
ar
X

iv
:1

50
5.

04
93

9v
1 

 [
m

at
h.

O
C

] 
 1

9 
M

ay
 2

01
5

Extended Hybrid Model Reference Adaptive

Control of Piecewise Affine Systems

Mario di Bernardo ∗, Umberto Montanaro †,∗ , Romeo Ortega ‡,
and Stefania Santini ∗

Abstract

This note presents an extension to the adaptive control strategy
presented in [1] able to counter eventual instability due to disturbances
at the input of an otherwise L2 stable closed–loop system. These
disturbances are due to the presence of affine terms in the plant and
reference model. The existence of a common Lyapunov function is
used to prove global convergence of the error system, even in the
presence of sliding solutions, as well as boundedness of all the adaptive
gains.

1 Introduction

As notably highlighted in [2], adaptive control of switched systems is still an
open problem. Recently, a novel model reference adaptive strategy has been
presented in [1] that allows the control of multi-modal piecewise linear (PWL)
plants. Specifically, a hybrid model reference adaptive strategy was proposed
able to make a PWL plant track the states of an LTI or PWL reference model
even if the plant and reference model do not switch synchronously between
different configurations. While stability is guaranteed for PWL systems, for
affine systems the presence of a non-square integrable disturbance term in
the error equations and the possible occurrence of sliding solutions can render
the proof of stability inadequate.
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We wish to emphasize that the problem of large state excursions and
instabilities caused by constant input disturbances on the closed loop system
is a common problem of adaptive control systems seldom highlighted in the
literature (see for example [3], [4], and [5] Sec. 4.4.4 p. 173). Indeed, adaptive
systems can be represented as the negative feedback interconnection of a
passive system (defined by the estimator) and a strictly positive real (SPR)
transfer function. A simple application of the passivity theorem establishes
that the overall system is L2-stable. However, this property does not ensure
that the system will remain stable in the presence of external disturbances
which are not L2. A simple example of this scenario is the following system
[6]:

ẋ1 = f1(x1, x2) = −x1x2 cos x2

ẋ2 = f2(x1, x2) = x21 cosx2 − x2 + π,

where the presence of the constant input π can cause exponentially growing
trajectories that can significantly disrupt performance.

The aim of this note is to present a modification of the control strategy
presented in [1] able to guarantee asymptotic stability of the closed loop
system even in the presence of sliding mode trajectories and bounded L∞

perturbations due to the affine terms in the description of the plant and/or
reference model. The idea is to add an extra switching action to the controller
in [1] able to compensate the presence of such a disturbance. The proof of
stability is obtained by defining an appropriate common Lyapunov function
and analyzing its properties along the closed-loop system trajectories within
each of the phase space regions where the plant and reference model are
characterized by different modes, and along their boundaries. We show that,
even in the presence of possible sliding mode trajectories, the origin of the
closed-loop error system is rendered asymptotically stable by the extended
strategy presented in this paper. A preliminary version of the algorithm
suitable to control bimodal piecewise affine system can be found in [7], [8],
while experimental validation results are reported in [9]. A possible extension
to discrete-time piecewise-affine (PWA) plants can be found in [10], [11].

2 Problem statement and definitions

Assume that the state space IRn is partitioned by some smooth bound-
aries into M domains, say {Ωi}i∈M with M = {0, 1, . . . ,M − 1} such that⋃M−1

i=0 Ωi = IRn and, given two generic indexes i1 and i2 ∈ M (with i1 6= i2),
it follows Ωi1 ∩ Ωi2 = ∅.
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Let the plant be described by an n-dimensional multi-modal PWA system
whose dynamics are given by:

ẋ = Aix+Bu+Bi if x ∈ Ωi, i ∈ M, (1)

where x ∈ IRn is the state vector, u ∈ IR is the scalar input, and the matrices
Ai, B, Bi (i = 0, 1, . . . ,M − 1) are assumed to be in control canonical form,
i.e.

Ai =




0 1 · · · 0

0 0
. . .

...
...

... 1

a
(1)
i a

(2)
i · · · a

(n)
i



, B =




0
0
...
b


 , Bi =




0
0
...
bi


 , (2)

with b > 0. Note that all entries on the last row of the plant matrices Ai,
B and Bi are supposed to be unknown. (Notice that many generic bimodal
PWL continuous systems can be transformed into such a form as shown
in [12].)

The problem is to find an adaptive piecewise feedback law u(t) to ensure
that the state variables of the plant track asymptotically the states, say x̂(t),
of a reference model independently from their initial conditions.

Here, we assume that the reference model can be either an LTI system,
or a multi-modal PWA system:

˙̂x = Âîx̂+ B̂r + B̂î if x̂ ∈ Ω̂î, î ∈ M̂, (3)

where the state x̂ ∈ IRn, M̂ ,

{
0, 1, . . . , M̂ − 1

}
,
{
Ω̂î

}
î∈M̂

is a partition of

IRn into M̂ domains obtained by some smooth boundaries and r ∈ IR is the
input to the reference model. Note that the reference model may possess a
number of modes different from the one of the plant, M̂ 6=M . Furthermore,
we assume that the reference model defined as in (3) is chosen so as not to
exhibit sliding solutions and that it is well-posed given the initial condition
x̂(0) = x̂0. In many practical cases, the aim of the control action can be that
of compensating the discontinuous nature of the plant. In these situations,
the control design presented above offers a simple and viable solution for this
to be achieved by simply choosing a smooth or smoother reference model.
This often corresponds to the conventional choice of an asymptotically stable
LTI reference model in the case of smooth systems.

As for the plant, the matrices of the reference model are chosen to be in
the companion form given by (̂i = 0, 1, . . . , M̂ − 1):
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Âî =




0 1 · · · 0

0 0
. . .

...
...

... 1

â
(1)

î
â
(2)

î
· · · â

(n)

î



, B̂ =




0
0
...

b̂


 , B̂î =




0
0
...

b̂̂i


 (4)

with b̂ > 0.
In what follows, we use the standard notation in [13] (also adopted in

[14]), for both the switching instants of the plant and reference model. More
precisely, the switching sequence of the plant is given by:

Σ = { x0, (i0, t0) , (i1, t1) , (i2, t2) . . . (ip, tp) . . . | ip ∈ M, p ∈ IN }, (5)

where t0 = 0 is the initial time instant and x0 is the initial state. Note that,
as in [13], when t ∈ [tp ; tp+1), then x(t) belongs to Ωip by definition and,
thus, the ip-th subsystem is active. Obviously, the switching sequence Σ may
be finite or infinite. If there is a finite number of switchings, say p, then we
set tp+1 = ∞.

For any j ∈ M, we denote the sequence of switching times when the j-th
subsystem is switched on as:

Σ/j =
{
tj1 , tj2, . . . tjs, . . . | ijs = j and s ∈ IN

}
, (6)

and, thus, the endpoints of the time intervals when the j-th subsystem is
active can be given as:

{
tj1+1, tj2+1, . . . , tjs+1, . . . | ijs = j and s ∈ IN

}
. (7)

Analogously, we define the switching sequence of the reference model as:

Σ̂ =
{
x̂0,

(
î0, t̂0

)
,
(
î1, t̂1

)
,
(
î2, t̂2

)
. . .

(
îp, t̂p

)
. . . | îp ∈ M̂, p ∈ IN

}
, (8)

with t̂0 = 0. Hence, when t ∈ [t̂p ; t̂p+1) then x̂(t) ∈ Ω̂îp
by definition and the

îp-th subsystem is active.

For any ĵ ∈ M̂ the sequence of switching times when the ĵ-th subsystem
of the reference model is switched on can be analogously defined as:

Σ̂/ĵ =
{
t̂ĵ1 , t̂ĵ2, . . . t̂ĵs, . . . | îĵs = ĵ, s ∈ IN

}
, (9)

with the endpoints of the intervals where the ĵ-th mode is active being:
{
t̂ĵ1+1, t̂ĵ2+1, . . . , t̂ĵs+1, . . . | îĵs = ĵ, s ∈ IN

}
. (10)
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We define the ”switching signals” σ : IR+ 7→ M and σ̂ : IR+ 7→ M̂ as:

σ(t) = i if x (t) ∈ Ωi, σ̂(t) = î if x̂ (t) ∈ Ω̂î (11)

and the indicator functions σi(t) and σ̂̂i(t), as:

σi (t) =

{
1 if x (t) ∈ Ωi,
0 elsewhere,

(12)

σ̂̂i (t) =

{
1 if x̂ (t) ∈ Ω̂î,
0 elsewhere,

(13)

with i = 0, 1, . . . ,M − 1 and î = 0, 1, . . . , M̂ − 1.
Also, en ∈ IRn is defined as the basis vector

en =
[
0 . . . 0 1

]T
. (14)

3 Control Strategy

The control problem described in Section 2 can be solved by means of an
extended switched adaptive strategy as described in the rest of this section.
The proposed approach extends the work presented in [1] by exploiting an
additional adaptive switching control gain to cope with the presence of the
bounded piecewise constant input acting on the closed-loop system when the
plant and/or reference model are PWA.

Assumption 1 Assume there exists a matrix P = P T > 0 such that

PÂî + ÂT

î
P < 0 î = 0, 1, 2, . . . , M̂ − 1. (15)

Given the above assumption our main result can be stated as follows.

Theorem 1 Consider a PWA plant of the form (1) and a PWA reference

model of the form (3). If the dynamic matrices Âî of the reference model
verify Assumption 1, then the piecewise smooth adaptive control law:

u(t) = KR(t)r(t) +KFB(t)x(t) +KA(t), (16)

where

KR (t) = α

∫ t

0

ye (τ) r (τ) dτ + βye (t) r (t) , (17)

KFB (t) = K0 (t) +KΣ (t) + K̂Σ (t) , (18)

KA (t) = K0A (t) +KΣA (t) + K̂ΣA (t) (19)
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with
ye , Cexe, xe , x̂− x, Ce , eTnP, (20)

K0(t) = α

∫ t

0

ye (τ) x
T (τ) dτ + βye (t) x

T (t) , (21)

KΣ (t) =
M−1∑

j=1

Kj (t), K̂Σ̂ (t) =
M̂−1∑

ĵ=1

K̂ĵ (t), (22)

Kj (t) =

{
ρ
∫ t

tjs
ye (τ) x

T (τ) dτ, if x ∈ Ωj ,

0 elsewhere,
(23)

K̂ĵ (t) =

{
ρ
∫ t

t̂
ĵs

ye (τ) x
T (τ) dτ, if x ∈ Ω̂ĵ ,

0 elsewhere,
, (24)

K0A(t) = ρ

∫ t

0

ye (τ) dτ, (25)

KΣA (t) =

M−1∑

j=1

KAj, K̂ΣA (t) =

M−1∑

j=1

K̂Aĵσ̂ĵ (26)

KAj (t) =

{
ρ
∫ t

tjs
ye (τ) dτ, if x ∈ Ωj ,

0 elsewhere,
(27)

K̂Aĵ (t) =

{
ρ
∫ t

t̂
ĵs

ye (τ) dτ, if x ∈ Ω̂ĵ ,

0 elsewhere,
(28)

and α, β and ρ being some positive scalar constants, guarantees that the state
tracking error xe(t) between the plant states x(t) in (1) and the reference
trajectory x̂(t) in (3) converges asymptotically to zero, i.e. limt→∞ xe(t) = 0.

Remarks

• The adaptation law presented above consists of three gains KR, K0 and
K0A that remain switched on whatever the modes which the plant and
reference model are evolving in, together with some gains Kj , K̂ĵ , KAj

and K̂Aĵ that are switched on only when the trajectories of the plant
or reference model enter certain domains in phase space. Specifically,
the switching gains Kj and KAj are associated to changes of the mode

of the plant, whereas the switching gains K̂ĵ and K̂Aĵ are associated
to those of the reference model. Furthermore, the gains KR and K0

have the same structure of the gains in the Minimal Control Synthesis
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(MCS) approach [15], an application of Landau’s Model Reference PI
Adaptive Control scheme [16].

• In order to compensate the bounded disturbance acting as an input
onto the closed-loop error system, the extended strategy exploits the
additional adaptive term KA(t) when compared to the previous version
of the algorithm presented in [1], which is a set of switching integral
actions used to properly compensate the affine term in each region.

• At the generic tjs-th commutation, the adaptive gains Kj and KAj

are initialized to the last value assumed by that gain when the trajec-
tory of the plant x(t) last exited from region Ωj (or zero otherwise).

Analogously, the adaptive gains K̂ĵ and K̂Aĵ at the generic t̂ĵs - th
commutation, is initialized with the last value assumed by that gain
when the trajectory x̂(t) left the cell Ω̂ĵ (or zero otherwise). Hence,
according to the notation used for the switching instants, we have:

Kj (tjs) = Kj

(
tjs−1+1

)
, s ≥ 2, (29)

KAj (tjs) = KAj

(
tjs−1+1

)
, s ≥ 2, (30)

K̂ĵ

(
t̂ĵs

)
= K̂ĵ

(
t̂ĵs−1+1

)
, s ≥ 2, (31)

K̂Aĵ

(
t̂ĵs

)
= K̂Aĵ

(
t̂ĵs−1+1

)
, s ≥ 2. (32)

Note that at the first transition the adaptive gains are set to zero, i.e.

Kj (tj1) = 0, Kj (tj1) = 0, Kj (tj1) = 0, K̂ĵ

(
t̂ĵ1

)
= 0, K̂ĵ

(
t̂ĵ1

)
= 0.

Furthermore, the integral part of the adaptive gains KR and K0 in (17)
and (21) are set to zero at time zero.

• Both control gains KR and K0 in (17) and (21) have integral and pro-
portional terms. It is worth remarking that the use of integral plus
proportional adaptation has a beneficial effect upon the convergence of
the generalized state error vector in comparison to the use of integral
adaptation, specially at the beginning of the adaptation process [16].
PI adaptation has also been used in [3].

4 Proof of stability

We now give the proof of Theorem 1 which is based on constructing an
appropriate Common Lyapunov Function (CLF) for the closed-loop system.
Note that, due to the presence of discontinuities in the closed-loop system
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dynamics, the error state dynamics xe(t) is evaluated in the sense of Filippov
[17] and hence, to prove convergence, the Lyapunov function is also analyzed
during possible instances of sliding motion.

As the reference model (3) does not admit sliding solutions by construc-
tion, we consider for the switched closed-loop error system the following
time-varying domains:

{Ωc
i(t)}i∈M = {xe ∈ IRn : x̂(t)− xe ∈ Ωi}i∈M; (33)

with M = {0, 1, . . . ,M − 1}. Furthermore we define as ∂Ωc
i (t) their bound-

aries. (Note that when the error trajectory xe(t) evolves along ∂Ωc
i (t), the

plant dynamics exhibit sliding motion along the surface ∂Ωi.)
From definition (33), it is now possible to express the indicator function

σi(t) in (12) as a function of the state tracking error as:

σi (t) =

{
1 if xe (t) ∈ Ωc

i(t),
0 elsewhere.

(34)

From (23)-(24) and (27)-(28), it trivially follows that, at any given time in-
stant, only one of the pairs of adaptive gains (K1KA1), (K2KA2), . . . , (KM−1KAM−1)

and one of the pairs (K̂1K̂A1), (̂K̂2K̂A2), . . . , (K̂M̂−1K̂AM̂−1) can be different
from zero. Hence, equations (22) and (26) can be easily rewritten as:

KΣ (t) =
M−1∑
j=1

σj (t)Kj (t), K̂Σ̂ (t) =
M̂−1∑
ĵ=1

σ̂ĵ (t) K̂ĵ (t),

KΣA (t) =
M−1∑
j=1

σj (t)KAj, K̂ΣA (t) =
M−1∑
j=1

σ̂ĵ (t) K̂Aĵ ,

(35)

with σj and σ̂ĵ defined as in (34) and (13), respectively.
Given expressions (35), the adaptation law of the control gains (23),

(24), (27), (28) can be rewritten in terms of the indicator functions as

(i = 1, . . . ,M − 1, î = 1, . . . , M̂ − 1):

K̇i = ρye(t)x
T (t)σi(t), (36)

˙̂
K î = ρye(t)x

T (t)σ̂̂i(t), (37)

K̇Ai = ρye(t)σi(t), (38)
˙̂
KAî = ρye(t)σ̂i(t). (39)

Now, from the plant and the reference dynamics given in (1) and (3), respec-
tively, by using the definition of the control strategy in (16), after some alge-
braic manipulations the dynamics of the state tracking error can be rewritten
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as follows:

ẋe = ˙̂x− ẋ = Âσ̂(t)xe + enψIw − enbβyew
Tw+

+en
M−1∑
i=1

σiψix+ en
M̂−1∑
î=1

σ̂̂iψ̂îx+

+en

[
ψA0 +

M̂−1∑
î=1

(ψ̂Aîσ̂̂i(t)) +
M−1∑
i=1

(ψAiσi(t))

]
,

(40)

where

w ,
[
xT r

]T
, (41)

ψI ,

[
eTn

(
Â0 − A0

)
− bKI

0

... b̂− bKI
R

]
, (42)

ψi ,
[
eTn∆Ai − bKi

]
, ∆Ai , A0 − Ai, (43)

ψ̂î ,

[
eTn∆Âî − bK̂î

]
, ∆Âî , Âî − Â0, (44)

ψA0 , (̂b0 − b0)−K0A, (45)

ψ̂Aî , δb̂̂i − bK̂Aî, δb̂̂i , (̂b̂i − b̂0), (46)

ψAi , δbi − bKAi, δbi , (bi − b0), (47)

withKI
0 , K

I
R being the integral part ofK0 in (21) andKR in (17), respectively,

and i = 1, . . .M − 1, î = 1, . . . M̂ − 1. Now, by means of the definition of the
adaptive gains given in (17), (21), (25), (36), (37), (38), (39), the dynamics

of ψI , ψi, ψ̂î, ψA0, ψAi and ψ̂Aî in (42)–(47) can be written as:

ψ̇T
I = −bαyew, (48a)

ψ̇T
i = −bρyexσi, (48b)

˙̂
ψ

T

î = −bρyexσ̂̂i, (48c)

ψ̇A0 = −ρyeb, (48d)

ψ̇Ai = −ρyebσi, (48e)

˙̂
ψAî = −ρyebσ̂̂i. (48f)

Note that, letting z(t) ∈ IR(n+1)(M̂+M)−1 be the state vector embedding the
adaptive gain dynamics (48) as well as the state tracking error (40) the
evolution of the closed-loop system (40), (48) can be recast in a more compact
form as the following set of differential equations with discontinuous right-
hand side:

ż(t) = fi(z) xe(t) ∈ Ωc
i i = 0, . . . ,M − 1. (49)

9



where fi are the vector fields defined as the right-hand sides of the closed-
loop system (40),(48).

Now, let PÂî + ÂT

î
P = −Qî for some Qî = QT

î
> 0, î ∈ M̂ and let V :

IR(n+1)(M̂+M)−1 → IR be the Lipschitz, regular [18] and positive definite
candidate Lyapunov function given by:

V = xTe Pxe +
1
αb
ψIψ

T
I + 1

ρb

M−1∑
i=1

ψiψ
T
i + 1

ρb

M̂−1∑
î=1

ψ̂îψ̂
T

î
+

+ 1
ρb
ψ2
A0 +

1
ρb

M−1∑
i=1

ψ2
Ai +

1
ρb

M̂−1∑
î=1

ψ̂2
Ai.

(50)

To prove asymptotic stability of (49) in what follows we will first evaluate of
V̇ in the interior of each generic region Ωc

i and then along the generic surfaces
∂Sl resulting from intersections of the manifolds ∂Ωc

i (here l = 1, . . . , L; L
being the number of manifolds where sliding is possible) [19]:

∂Sl =
H⋂

d=1

∂Ωc
id
, (51)

with H ≤ (M − 1).

4.0.1 Evaluation of V̇ in Ωc
i

In the interior of each region xe(t) ∈ Ωc
i , the error system (49) is a smooth

set of differential equations composed by equations (40),(48) with σ and σ̂
taking finite constant values associated to the active modes of the plant and
reference model in that region. The time derivative of V along the trajectories
(40) can be computed as:

V̇ = −xTe Qσ̂(t)xe +
2

αb
ψI ψ̇

T
I +

2

ρb

M−1∑

i=1

ψiψ̇
T
i +

2

ρb

M̂−1∑

î=1

ψ̂î

˙̂
ψ
T

î +

+2xTe P

[
enψIw − enbβyew

Tw + en
M−1∑
i=1

σiψix+ en
M̂−1∑
î=1

σ̂̂iψ̂îx

]
+

+2xTe Pen

[
ψA0 +

M−1∑
i=1

(ψAiσi(t)) +
M̂−1∑
î=1

(ψ̂
Aî
σ̂̂i(t))

]
+

2
ρb
ψA0ψ̇A0 +

2
ρb

M−1∑
i=1

ψAiψ̇Ai +
2
ρb

M̂−1∑
î=1

ψ̂
Aî

˙̂
ψ
Aî
.

(52)

Substituting (48a)-(48f) into equation (52) and taking into account that
xTe Pen = eTnPxe = ye, after some algebraic manipulations we have:

V̇ = −xTe Qσ̂xe − 2bβy2ew
Tw ≤

−min
î∈M̂

(λmin[Qî])‖xe‖
2 = −W (xe),

(53)
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where λmin[Qî] is the smallest eigenvalue of Qî.

4.0.2 Evaluation of V̇ along the manifolds ∂Sl

In this case two different situations may occur; (i) the trajectory xe(t) crosses
the generic manifold ∂Sl (51) over a time interval of zero Lebesgue measure,
or (ii) it exhibits sliding solutions. In the former case, the crossing has no
effect on the stability analysis. Therefore, we focus below on the case where
sliding occurs.
In particular, when sliding takes place, solutions should be interpreted in the
sense of Filippov [17]. Using Filippov convex method, we consider the sliding
vector field, say fF , obtained by the convex combination [20]:

fF :=

M−1∑

i=0

fi(z)γi(z), with γi(z) ≥ 0; (54)

where fi are the vector fields defined in equation (49) and
∑M−1

i=0 γi(z) = 1.
Note that in the general case this is an underdetermined system of equations,
hence there is no uniquely defined Filippov sliding vector. Since the following
stability analysis does not depend on any particular choice of Filippov vector
field, we do not consider this issue.
From (54), after some algebraic manipulations it is possible to write the
closed-loop dynamics (40),(48) during the sliding motion as:

ẋe = Âσ̂(t)xe + enψIw − enbβyew
Tw + en

M̂−1∑
î=1

σ̂̂iψ̂îx

+en
M̂−1∑
î=1

σ̂̂iψ̂Aî + enψA0 + en
M−1∑
i=1

γi(ψix+ ψAi)

(55a)

ψ̇T
I = −bαyew, (55b)

ψ̇T
i = −γibρyex, (55c)

˙̂
ψ

T

î = −bρyexσ̂̂i, (55d)

ψ̇A0 = −ρyeb, (55e)

ψ̇Ai = −γibρye, (55f)

˙̂
ψAî = −ρyebσ̂̂i. (55g)

where only quantities depending on discontinuities due to plant switchings
are convexified as the reference model is assumed not to exhibit sliding.
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Evaluating the derivative of V (50) (again in the sense of Filippov) along
trajectories of (55), some algebraic manipulations yield:

V̇ ≤ −min
î∈M̂

(λmin[Qî])‖xe‖
2 = −W (xe). (56)

4.0.3 Stability of the closed-loop adaptive system

From (53) and (56), it follows that for almost all t

V̇ ≤ −W (xe) < 0 a.e. t, ∀xe ∀ψI , ψi, ψ̂î, ψA0, ψAi, ψ̂Aî. (57)

The derivative of the Lyapunov function along Filippov closed-loop solutions
is negative, hence the origin of the closed-loop system is globally stable in
the Filippov sense [18].
Now following the approach in [21], from (57) for any closed-loop trajectory
we have

sup
t∈[0+∞)

V ≤ C ∀t ≥ 0, (58)

with C being a sufficient large positive constant.
From (57) and (58), it follows

∫
∞

0

W (xe(t)) dt ≤ C. (59)

SinceW (xe) is a continuously differentiable positive-definite function,W (xe(t))
is uniformly continuos. Exploiting Barbalat’s Lemma, W (xe(t)) converges to
0 as t→ ∞, hence the state tracking error xe(t) converges to 0. ✷

5 Conclusions

We have presented an extension of the hybrid adaptive strategy introduced in
[1] aimed at compensating possible instabilities due to the presence of sliding
mode trajectories and bounded perturbations acting on the closed loop error
system. The external disturbances are due to the presence of affine terms
in the plant and reference model dynamics. Using an appropriate common
Lyapunov function, we have shown that the extended strategy guarantees
asymptotic convergence of the tracking error, even in the presence of sliding
solutions, as well as boundedness of all the adaptive gains.
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