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Abstract. We consider the direct sampling method (DSM) for the two-dimensional inverse
scattering problem. Although DSM is fast, stable, and effective, some phenomena remain
unexplained by the existing results. We show that the imaging function of the direct sampling
method can be expressed by a Bessel function of order zero. We also clarify the previously
unexplained imaging phenomena and suggest multi-frequency DSM to overcome traditional
DSM. Our method is evaluated in simulation studies using both single and multiple frequencies.

1. Introduction
This study considers the imaging of two-dimensional electromagnetic inclusions within a
homogeneous space. The imaging is performed on measured scattered field data. Various non-
iterative imaging algorithms have already been developed for this purpose, such as MUltiple
SIgnal Classification [1, 2], the linear sampling method [3, 4], and Kirchhoff and subspace
migrations [5, 6]. Although these methods are very effective for imaging unknown targets,
they usually yield poor results when the number of incident waves is limited to one or only a
few.

To overcome this difficulty, researchers have investigated the direct sampling method (DSM).
According to [7, 8, 9], DSM has some merits: (i) it requires only one or a few incident waves
for imaging the shapes and locations of unknown inclusions, (ii) it performs without any matrix
operation (such as singular value decomposition), and (iii) it is highly tolerant to noise. However,
these advantages are tempered by several drawbacks: (i) the direction of propagation is crucial
for identifying the shapes and locations of inclusions, (ii) there are many artifacts in the map of
DSM, and (iii) an inclusion with significantly smaller size or permittivity than other inclusions
is difficult to identify by DSM.

To overcome these limitations, we improve the traditional DSM by applying multiple
frequencies. The effectiveness of the technique is demonstrated on various synthetic and
experimental data. The results confirm that the suggested imaging technique identifies unknown
targets with dielectric contrast against the background space and improves the traditional DSM.

The remainder of the study is structured as follows. Section 2 introduces the two-dimensional
direct scattering problem in the presence of small dielectric inhomogeneities. In section 3, we
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briefly review single-frequency DSM, show that DSM can be expressed by a Bessel function of
order zero, and propose our multi-frequency-based DSM. Section 4 presents the numerical and
experimental results of both single and multiple frequency evaluations, and section 5 provides a
short conclusion.

2. Two-dimensional direct scattering problem
In this section, we consider two-dimensional direct scattering from small dielectric inclusions τm,
represented as τm = ym + αmBm, m = 1, 2, · · · ,M . Let τ be the set of these scatterings; i.e.,
τ =

⋃
m τm. For simplicity, we assume that all τm are balls with radius αm located at ym. We

also assume that Bm is a simply connected domain (circle). Let ω be the angular frequency and
εm and µm be the dielectric permittivity and magnetic permeability of τm, respectively. ε0 and
µ0 are defined analogously. In this paper, we consider only the permittivity contrast case, i.e.,
we set µm ≡ µ0 = 1. Then we can define the piecewise constant permittivity ε(x) as follows:

ε(x) =

{
εm, if x ∈ τm
ε0, if x ∈ R2\τ . (1)

For simplicity, we set ε0 = 1. The wavenumber k is then given by k = ω
√
εµ = 2π/λ, where λ

is the wavelength. We assume that αm � λ for all m and k|ym−ym′ | � 0.25 for m 6= m′. This
means that the τms are well-separated from each other.

Let u(x; k) be the time-harmonic total field satisfying the following Helmholtz equation:

∆u(x; k) + ω2ε(x)u(x; k) = 0 in R2\τ , (2)

with transmission conditions on the boundaries ∂τm for all m. As is well-known, the total field
u(x; k) can be decomposed into an incident field ui(x; k) and a scattered field us(x; k) such that
u(x; k) = ui(x; k) + us(x; k). In this study, we consider plane-wave illumination, i.e., we let
ui(x; k) = eikx·d be the incident field with propagation direction d ∈ S1. Here, S1 denotes the
two-dimensional unit circle. Note that us(x; k) satisfies the Sommerfeld radiation condition

lim
r→∞

(
∂us(x; k)

∂r
− ikus(x; k)

)
= 0

uniformly in all directions r = |x| −→ +∞. We assume that us(xj ; k), j = 1, 2, · · · , J , is
measured on a simply connected curve Γ. For simplicity, we set Γ as a circle with a large radius
a such that, for x ∈ Γ and m = 1, 2, · · · ,M , k|ym − x| � 0.25.

Based on small volume expansion(See [10]), us(x; k) can be expressed as the following
asymptotic expansion formula for j = 1, 2, · · · , J :

us(xj) =

M∑
m=1

α2
m(εm − ε0)|Bm|eikd·ymΦ(xj ,ym) +O(α2

m), (3)

where Φ(x,y) is the two-dimensional fundamental solution

Φ(x, z) =
i

4
H1

0 (k|x− z|). (4)

3. Single- and multi-frequency direct sampling method
In this section, we briefly survey the DSM developed in [7], introduce the representative formula
of the DSM imaging function, and propose a multi-frequency DSM to improve the imaging
performance. The imaging function of the DSM is defined as

ISF(z; k) =
| 〈us(xj ; k),Φ(xj , z)〉L2(Γ) |

‖us(xj ; k)‖L2(Γ) ‖Φ(xj , z)‖L2(Γ)

, (5)
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where

〈a(xj), b(xj)〉L2(Γ) :=

J∑
j=1

a(xj)b(xj) =

∫
Γ
a(x)b(x)dx and ‖a(xj)‖ := 〈a(xj), a(xj)〉L2(Γ) .

Referring to [7], DSM postulates that us(x) can be approximated as

us(x) ≈
M∑

m=1

WmΦ(x,ym),

where Wm denotes the weight corresponding to τm. Then the following relation

∫
Γ
us(z)Φ(z,x)dS ≈ 1

k

M∑
m=1

WmIm (Φ(ym,x)) ≈ 1

k

M∑
m=1

J0(k|z− ym|), (6)

we can observe that

ISF(z; k) ∝
M∑

m=1

J0(k|z− ym|).

From the above, we can see that if z = ym ∈ τm, then I(z) ≈ 1, whereas if z 6∈ τ , then I(z) < 1.
Therefore, we can identify the locations of τm by finding the y such that I(z) ≈ 1. This method
seems to be entirely reasonable, but leaves some phenomena unexplained. For example, τm with
relatively small size or permittivity are very difficult to locate by this method. Motivated by this
fact, we derive the following representation of ISF(z; k) where the maximum value comes from
the Hölder inequality. A detailed derivation will appear in an extended version of this study.

ISF(z; k) =

∣∣∣∣∣
M∑

m=1

α2
m(εm − ε0)|Bm|J0(k|z− ym|)

∣∣∣∣∣
(

max

∣∣∣∣∣
M∑

m=1

α2
m(εm − ε0)|Bm|

∣∣∣∣∣
)−1

. (7)

As evident in (7), a τm with smaller size or permittivity than the other τms will be difficult to
locate because ISF(z; k) is maximized at the inclusion with largest size or permittivity.

To overcome this difficulty, we exploit the well-known fact that multiple frequencies guarantee
better results than single-frequency applications [5, 6]. Therefore, we introduce the following
multi-frequency DSM. For N -different wavenumbers kn, n = 1, · · · , N , the imaging function can
be introduced as

IMF(z) =
1

N

∣∣∣∣∣
N∑

n=1

〈us(xj ; k),Φ(xj , z)〉L2(Γ)

∣∣∣∣∣
(

max

∣∣∣∣∣
N∑

n=1

〈us(xj ; k),Φ(xj , z)〉L2(Γ)

∣∣∣∣∣
)−1

(8)

This approach improves the imaging by DSM. A careful analysis of IMF(z) will appear in the
extended study.

4. Numerical experiments
To test the proposed approach, we performed diverse numerical experiments on synthetic and
experimental single- and multi-frequency data.
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4.1. Synthetic data
In the numerical experiments on synthetic data, we consider the imaging of small dielectric
inclusions in a homogeneous space by DSM. We explored two cases; varying the properties (size
and permittivity) of the inclusions and maintaining the same properties (size and permittivity)
of the inclusions.

We assumed that there exist three small dielectric inclusions τ =
⋃

m τm ⊂ R2, m = 1, 2, 3
located at y1 = (0.3,−0.3), y2 = (−0.4,−0.2), and y3 = (−0.3, 0.5). J = 30 receivers are
placed at xj ∈ Γ, where Γ is a circle with radius 5 centered at the origin. We assume a single

propagation direction, d = (1, 1) /
√

2. In the single-frequency application, we set k = 2π/λ with
λ = 0.4; in the multiple-frequency application, we set kn = 2π/λn, where λ1 = 0.7 and λN = 0.4
with N = 10. Here, λn are uniformly distributed in the interval [0.4, 0.7].

(a) Example 4.1 (b) Example 4.2 (c) Example 4.3

(d) Example 4.1 (e) Example 4.2 (f) Example 4.3

Figure 1. Imaging results of synthetic data: Single-frequency DSM (Top line) and multi-
frequency DSM (Bottom line)

Example 4.1 (Case of αm = αm′ and εm = εm′) We first set αm = 0.1λ and εm = 3 for
all m = 1, 2, 3. As shown in Figure 1(a), the locations of all inclusions are certificated with
high accuracy. In (7), we confirmed that the value of ISF(z; k) depends on the permittivities and
sizes of the inclusions. As the permittivities and radii of all inclusions are identical in this case,
ISF(z; k) is maximized at ym, m = 1, 2, 3. As expected, the application of multiple frequencies
reduces the artifacts; therefore, all inclusions are easily identified (see Figure 1(d)).

Example 4.2 (Case of αm 6= αm′ and εm = εm′) We then set α1 = 0.1λ, α2 = 0.12λ, and
α3 = 0.14λ and maintained the permittivity as εm = 3 for m = 1, 2, 3. In this case, the value
of ISF(z; k) depends only on the sizes of the inclusions. Because τ3 is larger than the other
inclusions, ISF(z; k) is maximized at y3 ∈ τ3. Meanwhile, the values of ISF(z; k) at y1 ∈ τ1 and
y2 ∈ τ2 are smaller than that at y3 ∈ τ3. Therefore, the locations of τ1 and τ2 are not easily
clarified (see Figure 1(b)). Fortunately, the locations of all inclusions are identifiable in the map
of IMF(z) (Figure 1(e)).
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Example 4.3 (Case of αm = αm′ and εm 6= εm′) In this case, we set ε1 = 3, ε2 = 4, and
ε3 = 5, maintaining the radius at αm = 0.1λ for m = 1, 2, 3. The imaging result is exhibited
in Figure 1(c). As all inclusions have the same radius, the value of ISF(z; k) depends only on
the permittivities of the inclusions. This means that similar to the results in Example 4.2, the
locations of τ1 and τ2 are not easily certificated. Fortunately, the multiple-frequency applications
guarantee a good result in this case (see Figure 1(f)).

4.2. Experimental data
Next, we applied DSM to a small U-shaped structure constructed from a metallic material. The
experimental data of this structure were borrowed from [11]. We considered the cases of one
transmitter (50◦, 140◦, 230◦, and 320◦), four transmitters, and a full set of transmitters (36
transmitters, 0◦ ∼ 360◦ with step size 10◦). The single-frequency DSM was applied at 8 GHz
and the multi-frequency DSM used seven frequencies ranging from 4 to 16 GHz with a step size
of 2 GHz. The imaging results of the single- and multi-frequency applications are exhibited in
Figures 2 and 3, respectively.

(a) one transmitter: 50◦ (b) one transmitter: 140◦ (c) one transmitter: 230◦

(d) one transmitter: 320◦ (e) four transmitters (f) full transmitters

Figure 2. Imaging results of experimental data: Single-frequency DSM at 8 GHz

The location and shape of the inclusion are difficult to identify in the single transmitter
case (see panels (a), (b), (c), and (d) of Figure 2). In the case of four transmitters, the shape
is outlined but remains unclear (Figure 2(e)). In the full-transmitters case, the shape of the
material is well clarified (Figure 2(f)). Unlike the results of the synthetic experiment, although
our method reduces the artifacts, it does not fully recognize the shape of the material, as shown
in Figure 3(a)–(e). Now, we compare the imaging from DSM with full transmitters and one
from level set method with single-frequency(see (a) and (b) of Figure 4). Even though level
set method is accurate, and efficient techniques, it requires more steps to construct shape like
appropriate velocities for advancing the level set function.

5. Conclusion
In this study, we applied single- and multi-frequency DSMs to synthetic and experimental
data. From the representative formula of the DSM imaging function and the results of
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(a) one transmitter: 50◦ (b) one transmitter: 140◦ (c) one transmitter: 230◦

(d) one transmitter: 320◦ (e) four transmitters (f) full transmitters

Figure 3. Imaging results of experimental data: Multi-frequency DSM

(a) Direct sampling method (b) Level set method(See [12])

Figure 4. Comparison between DSM and Level set method with experimental data at 8 GHz

numerical experiments, we confirmed that our DSM reasonably images synthetic data but
requires improvement on experimental data. Identifying the cause of this non-ideal performance
and improving our technique will be a forthcoming work. Recently, we found that the DSM is
highly related to Kirchhoff migration. Establishing this relation would be an interesting project.
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