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On Existence and Stability of Equilibria of Linear
Time–Invariant Systems with Constant Power Loads

Nikita Barabanov, Romeo Ortega, Fellow, IEEE, Robert Griñó, Senior Member, IEEE, and Boris Polyak.

Abstract—The problem of existence and stability of equilibria
of linear systems with constant power loads is addressed in this
paper. First, we correct an unfortunate mistake in our recent
paper [10] pertaining to the sufficiency of the condition for
existence of equilibria in multiport systems given there. Second,
we give two necessary conditions for existence of equilibria. The
first one is a simple linear matrix inequality hence it can be easily
verified with existing software. Third, we prove that the latter
condition is also sufficient if a set defined by the problem data
is convex, which is the case for single and two–port systems.
Finally, sufficient conditions for stability and instability for a
given equilibrium point are given. The results are illustrated
with two benchmark examples.

Index Terms—Constant power loads, dc LTI circuits, equilib-
ria, stability.

I. INTRODUCTION AND PROBLEM FORMULATION

The ever increasing use of power electronic devices in
electrical systems has given rise to a new paradigm for the
representation of their dynamic loads. Indeed, due to these de-
vices the loads do not behave as standard impedances, instead
they are more accurately represented as constant power loads
(CPLs), which correspond to first–third quadrant hyperbolas
in the loads voltage–current plane. It has been experimentally
observed that the presence of these CPLs strongly impinges on
the dynamic behavior of the electrical system and may induce
erratic or unstable behavior, see [10] and references therein.
For this reason it is of interest to carry out a theoretical analysis
of the impact of CPL on the dynamic behavior of the system
and, in particular, on their ability to operate in stable steady–
state.

In this paper we mainly look at linear time invariant (LTI)
DC systems with CPLs which are modeled as

Y (s) = G(s)U(s) + k (1)
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where s is the Laplace variable, G(s) ∈ Rm×m(s), the set
of m × m rational matrices with real coefficients, Y (s) =
L {y(t)}, U(s) = L {u(t)}, and k ∈ Rm. The port variables1

y, u ∈ Rm, with elements yi, ui, i ∈ M := {1, . . . ,m}, are
conjugated variables, i.e., their product yiui has units of power.
The port variables are connected to CPLs defined as

−yi(t)ui(t) = Pi > 0, i ∈M, (2)

that holds for all t ≥ 0.
We are interested in two questions.

Q1. Give conditions on the system and load parameters for
the existence of constant steady–state behavior. In par-
ticular, for practical reasons, it is desirable to define the
maximal power that can be extracted from the source, i.e.,∑m

i=1 Pi, ensuring the good behaviour of the system.
Q2. Assuming a steady–state behavior exists, under which

conditions the associated equilibrium point is (Lyapunov)
stable or unstable.

The remaining of the paper is organized as follows. Section
II corrects an unfortunate mistake in [10]. Section III gives
two necessary condition for existence of a steady–state, with
the first expressed in terms of feasibility of a linear matrix
inequality (LMI). In Section IV we discuss situations when
the LMI necessary condition is also sufficient, which reduces
to checking the convexity of a set defined by the problem data.
The stability analysis of a given equilibrium point is carried
out in Section V. Section VI presents two benchmark exam-
ples. The case of nonlinear port–Hamiltonian (pH) systems
with CPLs that, as shown in [10] includes a class of power
converters, is briefly discussed in Section VII. The paper is
wrapped–up with concluding remarks in Section VIII.

II. CORRECTION TO THE CLAIM OF [10]
In [10] we addressed the question of existence of constant

steady–states for the system (1), (2), a regime which is defined
as follows.

Definition 1: The system (1), connected to CPLs via (2)
admits a constant steady–state if and only if there exist
constant vectors ū, ȳ ∈ Rm such that

ȳ = G(0)ū+ k (3)
ȳiūi = −Pi, i ∈M. (4)

In [10] the following positive definiteness assumption is
made:

G(0) +G>(0) > 0. (5)

1In the interest of brevity, when clear from the context, the argument t is
omitted from the time functions.
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As explained in Remark 3 of [10] this is reasonable in the
scenario of interest. Under this assumption, it is claimed in
Proposition 1 of [10] that a necessary and sufficient condition
for existence of a constant steady–state is

1

2
k>
[
G(0) +G>(0)

]−1
k ≥ 1>mP, (6)

where 1m := col(1, . . . , 1) ∈ Rm and P :=
col(P1, . . . , Pm) ∈ Rm. Unfortunately, this statement is true
only for m = 1, for m > 1 condition (6) is necessary, but
not sufficient. Indeed, in Proposition 1 of [10] the definition
of existence of a constant steady–state is erroneously given as
existence of constant vectors ū, ȳ ∈ Rm such that (3) and the
scalar condition

ȳ>ū = −1>mP, (7)

hold. Notice that (7), instead of (4), is used in the definition
of steady–state. Clearly, (4) implies (7), but not the other way
around.

The following simple counterexample illustrates this point.

Example 1: Assume m = 2 and

G(0) =

[
1 2
0 3

]
,

which satisfies (5). Some simple calculations show that equa-
tions (3) and (4) are equivalent to

ū2
1 + 2ū1ū2 + k1ū1 = −P1

3ū2
2 + k2ū2 = −P2.

These quadratic equations admit real roots if and only if

k2
2 ≥ 12P2 (8)[

k1 +
1

3

(
−k2 ±

√
k2

2 − 12P2

)]2

≥ 4P1, (9)

where (9) may be satisfied with either the plus or the minus
sign in the radical. On the other hand, (6) is equivalent to

1

16

(
6k2

1 + 2k2
2 − 4k1k2

)
≥ P1 + P2.

Taking the particular case of k1 = 0 yields

k2
2 ≥ 8(P1 + P2),

which does not imply, in general, (8).
It is interesting to note that, depending on the parameter

values, there may be zero, one, two, three, or four solutions,
and corresponding steady–states of the system (1), (2).

As discussed in Remark 3 of [10], if G(s) is the driving
point impedance of a circuit consisting of (positive) con-
stant resistors, inductors and capacitors, with the elements
of u and y voltages and currents, and k representing con-
stant, external current and voltage sources, there is a clear
physical interpretation of condition (6). Indeed, in this case
1
2k
> [G(0) +G>(0)

]−1
k is an upper bound on the power

dissipated in steady–state, that should exceed the extracted
constant power to ensure the existence of equilibria. See the
example in Subsection V.A of [10].

III. TWO NECESSARY CONDITIONS FOR EXISTENCE OF A
STEADY–STATE

A. An LMI–based condition

Proceeding from Definition 1 let us rewrite (3), (4) in the
compact form

ūi(g
>
i ū+ ki) = −Pi, i ∈M (10)

where we have defined

G>(0) =:
[
g1 g2 . . . gm

]
. (11)

It is clear then that the system admits an equilibrium if and
only if, for the given values of gi, ki and Pi, the quadratic
equations (10) admit a solution (in ū).

The analysis of solvability of this kind of equations is the
subject of study of classical quadratic mapping theory (see
[8] and references therein). A direct application of Lemma 1
given in Appendix A yields the following result.

Proposition 1: Assume there exists a diagonal matrix T :=
diag{ti} ∈ Rm×m such that[

TG(0) +G>(0)T Tk

(Tk)> 21>mTP

]
> 0. (12)

Then, there is no constant steady–state for the system (1), (2).
�

The necessary condition of Proposition 1 is formulated in
terms of LMIs—hence powerful convex optimization tools [2],
[5] can be exploited to check it.

Let us compare it with (6)—recalling that (5) is always
satisfied. Applying Schur’s complement we have that (12), is
equivalent to the inequalities

TG(0) +G>(0)T > 0 (13)

1>mTP >
1

2
(Tk)>[TG(0) +G>(0)T ]−1Tk. (14)

The second inequality states that if the weighted extracted
power (

∑m
i=1 tiPi) exceeds a lower bound then there is no

equilibrium—provided the first inequality holds. On the other
hand, condition (6) states that if there is an equilibrium
the effective extracted power (

∑m
i=1 Pi) should not exceed a

certain upper bound. It is important to underscore that neither
one of the conditions is sufficient for existence of equilibria.
There are two facts that make the result of Proposition 1
more interesting. First, under some conditions discussed in the
next section feasibility of the LMI is necessary and sufficient.
Second the inclusion of free weighting factors T gives a
significant degree of freedom. Moreover, the search of the
desired T (if it exists) can be performed in a numerically
efficient way. These facts are clearly illustrated in the example
of Subsection VI-B.

B. An alternative necessary condition

Taking T > 0 as a particular case of Proposition 1 yields
an alternative necessary condition, which admits a very simple
proof given in Appendix B—via completion of squares as done
in [10].
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Proposition 2: Assume there exists a positive definite diag-
onal matrix T := diag{ti} ∈ Rm×m such that (13) and

1>mTP >
1

2
(Tk)>[TG(0) +G>(0)T ]−1Tk (15)

hold. Then, there is no constant steady–state for the system
(1), (2). �

Clearly, when T = Im conditions (13), (15) agree with (5)
and (6), respectively, providing then an extension to the result
in [10].

IV. ON SUFFICIENCY OF THE LMI CONDITION

Proposition 1 provides a necessary condition, that is, if there
exists constant steady–state, then LMI (12) has no solutions.
The following question regarding sufficiency of this statement
arises naturally.
Q3. Is it true that the lack of solutions of (12) implies

solvability of equations (10)?

A. On the role of convexity

Question Q3 is closely related to convexity properties of
images for quadratic transformations, see [8]. Indeed, the key
point in the proof of Lemma 1 was the separation of the
point −P and the image of the mapping f(ū)—denoted F
and defined in (34). If a set is convex and closed, the lack
of a strictly separating hyperplane is necessary and sufficient
condition for a point to be feasible. Thus we arrive to the
following complement to Proposition 1.

Proposition 3: If the set F is convex—that is the case if
m = 1 or m = 2 and (13) is solvable—equations (10) have a
solution if and only if the LMI (12) is not feasible. �

There are numerous results on convexity of quadratic im-
ages [3], [8]. For instance, as indicated in the proposition,
m ≤ 2 implies convexity. Unfortunately, for m > 2 the
set F is usually non–convex. In [9] a test to check convex-
ity/nonconvexity of F is given. Thus, for a particular example
one can examine sufficiency of the LMI condition. More
precisely, if non–convexity is identified, there exists a P ∈ Rm

such that (10) has no solution, and equations (13) have no
solution either. However, it is hard to give the answer for a
particular P .

B. An illustrative example

The next example illustrates two interesting aspects of the
problem discussed in this section.
A1. It shows that lack of solutions of the LMI (12) does not

imply solvability of equations (10)—providing a negative
answer to question Q3.

A2. It is clear from the necessary condition (6) that for
sufficiently large values of the extracted powers Pi the
system does not admit a steady–state solution. It looks
natural to suggest that if equations (10) have a solution,
there still will be a solution for smaller Pi. The example
shows that this conjecture is not true in general.

Consider the case m = 3 and

G(0) =

 1 − 1
2 1

− 1
2 1 −1

−2ε −2ε 1

 , k =

 − 3
2
− 1

2
−1

 , P =

 1
2
1
2
1
4

 ,
where ε is a small number. Define

fi(ū) := ūi(g
>
i ū+ ki), i ∈M.

Some simple calculations show that

f1(ū) = ū2
1 −

1

2
ū1ū2 + ū1ū3 −

3

2
ū1

f2(ū) = ū2
2 −

1

2
ū1ū2 − ū2ū3 −

1

2
ū2

f3(ū) = ū2
3 − 2εū3(ū1 + ū2)− ū3. (16)

To establish A1 we notice that the inequalities

fi(ū) + Pi > 0, i ∈M,

have a solution ū = (1, 1, 1
2 ), which is checked by direct

substitution. On the other hand, in Appendix C we prove that
the system

fi(ū) = −Pi, i ∈M, (17)

has no solution. Recalling Proposition 3 this proves the non–
convexity of the set F .2

We proved above that the system has no equilibrium with
power P3 = 1

4 . However, if this power is increased to P3 =
1
4 + 2ε it has equilibria, contradicting the conjecture of A2
above. These two facts underscore the complicated topology
of the solution set of the quadratic equations in question.

V. ANALYSIS OF STABILITY OF A GIVEN EQUILIBRIUM
POINT

In this section we assume the system (1), (2) has a steady–
state and analyze the stability—in the sense of Lyapunov—of
the associated equilibrium point of its state–space realization.
Therefore, a state description of the system is required. That
is,

ẋ = Ax+Bu

y = Cx+Du+ k

yiui = −Pi, i ∈M, (18)

where x is the state vector of dimension equal to the McMillan
degree3 of G(s) and A,B,C,D are constant matrices, of
suitable dimensions, such that

G(s) = C(sI −A)−1B +D.

In Section III it has been shown that existence of a steady–
state of the system (1), (2) is equivalent to existence of a
constant vector ū solution of (10). It is clear that, given ū, the
associated equilibrium point of (18) is

x̄ = −A−1Bū, (19)

with condition (5) ensuring that A is full rank.

2The latter can also be established invoking the results of [9].
3That is, the dimension of a minimal realization of G(s).
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To streamline the presentation of our result define the
parameterized matrices

R(ū) := diag{g>i ū+ ki}+ diag{ūi}D ∈ Rm×m

S(ū) := diag{ūi}C ∈ Rm×n

M(ū) := A−BR−1(ū)S(ū) ∈ Rn×n, (20)

with the vectors gi ∈ Rm the columns of G>(0) as defined in
(11).

Proposition 4: Assume the system (1), (2) admits a steady–
state with associated constant vector ū solution of (10).
R1. The equilibrium point (19) of the system state–space

realization (18) is locally asymptotically stable if

Re{λi[M(ū)]} < 0, i ∈M,

where λi[·] denotes the eigenvalues and M(ū) is defined
in (20).

R2. The equilibrium is unstable if there exists i ∈ M such
that

Re{λi[M(ū)]} > 0.

Proof: The proof is a straightforward application of Lya-
punov’s First Method to the system (18). First, we notice
that the system matrix for the first order approximation of
the system (18) around the equilibrium point x̄ is

A+B
∂u

∂x
|x=x̄,u=ū. (21)

So, the remaining task is to compute the partial derivative.
Now, defining the rows of the matrices C and D as

C =:


c>1
c>2
...
c>m

 , D =:


d>1
d>2
...
d>m

 ,
we can write the (implicit) control equation yiui = −Pi as

ui(c
>
i x+ d>i u+ ki) = −Pi, i ∈M. (22)

Differentiating (22) with respect to x we get[
diag{c>i x+ d>i u+ ki}+ diag{ui}D

] ∂u
∂x

+ diag{ui}C = 0, i ∈M.

Evaluating the identity above at the point (x̄, ū) and using (19)
and the definition of S(ū) we get[

diag{(−c>i A−1B + d>i )ū+ ki}+ diag{ūi}D
] ∂u
∂x

= −S(ū), i ∈M.

The proof is completed using the fact that

G(0) = D − CA−1B,

solving for the partial derivative to get

∂u

∂x
= −R−1(ū)S(ū),

and replacing in (21). �

VI. TWO ILLUSTRATIVE EXAMPLES

A. A single port RLC circuit

The linear RLC circuit with constant voltage source shown
in Fig. 1 has been used in studies with CPLs in [1], [7], [11].
The transfer function G(s) is given by

G(s) =
Ls+ r

LCs2 + (rC + L
rc

)s+ r
rc

+ 1
,

with

k =
E

1 + r
rc

.

Notice that
G(0) =

r
r
rc

+ 1
=: g.

+−E

r L iL

C

−

+

vc rc

+

−

CPL

icpl

Fig. 1. Linear RLC circuit with a CPL.

Since m = 1 the condition (6) is necessary and sufficient
for the existence of a steady–state and it takes the form

P ≤ k2

4g
=

E2

4r( r
rc

+ 1)
(23)

Assuming that (23) is satisfied we will invoke now Propo-
sition 4 to study the stability of the equilibria. Defining the
state vector

x :=

[
iL
vc

]
− E

1 + r
rc

[
1
rc
1

]
,

it is easy to see that the system admits a state representation
of the form (18) with (u, y) = (icpl, vc) and

A := −
[

r
L

1
L

− 1
C

1
Crc

]
, B :=

[
0
1
C

]
, C> :=

[
0
1

]
,

Replacing the system data in (20) yields

M(ū) =

[
− r

L − 1
L

1
C
− 1

C
[ 1
rc

+ q(ū)]

]
,

where we defined the function

q(ū) :=
ū

gū+ k
.

Now, we compute ū from (10), which takes the form

gū2 + kū+ P = 0. (24)

Since all coefficients of the quadratic equation are positive
both roots are real negative. Moreover, the term gū + k is
positive and, consequently, q(ū) < 0.
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The characteristic polynomial of the matrix M(ū) is given
as

det[sI −M(ū)] = s2 + [
r

L
+

1

C
(

1

rc
+ q(ū))]s

+
1

LC
[1 +

r

rc
+ rq(ū))]

Some lengthy, but straightforward calculations, show that
for the smallest root of (24) the polynomial above always has
an unstable root. Hence, the associated equilibrium is unstable
for all parameter values. On the other hand, for the greatest
root of (24), the characteristic polynomial may be stable or
unstable depending on the system parameters—property that
is inherited by the corresponding equilibrium point. The same
situation holds true if there is just one equilibrium, that is, if
k2 = 4gP .

B. A multiport system

Fig. 2 shows a dc linear circuit with two CPLs. The
transfer function matrix G(s), with ȳ = col(v1, v2), ū =
col(icpl1 , icpl2) and k = col(E,E), is

G(s) =
1

d(s)

[
n11(s) n12(s)
n21(s) n22(s)

]
where

n11(s) = L1C2L2s
3 + (C2L1r2 + C2L2r1)s2

+(C2r1r2 + L1)s+ r1

n12(s) = n21(s) = L1s+ r1

n22(s) = C1L1L2s
3 + (C1L1r2 + C1L2r1)s2

+(C1r1r2 + L1 + L2)s+ r1 + r2

d(s) = C1C2L1L2s
4 + (C1C2L1r2 + C1C2L2r1)s3

+(C1C2r1r2 + C1L1 + C2L1 + C2L2)s2

+(C1r1 + C2r1 + C2r2)s+ 1.

Then,

G(0) =

[
r1 r1

r1 r1 + r2

]
.

Using Proposition 1 results in the LMI condition 2t1r1 (t1 + t2)r1 t1E
(t1 + t2)r1 2t2(r1 + r2) t2E

t1E t2E 2(t1P1 + t2P2)

 > 0. (25)

Since we are dealing with a two port system non–feasibility of
the LMI is necessary and sufficient for existence of equilibria
as indicated in Proposition 3.

TABLE I
PARAMETERS FOR THE CIRCUIT IN FIG. 2

r1 = 0.04 Ω L1 = 78.0 µH C1 = 2.0 mF E = 24.0 V
r2 = 0.06 Ω L2 = 98.0 µH C2 = 1.0 mF

Fig. 3 shows the evaluation using a gridding approach4 of
the LMI (12) on the P2 vs P1 plane with the circuit parameters

4CVX, a package for specifying and solving convex programs, has been
used to solve the semidefinite programming feasibility problem [5].

+−E

r1 L1 i1
r2 L2 i2

+

−

CPL2

icpl2

C1

−

+

v1

+

−

CPL1

icpl1

C2

−

+

v2

Fig. 2. Linear dc circuit with two CPLs.

in Table I. In the blue region the LMI (25) is feasible and, then,
no equilibria exist for the example. Conversely, in the green
region the LMI (25) is not feasible and, then, an equilibrium
for the system exists. The red curve in the plane is the
numerically obtained boundary for the existence of equilibria
that, as indicated in Proposition 3, coincides with the boundary
predicted by Proposition 1.

In the figure we also show in yellow the straight line

P2 + P1 =
1

2
k>
[
G(0) +G>(0)

]−1
k = 3600

which corresponds to the upper bound on the extracted power
for existence of equilibria obtained from the inequality in (6).
As seen from the figure the bound is, indeed, necessary but
far from being sufficient.

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000

1200

1400

1600

P1

P2

Fig. 3. Boundaries for existence of equilibria in the plane of extracted powers
P2 vs P1 (in W).

VII. THE CASE OF PORT-HAMILTONIAN SYSTEMS

In [10] the question of existence of equilibria of controlled
pH systems with constant dissipation connected to CPLs is
also studied. The dynamics of these systems is given by

ẋ = [J(d)−R]∇H(x) + k + g(x)u (26)

y = g>(x)∇H(x) (27)

where ∇ = ( ∂
∂x )>, x ∈ Rn is the state vector, d ∈ Rq

is a control signal, H : Rn → R is the system energy
function, k ∈ Rn are constant external sources, the vectors
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u, y ∈ Rm are the port variables connected—through the
input matrix g : Rn → Rn×m—to CPLs, i.e., verifying (2).
The interconnection matrix J : Rq → Rn×n is of the form

J(d) = J0 +

q∑
i=1

Jidi

where the constant matrices Ji ∈ Rn×n satisfy the skew–
symmetry condition

Ji = −J>i , i = 0, 1, . . . , q.

The dissipation matrix is constant and verifies R = R> > 0.
As discussed in [10] our motivation to consider this class of

systems is that they suitably describe the dynamic behavior of
power converters, under the assumption of a sufficiently fast
switching frequency, with d representing the duty cycle [4],
[6].

Evaluating the time derivative of the total energy along the
trajectories of (26), and using (2) and (27), yields the power
balance equation of the pH system

Ḣ = −(∇H)>ẋ

= −(∇H)>{[J(d)−R]∇H(x) + k + g(x)u}
= −(∇H)>R∇H(x) + k + y>u

= −(∇H)>R∇H + (∇H)>k − 1>mP, (28)

where we clearly identify the dissipated, supplied and ex-
tracted power terms. It is clear that a necessary condition for
existence of an equilibrium of (26) is that Ḣ = 0, which in
its turn is equivalent to solvability of the quadratic equation

0 = −v>Rv + v>k − 1>mP, (29)

for some constant vector v ∈ Rn, that corresponds to

v := ∇H(x̄),

with x̄ ∈ Rn the associated equilibrium. Notice that the
quadratic equation (29) are of the same form of equations
(38), with T = Im, analysed in Proposition 2.

Now, to translate the condition of existence of constant
equilibrium of the co–energy variables ∇H(x) to the energy
variables5 x we need to assume—as done in [10]—that the
mapping ∇H : Rn → Rn is surjective.

We have the proposition below, whose proof follows as a
corollary of Proposition 2 taking R = G(0) and T = Im.

Proposition 5: The pH system (26) with Hamiltonian func-
tion such that ∇H(x) is surjective admits an equilibrium
x̄ ∈ Rn only if

1>mP ≤
1

4
k>R−1k. (30)

�
In [10] it is claimed that the condition above is sufficient

when n− q = 1. This claim, which was a consequence of the
incorrect definition of a steady state indicated in Section II, is
unfortunately wrong.

5We recall that in pH modeling of electrical systems ∇H(x) corresponds
to the co–energy variables, i.e. inductor currents and capacitor voltages while
x are the energy variables inductor fluxes and capacitor charges.

Similarly to the case discussed in Section II there is a clear
physical interpretation of condition (30), with 1

4k
>R−1k being

an upper bound on the power dissipated in steady–state, that
should exceed the extracted constant power 1>mP to ensure
the existence of equilibria.

VIII. CONCLUSIONS

We have studied the problems of derivation of conditions for
existence of a steady–state for multi–port, LTI systems with
CPLs and analysis of the stability of the associated equilibrium
points. The main contributions of the paper are the following
C1. Prove that for single–port systems the simple test for

existence of equilibria (6), given in [10], is necessary
and sufficient, while for multi–port systems is only
necessary.

C2. An extension to the necessary condition of [10] given
in terms of an LMI has been derived.

C3. It has been show that the LMI condition is also sufficient
if the set F is convex, which is the case for m ≤ 2.

C4. Assuming the steady–state exists, a simple eigenvalue
test has been given to verify the stability (or instability)
of the associated equilibrium.

C5. In Section VII the sufficient version of the results is
extended to the case when the LTI circuit is replaced
by the class of perturbed port–Hamiltonian systems
considered in Section IV of [10], which contains the
important case of switched power converters.

The results can be directly extended to circuits where
voltage (or current) sources appear also in the state equations.
That is, systems of the form

ẋ = Ax+Bu+ w

y = Cx+Du+ κ

yiui = −Pi, i ∈M,

with w ∈ Rn and κ ∈ Rm constant vectors. The results given
above apply verbatim simply defining the new constant vector

k := κ− CA−1w.
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APPENDIX A: PROOF OF PROPOSITION 1

The following lemma is instrumental in the proof of Propo-
sition 1.

Lemma 1: Consider m quadratic functions of the form fi :
Rm → R,

fi(ū) :=
1

2
ū>Aiū+ ū>Bi, i ∈M (31)

where Ai = A>i ∈ Rm×m and Bi ∈ Rm. For T := diag{ti} ∈
Rm×m define

A(T ) :=

m∑
i=1

tiAi, B(T ) :=

m∑
i=1

tiBi, P(T ) :=

m∑
i=1

tiPi.

If the LMI in T [
A(T ) B(T )
B>(T ) 2P(T )

]
> 0, (32)

is feasible, then equations

fi(ū) = −Pi, i ∈M (33)

have no solution.

Proof: Write the equations (33) in vector form as f(ū) = −P .
Define the set

F := {f(ū) : ū ∈ Rm}, (34)

that is the image of Rm under the quadratic map f : Rm →
Rm. Let us minimize a linear function

∑m
i=1 tizi on F

provided that A(T ) > 0:

α := min
z∈F

m∑
i=1

tizi = min
ū

m∑
i=1

tifi(ū) = −1

2
B(T )>A(T )−1B(T ).

On the other hand, using the definition of P(T ), and if

−P(T ) < min
z∈F

m∑
i=1

tizi,

it means that the hyperplane
m∑
i=1

tizi =
1

2
[α− P(T )]

strictly separates −P and F , hence equations (33) have no
solution. On the other hand, the inequalities

A(T ) > 0, P(T ) >
1

2
B(T )>A(T )−1B(T ) (35)

are equivalent to (32) due to lemma on Schur complement (see
e.g., [2], Appendix A.5.5). �

To obtain Proposition 1 from Lemma 1 we define

Ai := eie
>
i G(0) +G>(0)eie

>
i

Bi := kiei,

with ei ∈ Rm the i–th Euclidean basis vector. Whence, the
terms in Lemma 1 can be written as

A(T ) = TG(0) +G>(0)T, B(T ) = Tk, P(T ) = 1>mTP.

APPENDIX B: PROOF OF PROPOSITION 2

To simplify the notation define the positive definite matrix

T :=
1

2
[TG(0) +G>(0)T ] > 0. (36)

Condition (15) then becomes
1

4
(Tk)>T −1(Tk)− 1>mTP < 0. (37)

Proceeding from (10), multiply the i–th equation by ti and
sum them up to get

ū>TG(0)ū+ ū>Tk = −1>mTP. (38)

Clearly, solvability of (10) implies solvability of (38). Now,
extracting the symmetric part of the quadratic form and
recalling the definition of T in (36) we have

ū>TG(0)ū = ū>T ū.

Replacing the expression above and completing the square, it
is easy to see that (38) is equivalent to

(ū+
1

2
T −1Tk)>T (ū+

1

2
T −1Tk)

=
1

4
(Tk)>T −1(Tk)− 1>mTP.

Condition (36) ensures that the quadratic form in the left–hand
side of the equation above is non–negative, while condition
(37) makes the right–hand side negative, contradicting solv-
ability of (38). This, in its turn, contradicts solvability of (10)
and, consequently, (3), (4) admit no solution.

APPENDIX C: EQUATIONS (16), (17) HAVE NO SOLUTION

The proof is given by contradiction. Therefore, assume
fi(ū) = −Pi, i ∈ M, for some ū ∈ R3. For simplicity,
we make a change of variable: ū3 → ū3 + 1

2 . Then, we get
the equations

ū2
1 −

1

2
ū1ū2 + ū1ū3 − ū1 +

1

2
= 0, (39)

ū2
2 −

1

2
ū1ū2 − ū2ū3 − ū2 +

1

2
= 0, (40)

ū2
3 − 2εū3(ū1 + ū2)− ε(ū1 + ū2) = 0. (41)

From the first two equations we see that ū1 6= 0, ū2 6= 0.
Consider the case ū1ū2 > 0. Then, the first and the second
equations imply

ū2
2 −

1

2
ū1ū2 − ū2 +

1

2
= ū2ū3

=
ū2

ū1
(−ū2

1 +
1

2
ū1ū2 − ū1ū3 + ū1 −

1

2
).
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Therefore

ū1(ū2
2 −

1

2
ū1ū2 − ū2 +

1

2
) + ū2(ū2

1 −
1

2
ū1ū2 − ū1 +

1

2
) = 0,

or
1

2
(ū1(ū2 − 1)2 + ū2(ū1 − 1)2) = 0.

This may happen only when ū1 = 1, ū2 = 1. From the
equation (39) we get ū3 = 0, which contradicts the equation
(41).

In case ū1ū2 < 0 from the first two equations we get

ū1(ū3 −
1

2
ū2) = −ū2

1 + ū1 −
1

2
≤ −1

4
,

ū2(−ū3 −
1

2
ū1) = −ū2

2 + ū2 −
1

2
≤ −1

4
.

(42)

Taking into account ū1ū2 < 0 we get ū1ū3 < 0, ū2ū3 > 0,
and

|ū1|(|ū3| −
1

2
|ū2|) ≥

1

4
,

|ū2|(|ū3| −
1

2
|ū1|) ≥

1

4
,

(43)

or

|ū3| ≥
1

2
|ū2|+

1

4|ū1|
,

|ū3| ≥
1

2
|ū2|+

1

4|ū2|
.

(44)

On the other hand from the equation (41) we have

ū3 = ε(ū1 + ū2)±
√
ε(ū1 + ū2) + (ε(ū1 + ū2))2,

and therefore

|ū3| ≤ 2ε|ū1|+
√
ε
√
|ū1|+ 2ε|ū2|+

√
ε
√
|ū2|. (45)

Notice that
x

4
+

1

8x
> 2εx+

√
ε
√
x

for all positive x, if ε ≤ 0.01. Hence, for such ε inequalities
(44) contradict inequality (45).
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