
for collision detection since any external torque will be
precisely reflected on the motor currents without using
any additional torque sensor (Makarov et al. (2014)).

By rewriting nonlinear terms in (1), a new input torque is
calculated for impact monitoring as

τ̃ = τm − [M(q)q̈ +C(q, q̇)q̇ +G(q)] (2)

Note that (2) is a simple reformulation of the robot
model and is completely independent from the actual robot
feedback control. An equivalent dynamic model is thus
obtained:

Jmq̈ + Fvq̇ = τ̃ + τext (3)

which can be rewritten in an equivalent state-space form

with X =
[
qT q̇T

]T ∈ R2n, Y = q ∈ Rn such as{
Ẋ = AX +Bτ̃ +Bτext
Y = CX

(4)

where

A =

[
0n,n In
0n,n −J−1m Fv

]
; B =

[
0n,n
J−1m

]
; C = [ In 0n,n ] .

In this case, matricesA,B andC are constant because Jm
and Fv are constant but other models using time-varying
matrices are also possible especially when dealing with
Cartesian contact force estimation, which assumes that
the location of the impact is known (see Wahrburg et al.
(2015b)). The state-space representation (4) will further
be used for observer design in Section 3.

2.2 Modeling uncertainties

The sources of uncertainties may be at least of two types:
parametric uncertainties due to an imperfect knowledge of
the robot parameters and coordinates errors due to mea-
surement noise and numerical differentiation with respect
to time (speed and acceleration estimations).

Parameters uncertainties For model-based approaches,
robot dynamic parameters can be obtained from the
nominal CAD data or identified experimentally as they
can slightly differ from one robot to another or for different
operating conditions. Their experimental identification
described in Khalil and Dombre (2004) uses the fact that
the inverse dynamic model (1) of an n-degrees of freedom
rigid serial robot can be written as a linear regression with
respect to the nb rigid base parameters

τm = ϕ(q, q̇, q̈)χ (5)

where ϕ ∈ Rn×nb is the rigid regression matrix and χ ∈
Rnb is the vector of rigid base parameters (i.e. the minimal
set of identifiable parameters). For each link, the latter are
obtained by linear combinations of the 6 components of the
inertia tensor, the 3 components of the first moment and
the mass, the total inertia moment for rotor actuator and
gears, and the viscous friction coefficients.

After evaluating the identification model (5) at a sufficient
number of points on several exciting trajectories, the
vector χ? of the identified base parameters can be obtained
by least squares minimization of the 2-norm of the residual
errors vector. Let δχ be the vector of estimation errors:

δχ
def
= χ? − χ (6)

For the following, we assume that δχ is Gaussian with
zero-mean and standard deviation σχ? which can be
obtained from the estimation of the standard deviation
of the errors vector resulting from the identification. The



relative standard deviation %σχ?,i of the ith identified
parameter is defined as

%σχ?,i = 100
σχ?,i

|χ?,i|
(7)

%σχ?,i
is used as a criterion to measure the quality of

the identification of the ith base parameter. In Khalil and
Dombre (2004), the identification is considered acceptable
if the relative standard deviation of a parameter is less
than ten percent.

The resulting model errors are obtained by difference be-
tween the matrices evaluated with the identified parame-
ters and with the exact parameters. For example for the
robot inertia matrix,

δM(q)
def
= M?(q)−M(q) (8)

with M? and M denoting the robot inertia matrix evalu-
ated respectively with the identified parameters and with
the exact parameters. Calculating the difference between
the inverse dynamic model evaluated with the identified
and the exact parameters, an equivalent linear regression
with respect to the estimation errors is obtained:

δMrig(q)q̈ + δC(q, q̇)q̇ + δG(q) + δFv q̇ = ϕ(q, q̇, q̈)δχ (9)

Numerical differentiation errors Another origin of the
errors comes from the numerical differentiation. Indeed,
when only position sensors are integrated into the robot,
in an industrial context velocities and accelerations are
often rather approximated by finite differences from Taylor
series than estimated by observers. We denote q? the
measured joint positions and define q̇? and q̈? respectively
the joint velocities and accelerations obtained by numer-
ical differentiation of q? with a numerical differentiation
scheme of continuous filter D. We define δq̇ the vector of
errors due to numerical differentiation of joint velocities as

δq̇
def
= q̇? − q̇ (10)

Similarly we obtain δq̈ for the joint accelerations.

Let q? = q+ξ be the noisy position measurement affected
by a white bounded noise ξ ∈ Rn due for instance to
quantization. In the Laplace-domain, the error δq̇i on the
ith axis velocity is given by

∆Qid(s) = [D(s)− s]Qi(s)︸ ︷︷ ︸
approximated velocity-induced error

+ D(s)ξi(s)︸ ︷︷ ︸
filtered noise

(11)

where ∆Qid(s), Qi(s) and ξi(s) are respectively the
Laplace transforms of δq̇i, qi and ξi for the ith axis.
Similarly we obtain the error δq̈i on the acceleration of
axis i in the Laplace domain

∆Qidd(s) =
[
D2(s)− s2

]
Qi(s) +D2(s)ξi(s) (12)

with ∆Qidd(s) the Laplace transform of δq̈i for the ith axis.

The error with respect to the exact derivative of the
signal is twofold: it contains an error term due to the
derivative approximation, and an error term due to filtered
measurement noise.

3. OBSERVER DESIGN FOR DETECTION UNDER
UNCERTAINTIES

The impact of the uncertainties on the state-space repre-
sentation (4) is first studied to then design a Kalman filter
with noises of given power spectral densities (PSD).

3.1 State-space representation under uncertainties

In a more realistic approach, (2) is obtained using the es-
timated model parameters and the measured or calculated
coordinates. Therefore it becomes

τ̃ = τm − [M?(q?)q̈? +C?(q?, q̇?)q̇? +G?(q?)] (13)

The term (13) is in this case a compensation and may not
be exact. This implies a compensation error δτ1 such as

δτ1 = [M?(q?)q̈? +C?(q?, q̇?)q̇? +G?(q?)] (14)

− [M(q)q̈ +C(q, q̇)q̇ +G(q)]

The equivalent inverse dynamic model (3) becomes

Jmq̈ + Fvq̇ = τ̃ + τext + δτ1 (15)

With Jm = Jm? − δJm and Fv = Fv? − δFv, it follows

Jm?q̈ + Fv?q̇ = τ̃ + τext + (δτ1 + δJmq̈ + δFvq̇)︸ ︷︷ ︸
δτ

(16)

In the following, it is assumed that M?(q?) ≈ M?(q),
C?(q?, q̇?)q̇ ≈ C?(q, q̇)q̇ and G?(q?) ≈ G?(q) since
small variations in q or q̇ induce small variations in the
trigonometric or second-order functions of Mrig?, C? and
G?. Using (8) and (10) definitions, the global error term
δτ can then be rewritten as the sum of a contribution due
to parameters uncertainties δτP ∈ Rn and of numerical
differentiation errors δτD ∈ Rn

δτP = δMrig(q)q̈ + δC(q, q̇)q̇ + δG(q) + δFv q̇

= ϕ(q, q̇, q̈)δχ (17)

δτD = M?(q?)δq̈ +C?(q?, q̇?)δq̇ (18)

The state-space representation (4) in presence of uncer-
tainties becomes{

Ẋ = A?X +B?(τ̃ + δτ ) +B?τext
Y? = C?X + δY

(19)

with Y? = q?, measurement noise δY = ξ and

A? =

[
0n,n In
0n,n −J−1

m?Fv?

]
; B? =

[
0n,n
J−1
m?

]
; C? =

[
In 0n,n

]
.

This representation in presence of uncertainties will be
used in the next section for the design of a Kalman filter.

3.2 Kalman filter design

For the purpose of collision detection and reconstruction,
a disturbance observer with the augmented state Xaug =
[XT τext

T ]T is studied. The external torque is modeled
by a first-order model such as

τ̇ext = Aextτext −Aextwext , (20)

where Aext ∈ Rn×n is a diagonal matrix of strictly
negative terms that accounts for the dynamics of the
collision, and wext ∈ Rn ∼ N (0,Wext) is a white noise
reflecting the uncertainties on the disturbance model (20).

Therefore, the following augmented state-space model is
used for the design of the Kalman filter{

Ẋaug = AaugXaug +Baugτ̃ + Fw
Y? = CaugXaug + v

(21)

with

Aaug =

[
A? B?

0n,2n Aext

]
; Baug =

[
B?
0n,n

]
;

F =

[
B? 02n,n

0n,n −Aext

]
; Caug =

[
C? 0n,n

]
.

where w =
[
δτ T wext

T
]T ∈ R2n and v = ξ ∈ Rn

are respectively process and measurement noises, assumed



to be independent centered Gaussian white noises of PSD
respectively W and V . Matrices Aaug, Baug, Caug, F ,
W , V are then discretized for the Kalman synthesis:

Adaug = eAaugTs ; Bdaug =

∫ Ts

0

eAaugνBaug dν ; Cdaug = Caug ;

F d = In ; W d ≈ Ts F W F T ; V d = V / Ts . (22)

where 2d holds for discrete-time model matrices. Based
on (21) and (22), a discrete Kalman filter is designed and
the estimated state is given by

X̂aug(k + 1) = AdaugX̂aug(k) +Bdaug τ̃ (k)

+Kf

[
Y (k + 1)−Cdaug

(
AdaugX̂aug(k) +Bdaug τ̃ (k)

)]
Ŷ (k) = CdaugX̂aug(k)

(23)

where Kf is the asymptotic Kalman gain computed at
each time step for given W d and V d (see Section 3.3).

3.3 Uncertainties-induced power spectral densities

In Section 2.2, it has been assumed that δχ ∼ N (0,σ2
χ?

)

with σ2
χ?
∈ Rnb×nb the diagonal covariance matrix of

χ?. Given (17), by linearity δτP is also Gaussian such
that δτP ∼ N (0,ϕσ2

χ?ϕ
T ) where the arguments have

been omitted for the sake of brevity. Therefore δτP is
approximated by a white noise of PSD

WδτP = ϕref σ
2
χ?ϕ

T
ref (24)

where ϕref = ϕ(qref , q̇ref , q̈ref ) is evaluated on the
reference trajectory.

According to (11) and (12), the numerical differentiation
errors δq̇ and δq̈ result from contributions of deriva-
tion approximation-induced errors and sensor noise. Both
terms are approximated by a white noise, thus by linearity
δτD is also approximated by a white noise of PSD WδτD

calculated on the reference trajectory in a similar way as
for WδτP (see Appendix A for details).

Consequently, the uncertainties-induced PSD is defined by
Wδτ = WδτP +WδτD . Finally the global PSD for process
noise will be

W =

[
Wδτ 0n,n
0n,n Wext

]
(25)

The measurement noise v is assumed to be a white
Gaussian noise due to quantization. Its PSD is given by

[V ]ik =

{
r2i
12 if i = k
0 else

(26)

with ri the joint encoder resolution for axis i.

4. GUIDELINES FOR OBSERVER TUNING

The influence of the Kalman filter design parameters on
the estimation τ̂ext of the external torque is studied in
simulation in the rigid case. The case study concerns a 6-
DOF robot manipulator presented in Fig. 1, where joint
positions are available from position sensors on each joint.

For the simulations, each axis is controlled in position with
a Proportional-Integral-Derivative (PID) control law. The
sampling time is 1 ms. The configurations tested in simula-
tion are combinations of [Ui,Wj , Ak] for a fixed trajectory
type T and differentiation method D (see Table 2).

Fig. 1. Kinematic chain of serial robot manipulator and
associated frames in the modified Denavit-Hartenberg
convention from Khalil and Dombre (2004)

Trajectory

T : Sinusoidal for the 6 axes

E0 = [0.2, 0.2, 0.2, 0.2, 0.2, 0.2] rad

f0 = [0.7, 0.6, 0.5, 0.4, 0.3, 0.2] Hz

%σχ?,i , U1 : [−5%, 5%]

i = 1..nb U2 : [−20%, 20%]

Numerical D : First-order low-pass filtered derivative

differentiation of cut-off frequency ωc = 2π40 rad/s

scheme σ2
dj

= 5.61 · 104 σ2
ξj

; σ2
ddj

= 3.35 · 109 σ2
ξj

Wext
W1 : diag([20; 15; 30; 0.1; 0.02; 0.01])

W2 : 104diag([20; 15; 30; 0.1; 0.02; 0.01])

A1 : −0.1In

Aext A2 : −In
A3 : −10In

Table 2. Simulated configurations

In particular, we will study the influence of :

• Parameters uncertainties through the relative stan-
dard deviation %σχ? of each identified parameter.
Thus the covariance matrix σ2

χ?
of the estimated

parameters is used to calculate WδτP ;
• The external torque model (20) through the matrix
Aext and the PSD Wext.

We could also study the influence of the numerical dif-
ferentiation scheme D through the PSD WδτD , and the
reference trajectory T that affects both WδτP and WδτD ,
but for the sake of clarity we limit this study to these 3
varying cases. All of these design parameters affect the
asymptotic Kalman gain and thus the estimation τ̂ext.
Their effect on τ̂ext is studied in presence of an external
torque τext = [20, 40, 15, 1, 1, 1]Nm applied on one axis
after the other in order to emphasize the effects on each
axis. Fig. 2 illustrates the results for axis 2.

To obtain a good reconstruction of the external distur-
bance, τ̂ext must have a minimum rise time and a static
error as low as possible. From Fig. 2, we see that the
greater the PSD of the uncertainties is, the greater the
static error is. Moreover, the greater Aext and Wext are,
the smaller the time response and the static error are, but
the less filtered the uncertainties are. Finally, for tuning
the filter for the external torque estimation in collision
detection, a trade-off between good estimation and suffi-
cient filtering of uncertainties is to be found. On the basis
of these criteria, the Kalman filter has to be tuned with
significant Aext and Wext, while attempting to minimize
parameters uncertainties during the identification step to
reduce their contribution.
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Fig. 2. External torque estimates for several
[T,Ui, D,Wj , Ak]-configurations for axis 2

5. CONCLUSION

In this paper, a Kalman filter for robot collision detection
is designed in presence of characterized uncertainties. The
uncertainties-induced errors have been decomposed into
a combination of parameters estimation and numerical
differentiation errors and this characterization is used to
tune a Kalman filter in order to estimate the external
torque. The influence of the design parameters on the
detection has been studied through simulation results.

A frequency analysis can complete this approach to de-
termine the impact of the frequency characteristics of the
Kalman filter on the estimation of the external torque.
The same methodology could be applied to other model-
based methods, such as general momentum-based meth-
ods, in order to compare their performance in presence
of uncertainties and determine the favorable cases for
each method. Finally, a future study could be conducted
focusing on determining the spatial positioning, amplitude
and direction of the collision by considering the Cartesian-
space level model.

Appendix A. CALCULATION OF WδτD

As detailed in Briquet-Kerestedjian et al. (2016), for a
given position trajectory characterized by velocities and
accelerations respectively bounded by vmax and amax,
the first term of (11) and (12) which are due to derivative
approximation can respectively be bounded by

Aiq̇ = |D(jωieq)− jωieq |Eieq (A.1)

Aiq̈ = |D(jωieq)
2 − (jωieq)

2|Eieq (A.2)

where Eieq = (vimax)2/aimax and pulsation ωieq = aimax/v
i
max.

For the filtered noise term, if the input noise ξi is white of
variance σ2

ξi
in the discrete-time domain (e.g. quantization

noise), the output noise filtered by the equivalent discrete-
time filter D̄(z) (of impulse response d[k]) is Gaussian of
variance σ2

q̇i
= σ2

ξi

∑∞
k=−∞ d2[k], and similarly for σ2

q̈i
.

Finally, δq̇ and δq̈ can be bounded at 99,7% respectively
by ±(Aq̇ + 3σq̇) and ±(Aq̈ + 3σq̈). Then δq̇ and δq̈ are

approximated by equivalent noises of respective PSD σ2
δq̇

and σ2
δq̈ such as

σ2
δq̇ =

(
1

3
Aq̇ + σq̇

)2

; σ2
δq̈ =

(
1

3
Aq̈ + σq̈

)2

(A.3)

where for each term the two contributions are assumed
to be independent. Thus by linearity, the PSD of δτD

detailed in (18) is deduced with the matrices M and C
evaluated along the reference trajectory such as:

WδτD (t) = M?(qref ) σ2
δq̈M?(qref )T

+C?(qref , q̇ref ) σ2
δq̇ C?(qref , q̇ref )T (A.4)

where δq̇ and δq̈ are assumed to be independent noises.
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